Minimal projective orbits of semi-simple Lie groups

Henrik Winther

UiT - The Arctic University of Norway

Aug 25,2023

Our problem

We are interested in actions of Lie groups on real projective space.

- Arising from (finite dimensional) irreducible real representations.
- What is the minimal dimension of a projective orbit?
- Uniqueness? Classification?
- What about topology? Closed projective orbits?
- Computational aspects?

Constructing geometries with large symmetries

Let M be (say) a Cartan geometry modelled on homogeneous space F/G.

- Suppose we want M to have large automorphism group Aut(M)
- ► Biggest possible by dimension, but non-flat. (Submaximal problem) The differential invariants are sections of some vector bundle $\Gamma(E \to M)$ associated to *G*-module \mathbb{E}
 - At some point x ∈ M, the image H of the stabilizer subgroup Stab(x) under the isotropy representation acts on E_x ≃ E

Finding large H is the same as finding small orbits.

What is the alternative?

One typical way to find minimal orbits is the following:

- ▶ Consider a maximal subalgebra $\mathfrak{h} \subset \mathfrak{g}$
- \blacktriangleright Compute the space of invariants $\mathbb{V}^{\mathfrak{h}}$ for the restricted representation $\rho|_{\mathfrak{h}}$
- ▶ If this is non-zero, we are done: The minimal orbit is *G*/*H* (more or less) and we have a representative.
- \blacktriangleright else, consider maximal subalgebras of $\mathfrak h$ and start over from the top.

Remark

This procedure will find vectors with maximal dimensional stabilizers, yielding minimal orbits. But walking the tree of subalgebras of \mathfrak{g} is enormously labour intensive and ad-hoc.

The complex case

The solution to the problem in the case of complex representations is well-known

Theorem (A. Borel, 1956)

Let G be a complex semi-simple Lie group and $\rho : G \to GL(\mathbb{V})$ a complex irreducible representation. Then the minimal projective orbit is the orbit of a highest weight vector, and this is the unique closed orbit in $P_{\mathbb{C}}\mathbb{V}$

In light of this, our goal is to make the best possible generalization of the Borel theorem.

- We want to consider real groups, real representations and real projectivizations
- No access to highest weight vectors
- Failure of uniqueness

Let ${\mathfrak g}$ be a real, semi-simple Lie algebra.

Definition A \mathbb{Z} -grading on g is a vector space decomposition

$$\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}} \mathfrak{g}_i = \mathfrak{g}_{-k} \oplus \cdots \oplus \mathfrak{g}_0 \oplus \cdots \oplus \mathfrak{g}_k$$

such that

$$[\mathfrak{g}_i,\mathfrak{g}_j]\subset\mathfrak{g}_{i+j}.$$

We say it's nontrivial if for some i > 0 we have $\mathfrak{g}_i \neq \{0\}$. There exists a unique element $Z \in \mathfrak{g}$ satisfying

$$[Z,g_i] = ig_i, \quad \mathfrak{ad}_Z|_{\mathfrak{g}_i} = i \operatorname{Id}.$$

This *Z* is called the grading element of the \mathbb{Z} -grading.

Some properties

- ▶ If \mathfrak{g} admits a nontrivial \mathbb{Z} -grading, then \mathfrak{g} is non-compact.
- Any non-compact \mathfrak{g} admits a non-trivial \mathbb{Z} -grading.
- ► Any Z-grading is symmetric around zero.

Definition

A subalgebra p is called parabolic if it can be written as the non-negatively graded subalgebra of a nontrivial \mathbb{Z} -grading:

$$\mathfrak{p} = \bigoplus_{i \ge 0} \mathfrak{g}_i$$

- The subalgebra $\mathfrak{p}_+ = \bigoplus_{i>0} \mathfrak{g}_i$ is the nilradical of \mathfrak{p} .
- The subalgebra $\mathfrak{g}_0 = \mathfrak{p}_0$ is the reductive Levi factor of \mathfrak{p} .
- ▶ \mathfrak{g}_0 contains a (maximally noncompact) Cartan subalgebra of \mathfrak{g} .

