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Minimal projective orbits
Setting

Problem and motivation

Our problem

We are interested in actions of Lie groups on real projective space.

» Arising from (finite dimensional) irreducible real representations.

» What is the minimal dimension of a projective orbit?
» Uniqueness? Classification?

» What about topology? Closed projective orbits?

» Computational aspects?
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Setting
I~ Problem and motivation

Constructing geometries with large symmetries

Let M be (say) a Cartan geometry modelled on homogeneous space
F/G.

» Suppose we want M to have large automorphism group Aut(M)

> Biggest possible by dimension, but non-flat. (Submaximal problem)

The differential invariants are sections of some vector bundle '(E — M)
associated to G-module E

> At some point x € M, the image H of the stabilizer subgroup
Stab(x) under the isotropy representation acts on E, ~ E

Finding large H is the same as finding small orbits.
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I~ Problem and motivation
.

What is the alternative?

One typical way to find minimal orbits is the following:
» Consider a maximal subalgebra h C g
» Compute the space of invariants VY for the restricted representation
ply
> If this is non-zero, we are done: The minimal orbit is G/H (more or
less) and we have a representative.

> else, consider maximal subalgebras of b and start over from the top.

Remark
This procedure will find vectors with maximal dimensional stabilizers,

yielding minimal orbits. But walking the tree of subalgebras of g is
enormously labour intensive and ad-hoc.
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Setting

Problem and motivation

The complex case

The solution to the problem in the case of complex representations is
well-known

Theorem (A. Borel, 1956)

Let G be a complex semi-simple Lie group and p : G — GL(V) a complex
irreducible representation. Then the minimal projective orbit is the orbit
of a highest weight vector, and this is the unique closed orbit in PcV
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Setting

L Problem and motivation

In light of this, our goal is to make the best possible generalization of the
Borel theorem.

» We want to consider real groups, real representations and real
projectivizations

» No access to highest weight vectors
» Failure of uniqueness
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Setting

Preliminaries and tools

Let g be a real, semi-simple Lie algebra.
Definition
A Z—grading on g is a vector space decomposition
0=Poi=g4 00O
i€z
such that
97, 8] C @ity

We say it's nontrivial if for some i > 0 we have g; # {0}. There exists a
unique element Z € g satisfying

(Z,g) =igi, adzly, =ild.

This Z is called the grading element of the Z—grading.
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L Preliminaries and tools

Some properties

» If g admits a nontrivial Z—grading, then g is non-compact.
» Any non-compact g admits a non-trivial Z—grading.
» Any Z-grading is symmetric around zero.
Definition
A subalgebra p is called parabolic if it can be written as the
non-negatively graded subalgebra of a nontrivial Z—grading:

p:®9i

>0

> The subalgebra p, = ;- g; is the nilradical of p.
» The subalgebra go = po is the reductive Levi factor of p.

> go contains a (maximally noncompact) Cartan subalgebra of g.
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L Preliminaries and tools

Minimal parabolic

Definition
A minimal parabolic subalgebra b is the normalizer of a non-abelian
maximal nilpotent subalgebra of g.
» The minimal parabolic is a parabolic, and unique up to conjugacy.
> If p C q C g with p parabolic, then q is parabolic.
» Any parabolic p contains a minimal parabolic b, b C p.
» We could define parabolic as any subalgebra p containing b.

Remark

In the complex (or split-real) setting, b is spanned by a Cartan subalgebra
and positive root vectors. For example, for sl(n,R), b is the subalgebra
of upper triangular matrices.
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L Preliminaries and tools

Modules and Z—gradings

Let g be real, semi-simple, with non-trivial Z—grading. Consider the
simple g—module V with rep. p.
> p(Z) is diagonalizable.

» We have V = @,V as a vector space, the eigenspace
decomposition with respect to p(Z).

» For later use we denote the greatest eigenvalue of p(Z) by Omax.

Proposition
Let g; € g;. Then p(gi) : Vg = Vo,
Proof.

Commutator relation between Z and g; gives
(2, &l) = p(2)p(8i) — p(&i)p(2).

Apply to v € Vy, to get p(Z)(p(gi)(v)) = (0 + i)p(gi)(v). =
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I Propositions and Lemmas

Proposition (Vy,__ )

The subspace Vy__ is a simple Go-module and Vg = VP+,

Proof.

V is simple, so given two nonzero vectors v, w, we have

Z H plec)w

i=1 j=1

max

The products can be assumed ordered non-strictly increasing in
gradation, because

gigi = ggi + &, gl
Suppose w € VP+. Then all positively graded factors vanish. Next
suppose v € Vg __ . Then by Prop above, all factors are non-negatively
graded. So go and hence Gy acts irreducibly on Vg = VP+, O
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L Propositions and Lemmas

Lemma (closed minimal orbits)

Let G be a real connected Lie group and V simple, such that center acts
“nicely”. Then there exists a closed minimal projective orbit and all
minimal projective orbits are closed.

Remark

This lemma seems obvious because it has a simple but false proof, which
uses only assumption of minimality. Sketch: Let O € PV be minimal. Its
closure O can be decomposed into orbits and these are lower or equal
dimension to O. Hence O = O. This fails, counterexamples can be
constructed. Introducing more assumptions (irreducibility) is essential,
because it implies algebraicity.
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Proof.

» Replace G by Im(p), now action is faithful.

