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Setting

Problem and motivation

Our problem

We are interested in actions of Lie groups on real projective space.
I Arising from (finite dimensional) irreducible real representations.
I What is the minimal dimension of a projective orbit?
I Uniqueness? Classification?
I What about topology? Closed projective orbits?
I Computational aspects?
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Problem and motivation

Constructing geometries with large symmetries

Let M be (say) a Cartan geometry modelled on homogeneous space
F/G .
I Suppose we want M to have large automorphism group Aut(M)
I Biggest possible by dimension, but non-flat. (Submaximal problem)

The differential invariants are sections of some vector bundle Γ(E → M)
associated to G-module E
I At some point x ∈ M, the image H of the stabilizer subgroup

Stab(x) under the isotropy representation acts on Ex ' E
Finding large H is the same as finding small orbits.
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Problem and motivation

What is the alternative?

One typical way to find minimal orbits is the following:
I Consider a maximal subalgebra h ⊂ g

I Compute the space of invariants Vh for the restricted representation
ρ|h

I If this is non-zero, we are done: The minimal orbit is G/H (more or
less) and we have a representative.

I else, consider maximal subalgebras of h and start over from the top.

Remark
This procedure will find vectors with maximal dimensional stabilizers,
yielding minimal orbits. But walking the tree of subalgebras of g is
enormously labour intensive and ad-hoc.
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Problem and motivation

The complex case

The solution to the problem in the case of complex representations is
well-known

Theorem (A. Borel, 1956)
Let G be a complex semi-simple Lie group and ρ : G → GL(V) a complex
irreducible representation. Then the minimal projective orbit is the orbit
of a highest weight vector, and this is the unique closed orbit in PCV
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In light of this, our goal is to make the best possible generalization of the
Borel theorem.
I We want to consider real groups, real representations and real

projectivizations
I No access to highest weight vectors
I Failure of uniqueness
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Preliminaries and tools

Let g be a real, semi-simple Lie algebra.

Definition
A Z–grading on g is a vector space decomposition

g =
⊕
i∈Z

gi = g−k ⊕ · · · ⊕ g0 ⊕ · · · ⊕ gk

such that
[gi , gj ] ⊂ gi+j .

We say it’s nontrivial if for some i > 0 we have gi 6= {0}. There exists a
unique element Z ∈ g satisfying

[Z , gi ] = igi , adZ |gi = i Id .

This Z is called the grading element of the Z–grading.
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Some properties

I If g admits a nontrivial Z–grading, then g is non-compact.
I Any non-compact g admits a non-trivial Z–grading.
I Any Z–grading is symmetric around zero.

Definition
A subalgebra p is called parabolic if it can be written as the
non-negatively graded subalgebra of a nontrivial Z–grading:

p =
⊕
i≥0

gi

I The subalgebra p+ =
⊕

i>0 gi is the nilradical of p.
I The subalgebra g0 = p0 is the reductive Levi factor of p.
I g0 contains a (maximally noncompact) Cartan subalgebra of g.
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Preliminaries and tools

Minimal parabolic

Definition
A minimal parabolic subalgebra b is the normalizer of a non-abelian
maximal nilpotent subalgebra of g.
I The minimal parabolic is a parabolic, and unique up to conjugacy.
I If p ⊂ q ⊂ g with p parabolic, then q is parabolic.
I Any parabolic p contains a minimal parabolic b, b ⊂ p.
I We could define parabolic as any subalgebra p containing b.

Remark
In the complex (or split-real) setting, b is spanned by a Cartan subalgebra
and positive root vectors. For example, for sl(n,R), b is the subalgebra
of upper triangular matrices.
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Modules and Z–gradings
Let g be real, semi-simple, with non-trivial Z–grading. Consider the
simple g–module V with rep. ρ.
I ρ(Z ) is diagonalizable.
I We have V =

⊕
θ Vθ as a vector space, the eigenspace

decomposition with respect to ρ(Z ).
I For later use we denote the greatest eigenvalue of ρ(Z ) by θmax.

Proposition
Let gi ∈ gi . Then ρ(gi ) : Vθ 7→ Vθ+i .

Proof.
Commutator relation between Z and gi gives

ρ([Z , gi ]) = ρ(Z )ρ(gi )− ρ(gi )ρ(Z ).

Apply to v ∈ Vθ, to get ρ(Z )
(
ρ(gi )(v)

)
= (θ + i)ρ(gi )(v).
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Propositions and Lemmas

Proposition (Vθmax)
The subspace Vθmax is a simple G0-module and Vθmax = Vp+ .

Proof.
V is simple, so given two nonzero vectors v ,w , we have

v =
( k∑

i=1

li∏
j=1

ρ(g (i,j)
αij

)
)
w

The products can be assumed ordered non-strictly increasing in
gradation, because

gigj = gjgi + [gi , gj ]

Suppose w ∈ Vp+ . Then all positively graded factors vanish. Next
suppose v ∈ Vθmax . Then by Prop above, all factors are non-negatively
graded. So g0 and hence G0 acts irreducibly on Vθmax = Vp+ .
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Lemma (closed minimal orbits)
Let G be a real connected Lie group and V simple, such that center acts
“nicely”. Then there exists a closed minimal projective orbit and all
minimal projective orbits are closed.