Minimal parabolic

Definition

A minimal parabolic subalgebra $\mathfrak b$ is the normalizer of a non-abelian maximal nilpotent subalgebra of $\mathfrak g.$

- ▶ The minimal parabolic is a parabolic, and unique up to conjugacy.
- If $\mathfrak{p} \subset \mathfrak{q} \subset \mathfrak{g}$ with \mathfrak{p} parabolic, then \mathfrak{q} is parabolic.
- ▶ Any parabolic \mathfrak{p} contains a minimal parabolic \mathfrak{b} , $\mathfrak{b} \subset \mathfrak{p}$.
- We could define parabolic as any subalgebra \mathfrak{p} containing \mathfrak{b} .

Remark

In the complex (or split-real) setting, b is spanned by a Cartan subalgebra and positive root vectors. For example, for $\mathfrak{sl}(n,\mathbb{R})$, b is the subalgebra of upper triangular matrices.

Modules and $\mathbb{Z}\text{-}\mathsf{gradings}$

Let \mathfrak{g} be real, semi-simple, with non-trivial \mathbb{Z} -grading. Consider the simple \mathfrak{g} -module \mathbb{V} with rep. ρ .

- $\rho(Z)$ is diagonalizable.
- We have V = ⊕_θ V_θ as a vector space, the eigenspace decomposition with respect to ρ(Z).
- ▶ For later use we denote the greatest eigenvalue of $\rho(Z)$ by θ_{max} .

Proposition

Let
$$g_i \in \mathfrak{g}_i$$
. Then $\rho(g_i) : \mathbb{V}_{\theta} \mapsto \mathbb{V}_{\theta+i}$.

Proof.

Commutator relation between Z and g_i gives

$$\rho([Z,g_i]) = \rho(Z)\rho(g_i) - \rho(g_i)\rho(Z).$$

Apply to $v \in \mathbb{V}_{\theta}$, to get $\rho(Z)(\rho(g_i)(v)) = (\theta + i)\rho(g_i)(v)$.

Proposition ($\mathbb{V}_{\theta_{max}}$)

The subspace $\mathbb{V}_{\theta_{\max}}$ is a simple G_0 -module and $\mathbb{V}_{\theta_{\max}} = \mathbb{V}^{\mathfrak{p}_+}$.

Proof.

 $\mathbb V$ is simple, so given two nonzero vectors v, w, we have

$$\mathbf{v} = ig(\sum_{i=1}^k \prod_{j=1}^{l_i}
ho(\mathbf{g}_{lpha_{ij}}^{(i,j)})ig)\mathbf{w}$$

The products can be assumed ordered non-strictly increasing in gradation, because

$$g_ig_j = g_jg_i + [g_i,g_j]$$

Suppose $w \in \mathbb{V}^{\mathfrak{p}_+}$. Then all positively graded factors vanish. Next suppose $v \in \mathbb{V}_{\theta_{\max}}$. Then by Prop above, all factors are non-negatively graded. So \mathfrak{g}_0 and hence G_0 acts irreducibly on $\mathbb{V}_{\theta_{\max}} = \mathbb{V}^{\mathfrak{p}_+}$.

Lemma (closed minimal orbits)

Let G be a real connected Lie group and \mathbb{V} simple, such that center acts "nicely". Then there exists a closed minimal projective orbit and all minimal projective orbits are closed.

Remark

This lemma seems obvious because it has a simple but false proof, which uses only assumption of minimality. Sketch: Let $O \in P\mathbb{V}$ be minimal. Its closure \overline{O} can be decomposed into orbits and these are lower or equal dimension to O. Hence $O = \overline{O}$. This fails, counterexamples can be constructed. Introducing more assumptions (irreducibility) is essential, because it implies algebraicity.

Proof.