> Then g = ges & Z(g)-

» V is a tensor product of algebraic representations of ideals.
Take G - [v] to be a minimal projective orbit.
G® - [v] € PcV® has same complex dim as previous real dim.
If there was another orbit in closure, this remains over C.

All actions are algebraic so closure consists of lower dim orbits.

vvyyVvyvVvyy

Now the complexification consists of one closed orbit, but it can
have several real slices.

v

Real algebraicity gives that they are finitely many and separated by
inequalities, thus they cannot be in each other's real closures.

O
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Main results

Closed orbits

Theorem

Let G and V be as in settings. Then any closed projective orbit contains
an element [w] for w € Vy

Proof.
Any linear orbit contains an element v = )", vy with nonzero component
Vg, (or module is nonsimple). Consider the sequence

Wi = exp(tZ)|e=mv, m € N. We have wn, = >, €™ vy. Thus [w)]
converges to [vg,, ] in PV. Orbit is closed, so let w = vy

max *

O

max max *
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Main results

Closed orbits

Corollary
Let G be split-real. Then there is a unique closed projective orbit, the
orbit of a highest weight vector.

Proof.

We have a Borel subalgebra with noncompact Cartan as Gg. Vg is
one-dimensional by Prop, so PVy__ is a point. A closed projective orbit
exists by Lemma, and by Theorem 1 it intersects PV O

max *
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Main results
Classification of minimal orbits
.

Proposition

Let G be non-compact and semi-simple and V a simple, finite
dimensional and non-trivial G-module. There exists a non-trivial
Z-grading on g such that for any closed projective orbit, there exists a
representative [w] with Ann(w) C p.
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Main results

L Classification of minimal orbits

Proof.
First, consider the minimal parabolic b. By the first theorem, any
minimal orbit admits a representative in Vg = Vb+.

» Claim: if x_ € g_ annihilates some v € Vy__, then it annihilates all
of Vamax

Proof of claim: Let o be a Cartan involution preserving the Cartan
subalgebra in bg. Then x_,x; = ox_, and xo = [x_, x;] forms an s,
triple with xo € go and x; € p4, and Vg __ consists of highest weight
vectors of weight 0 (xo acts on Vy__ as a scalar).

max

» Now, take any v € Vg and let p = (Ann(v), b).

This is parabolic because b C p, and each minimal orbit contains a
representative in w € V% C VP+ which by the claim satisfies
Ann(w) C p. O
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Main results

Classification of minimal orbits

Theorem

Let G be a real, semisimple, non-compact Lie group and V simple. Then
there exists a compact subgroup K such that the minimal projective G
orbits are in bijective correspondence with the minimal projective
K-orbits of a simple K-submodule W C V.
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Main results

L Classification of minimal orbits

Proof.

We define the following operation on the set of pairs (G, V).
» Apply previous Prop. to the pair, get Z—grading.
> (G,V)— (G, V), where:
>V = Voo CV

> G’ is generated by simple ideals of go acting effectively on V.

Next consider the sequence of pairs given by
Gm+1 _ (Gm)/ Vm+1 — (Vm)l GO =G VO =V

This sequence ends at some step k, as soon as G* is a compact group.

Let K = G and W = V. A combination of the same Prop and the last
Theorem gives that the minimal orbits are in bijective correspondence at
each step. O
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Main results

L Examples
:

Satake diagrams

Let h C g be a maximally noncompact Cartan subalgebra. Then

b — h® C g©. Take root space decomposition of g© = @, 05 via hC.
» « are complex valued covectors on .
» Call a root compact if it is pure imaginary. Call them ®¢
» There is an involution ¢ on roots: ((a) = 3 if 3 =a mod ®C.

Recipe
Start with D the Dynkin diagram of ¢.
1. Colour compact roots black.
2. Draw an arrow (not an edge) between « and f if {(a) = 8

sl(4,R): o—o0o-—o s(2,H): e—o0—e

su(4) : ¢ -0~ su(3,1): o Q o su(2,2): o J—/D o
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Main results

L Examples

There is a combinatorial algorithm to compute (K, W):
1. Let S be the Satake diagram of g.
2. Decorate S with highest weight coefficients over nodes.

3. Remove a node from S if either

» |t is white and has nonzero coefficient.
> |t is white and adjacent to fully black subdiagram with at least one
nonzero coefficient.

4. If T is a connected component of S with all coefficients of T zero,
then remove T from S.

Now S is the Satake diagram of K, decorated with the highest weight
coefficients of W.

21/23



S

Minimal projective orbits

Main results

Examples
.

Example

Consider G = SO(p, q), p < g, and the module V = AP*1(RP*9). This
admits a unique minimal projective orbit, because K = SO(q — p), and
W is the standard representation, which is sphere-transitive. A
representative can be constructed by taking RPT9 = RP-» @ R9™P, then a
minimal orbit is generated by a null plane M? and v € RI™P, [APTIP A v].

0 0 0 1 0 0
o ——

o

o

e}
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L Examples

Remark

More examples can be constructed by taking W to be a sphere-transitive
representation of a compact group K, and extending it to a Satake
diagram. These can be found from the original Berger list: SO(n),
SU(n), Sp(n)Sp(1), Sp(n), Spin(7) and Spin(9). G, does not extend to
a Satake diagram.

0 0 0 1 A A2 0 0 0 1

ex_tgpd

e=)—eo

(¢]

e=)—eo

Here's a possible extension of the Spin representation of Spin(9) to a
representation of Spin(11,2).
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