Remark
This lemma seems obvious because it has a simple but false proof, which
uses only assumption of minimality. Sketch: Let O ∈ PV be minimal. Its
closure Ō can be decomposed into orbits and these are lower or equal
dimension to O. Hence O = Ō. This fails, counterexamples can be
constructed. Introducing more assumptions (irreducibility) is essential,
because it implies algebraicity.
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Propositions and Lemmas

Proof.
I Replace G by Im(ρ), now action is faithful.
I Then g = gss ⊕ Z (g).
I V is a tensor product of algebraic representations of ideals.
I Take G · [v ] to be a minimal projective orbit.
I GC · [v ] ⊂ PCVC has same complex dim as previous real dim.
I If there was another orbit in closure, this remains over C.
I All actions are algebraic so closure consists of lower dim orbits.
I Now the complexification consists of one closed orbit, but it can

have several real slices.
I Real algebraicity gives that they are finitely many and separated by

inequalities, thus they cannot be in each other’s real closures.
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Closed orbits

Theorem
Let G and V be as in settings. Then any closed projective orbit contains
an element [w ] for w ∈ Vθmax .

Proof.
Any linear orbit contains an element v =

∑
θ vθ with nonzero component

vθmax (or module is nonsimple). Consider the sequence
wm = exp(tZ )|t=mv ,m ∈ N. We have wm =

∑
θ emθvθ. Thus [wm]

converges to [vθmax ] in PV. Orbit is closed, so let w = vθmax .
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Closed orbits

Corollary
Let G be split-real. Then there is a unique closed projective orbit, the
orbit of a highest weight vector.

Proof.
We have a Borel subalgebra with noncompact Cartan as G0. Vθmax is
one-dimensional by Prop, so PVθmax is a point. A closed projective orbit
exists by Lemma, and by Theorem 1 it intersects PVθmax .
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Classification of minimal orbits

Proposition
Let G be non-compact and semi-simple and V a simple, finite
dimensional and non-trivial G-module. There exists a non-trivial
Z-grading on g such that for any closed projective orbit, there exists a
representative [w ] with Ann(w) ⊂ p.
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Classification of minimal orbits

Proof.
First, consider the minimal parabolic b. By the first theorem, any
minimal orbit admits a representative in Vθmax = Vb+ .
I Claim: if x− ∈ g− annihilates some v ∈ Vθmax , then it annihilates all

of Vθmax

Proof of claim: Let σ be a Cartan involution preserving the Cartan
subalgebra in b0. Then x−, x+ = σx−, and x0 = [x−, x+] forms an sl2
triple with x0 ∈ g0 and x+ ∈ p+, and Vθmax consists of highest weight
vectors of weight 0 (x0 acts on Vθmax as a scalar).

I Now, take any v ∈ Vθmax and let p = 〈Ann(v), b〉.
This is parabolic because b ⊂ p, and each minimal orbit contains a
representative in w ∈ Vb+ ⊂ Vp+ , which by the claim satisfies
Ann(w) ⊂ p.
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Classification of minimal orbits

Theorem
Let G be a real, semisimple, non-compact Lie group and V simple. Then
there exists a compact subgroup K such that the minimal projective G
orbits are in bijective correspondence with the minimal projective
K-orbits of a simple K-submodule W ⊂ V.
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Classification of minimal orbits

Proof.
We define the following operation on the set of pairs (G ,V).
I Apply previous Prop. to the pair, get Z–grading.
I (G ,V) 7→ (G ′,V′), where:
I V′ = Vθmax ⊂ V
I G ′ is generated by simple ideals of g0 acting effectively on V′.

Next consider the sequence of pairs given by

Gm+1 = (Gm)′, Vm+1 = (Vm)′, G0 = G , V0 = V

This sequence ends at some step k, as soon as Gk is a compact group.
Let K = Gk and W = Vk . A combination of the same Prop and the last
Theorem gives that the minimal orbits are in bijective correspondence at
each step.
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Satake diagrams

Let h ⊂ g be a maximally noncompact Cartan subalgebra. Then
h→ hC ⊂ gC. Take root space decomposition of gC =

⊕
α∈Φ gCα via hC.

I α are complex valued covectors on h.
I Call a root compact if it is pure imaginary. Call them ΦC

I There is an involution ζ on roots: ζ(α) = β if β = ᾱ mod ΦC .

Recipe
Start with D the Dynkin diagram of Φ.
1. Colour compact roots black.
2. Draw an arrow (not an edge) between α and β if ζ(α) = β

sl(4,R) : ◦ ◦ ◦ sl(2,H) : • ◦ •

su(4) : • • • su(3, 1) : ◦ • ◦ su(2, 2) : ◦ ◦ ◦
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There is a combinatorial algorithm to compute (K ,W):
1. Let S be the Satake diagram of g.
2. Decorate S with highest weight coefficients over nodes.
3. Remove a node from S if either

I It is white and has nonzero coefficient.
I It is white and adjacent to fully black subdiagram with at least one

nonzero coefficient.
4. If T is a connected component of S with all coefficients of T zero,

then remove T from S.
Now S is the Satake diagram of K , decorated with the highest weight
coefficients of W.
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Example
Consider G = SO(p, q), p < q, and the module V = Λp+1(Rp+q). This
admits a unique minimal projective orbit, because K = SO(q − p), and
W is the standard representation, which is sphere-transitive. A
representative can be constructed by taking Rp+q = Rp,p ⊕ Rq−p, then a
minimal orbit is generated by a null plane Πp and v ∈ Rq−p, [ΛpΠp ∧ v ].

0 0 0 1 0 0
◦ ◦ · · · ◦ • · · · • •〉
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Remark
More examples can be constructed by taking W to be a sphere-transitive
representation of a compact group K , and extending it to a Satake
diagram. These can be found from the original Berger list: SO(n),
SU(n), Sp(n)Sp(1), Sp(n), Spin(7) and Spin(9). G2 does not extend to
a Satake diagram.

0 0 0 1 λ1 λ2 0 0 0 1
• • • • ◦ ◦ • • • •〉 〉extend

Here’s a possible extension of the Spin representation of Spin(9) to a
representation of Spin(11, 2).
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