- Replace G by $Im(\rho)$, now action is faithful.
- Then $\mathfrak{g} = \mathfrak{g}_{ss} \oplus Z(\mathfrak{g})$.
- \blacktriangleright $\mathbb V$ is a tensor product of algebraic representations of ideals.
- Take $G \cdot [v]$ to be a minimal projective orbit.
- ▶ $G^{\mathbb{C}} \cdot [v] \subset P_{\mathbb{C}} \mathbb{V}^{\mathbb{C}}$ has same complex dim as previous real dim.
- If there was another orbit in closure, this remains over \mathbb{C} .
- All actions are algebraic so closure consists of lower dim orbits.
- Now the complexification consists of one closed orbit, but it can have several real slices.
- Real algebraicity gives that they are finitely many and separated by inequalities, thus they cannot be in each other's real closures.

Theorem

Let G and \mathbb{V} be as in settings. Then any closed projective orbit contains an element [w] for $w \in \mathbb{V}_{\theta_{max}}$.

Proof.

Any linear orbit contains an element $v = \sum_{\theta} v_{\theta}$ with nonzero component $v_{\theta_{\max}}$ (or module is nonsimple). Consider the sequence $w_m = \exp(tZ)|_{t=m}v, m \in \mathbb{N}$. We have $w_m = \sum_{\theta} e^{m\theta}v_{\theta}$. Thus $[w_m]$ converges to $[v_{\theta_{\max}}]$ in $P\mathbb{V}$. Orbit is closed, so let $w = v_{\theta_{\max}}$.

Corollary

Let G be split-real. Then there is a unique closed projective orbit, the orbit of a highest weight vector.

Proof.

We have a Borel subalgebra with noncompact Cartan as G_0 . $\mathbb{V}_{\theta_{max}}$ is one-dimensional by Prop, so $P\mathbb{V}_{\theta_{max}}$ is a point. A closed projective orbit exists by Lemma, and by Theorem 1 it intersects $P\mathbb{V}_{\theta_{max}}$.

Main results

Classification of minimal orbits

Proposition

Let *G* be non-compact and semi-simple and \mathbb{V} a simple, finite dimensional and non-trivial *G*-module. There exists a non-trivial \mathbb{Z} -grading on \mathfrak{g} such that for any closed projective orbit, there exists a representative [w] with Ann $(w) \subset \mathfrak{p}$.

Proof.

First, consider the minimal parabolic \mathfrak{b} . By the first theorem, any minimal orbit admits a representative in $\mathbb{V}_{\theta_{max}} = \mathbb{V}^{\mathfrak{b}_+}$.

▶ Claim: if $x_{-} \in \mathfrak{g}_{-}$ annihilates some $v \in \mathbb{V}_{\theta_{\max}}$, then it annihilates all of $\mathbb{V}_{\theta_{\max}}$

Proof of claim: Let σ be a Cartan involution preserving the Cartan subalgebra in \mathfrak{b}_0 . Then $x_-, x_+ = \sigma x_-$, and $x_0 = [x_-, x_+]$ forms an \mathfrak{sl}_2 triple with $x_0 \in \mathfrak{g}_0$ and $x_+ \in \mathfrak{p}_+$, and $\mathbb{V}_{\theta_{\max}}$ consists of highest weight vectors of weight 0 (x_0 acts on $\mathbb{V}_{\theta_{\max}}$ as a scalar).

Now, take any $v \in \mathbb{V}_{\theta_{\max}}$ and let $\mathfrak{p} = \langle Ann(v), \mathfrak{b} \rangle$. This is parabolic because $\mathfrak{b} \subset \mathfrak{p}$, and each minimal orbit contains a representative in $w \in \mathbb{V}^{\mathfrak{b}_+} \subset \mathbb{V}^{\mathfrak{p}_+}$, which by the claim satisfies $Ann(w) \subset \mathfrak{p}$. Main results

Classification of minimal orbits

Theorem

Let G be a real, semisimple, non-compact Lie group and \mathbb{V} simple. Then there exists a compact subgroup K such that the minimal projective G orbits are in bijective correspondence with the minimal projective K-orbits of a simple K-submodule $\mathbb{W} \subset \mathbb{V}$.

Proof.

We define the following operation on the set of pairs (G, \mathbb{V}) .

► Apply previous Prop. to the pair, get Z-grading.

•
$$(G, \mathbb{V}) \mapsto (G', \mathbb{V}')$$
, where:

$$\blacktriangleright \ \mathbb{V}' = \mathbb{V}_{\theta_{\max}} \subset \mathbb{V}$$

• G' is generated by simple ideals of \mathfrak{g}_0 acting effectively on \mathbb{V}' . Next consider the sequence of pairs given by

$$G^{m+1}=(G^m)', \quad \mathbb{V}^{m+1}=(\mathbb{V}^m)', \quad G^0=G, \quad \mathbb{V}^0=\mathbb{V}$$

This sequence ends at some step k, as soon as G^k is a compact group. Let $K = G^k$ and $\mathbb{W} = \mathbb{V}^k$. A combination of the same Prop and the last Theorem gives that the minimal orbits are in bijective correspondence at each step.

Satake diagrams

Let $\mathfrak{h} \subset \mathfrak{g}$ be a maximally noncompact Cartan subalgebra. Then $\mathfrak{h} \to \mathfrak{h}^{\mathbb{C}} \subset \mathfrak{g}^{\mathbb{C}}$. Take root space decomposition of $\mathfrak{g}^{\mathbb{C}} = \bigoplus_{\alpha \in \Phi} \mathfrak{g}^{\mathbb{C}}_{\alpha}$ via $\mathfrak{h}^{\mathbb{C}}$.

- α are complex valued covectors on \mathfrak{h} .
- Call a root compact if it is pure imaginary. Call them Φ^{C}
- There is an involution ζ on roots: $\zeta(\alpha) = \beta$ if $\beta = \overline{\alpha} \mod \Phi^{C}$.

Recipe

Start with D the Dynkin diagram of Φ .

- 1. Colour compact roots black.
- 2. Draw an arrow (not an edge) between α and β if $\zeta(\alpha) = \beta$

 $\mathfrak{sl}(4,\mathbb{R}): \circ - \circ - \circ \qquad \mathfrak{sl}(2,\mathbb{H}): \bullet - \circ - \bullet$

 $\mathfrak{su}(4): \bullet - \bullet - \bullet \qquad \mathfrak{su}(3,1): \circ \overbrace{- \bullet -}^{\checkmark} \circ \qquad \mathfrak{su}(2,2): \circ \overbrace{- \circ -}^{\checkmark} \circ$

There is a combinatorial algorithm to compute (K, \mathbb{W}) :

- 1. Let S be the Satake diagram of \mathfrak{g} .
- 2. Decorate S with highest weight coefficients over nodes.
- 3. Remove a node from S if either
 - It is white and has nonzero coefficient.
 - It is white and adjacent to fully black subdiagram with at least one nonzero coefficient.
- 4. If T is a connected component of S with all coefficients of T zero, then remove T from S.

Now S is the Satake diagram of K, decorated with the highest weight coefficients of $\mathbb W.$

Example

Consider G = SO(p, q), p < q, and the module $\mathbb{V} = \Lambda^{p+1}(\mathbb{R}^{p+q})$. This admits a unique minimal projective orbit, because K = SO(q - p), and \mathbb{W} is the standard representation, which is sphere-transitive. A representative can be constructed by taking $\mathbb{R}^{p+q} = \mathbb{R}^{p,p} \oplus \mathbb{R}^{q-p}$, then a minimal orbit is generated by a null plane Π^p and $v \in \mathbb{R}^{q-p}$, $[\Lambda^p \Pi^p \wedge v]$.

Remark

More examples can be constructed by taking \mathbb{W} to be a sphere-transitive representation of a compact group K, and extending it to a Satake diagram. These can be found from the original Berger list: SO(n), SU(n), Sp(n)Sp(1), Sp(n), Spin(7) and Spin(9). G_2 does not extend to a Satake diagram.

Here's a possible extension of the Spin representation of Spin(9) to a representation of Spin(11, 2).