Domination of manifolds and formality

Leopold Zoller

Ludwig-Maximilians Universität München

joint with Aleksandar Milivojevic and Jonas Stelzig

Prospects in Geometry and Global Analysis Rauischholzhausen 2023

Let M, N be closed, orientable, connected n-dimensional manifolds.

Image: Image:

æ

2/12

Let M, N be closed, orientable, connected n-dimensional manifolds.

Definition

We say that M dominates N if there is a map $M \rightarrow N$ inducing a non-zero map on top degree homology. We also write $M \ge N$.

A general heuristic claims that in this case N should be no more complicated than M.

Let M, N be closed, orientable, connected n-dimensional manifolds.

Definition

We say that M dominates N if there is a map $M \rightarrow N$ inducing a non-zero map on top degree homology. We also write $M \ge N$.

A general heuristic claims that in this case N should be no more complicated than M.

Example

- every manifold dominates Sⁿ
- for n = 2 a surface dominates every surface of smaller genus
- finite coverings

M manifold \rightsquigarrow cdga of differential forms $(\Omega(M), d) \rightsquigarrow H^*(M)$

Image: A matrix and a matrix

3

M manifold \rightsquigarrow cdga of differential forms $(\Omega(M), d) \rightsquigarrow H^*(M)$

Definition

• A morphism $A \to B$ of cdgas is a quasi isomorphism if the induced map $H(A) \to H(B)$ is an isomorphism

3/12

M manifold \rightsquigarrow cdga of differential forms $(\Omega(M), d) \rightsquigarrow H^*(M)$

Definition

- A morphism $A \to B$ of cdgas is a quasi isomorphism if the induced map $H(A) \to H(B)$ is an isomorphism
- O A and B are quasi isomorphic if there is a chain

$$A \leftarrow \cdots \rightarrow B$$

of quasi isomorphisms

M manifold \rightsquigarrow cdga of differential forms $(\Omega(M), d) \rightsquigarrow H^*(M)$

Definition

- A morphism $A \to B$ of cdgas is a quasi isomorphism if the induced map $H(A) \to H(B)$ is an isomorphism
- O A and B are quasi isomorphic if there is a chain

$$A \leftarrow \cdots \rightarrow B$$

of quasi isomorphisms

• *M* is formal if $(\Omega(M), d)$ is quasi isomorphic to $(H^*(M), 0)$

3/12

M manifold \rightsquigarrow cdga of differential forms $(\Omega(M), d) \rightsquigarrow H^*(M)$

Definition

- A morphism $A \to B$ of cdgas is a quasi isomorphism if the induced map $H(A) \to H(B)$ is an isomorphism
- \bigcirc A and B are quasi isomorphic if there is a chain

$$A \leftarrow \cdots \rightarrow B$$

of quasi isomorphisms

• *M* is formal if $(\Omega(M), d)$ is quasi isomorphic to $(H^*(M), 0)$

The cdgas with a given cohomology partition into quasi isomorphism types

"Formality = the simplest quasi iso type with a given cohomology"

Consequences of formality:

- the quasi isomorphism type is encoded in $H^*(M)$
- *M* 1-connected: the real homotopy type is encoded in $H^*(M)$
- in particular: $\pi_*(M)$ can up to torsion be recovered from $H^*(M)$

Consequences of formality:

- the quasi isomorphism type is encoded in $H^*(M)$
- M 1-connected: the real homotopy type is encoded in $H^*(M)$
- in particular: $\pi_*(M)$ can up to torsion be recovered from $H^*(M)$

Example

Formal:

- S^n , $\mathbb{C}P^n$
- G/U where G cpt Lie, U ⊂ G max rank
- cpt. simply-connected manifolds of dim ≤ 6
- cpt. Kähler manifold

Consequences of formality:

- the quasi isomorphism type is encoded in $H^*(M)$
- *M* 1-connected: the real homotopy type is encoded in $H^*(M)$
- in particular: $\pi_*(M)$ can up to torsion be recovered from $H^*(M)$

Example	
Formal:	Not formal:
 Sⁿ, ℂPⁿ 	• All nilmanifolds except <i>Tⁿ</i>
 G/U where G cpt Lie, U ⊂ G max rank 	• a generic linear quotient $(S^3 \times S^3 \times S^3)/T^2$
• cpt. simply-connected manifolds of dim ≤ 6	
 cpt. Kähler manifold 	

If $M \ge N$ and M is formal, then so is N.

If $M \ge N$ and M is formal, then so is N.

Previous results:

dominant holomorphic maps preserve the ∂∂-lemma [Deligne, Griffiths, Morgan, Sullivan, 1975], [Meng, 2022]
 (~→ reason for formality of Kähler manifolds)

5/12

If $M \ge N$ and M is formal, then so is N.

Previous results:

- dominant holomorphic maps preserve the ∂∂-lemma [Deligne, Griffiths, Morgan, Sullivan, 1975], [Meng, 2022]
 (~→ reason for formality of Kähler manifolds)
- if M has vanishing triple Massey products, then the same holds for N [Taylor, 2010] (\rightsquigarrow obstructions to formality)

If $M \ge N$ and M is formal, then so is N.

Previous results:

- dominant holomorphic maps preserve the ∂∂
 -lemma [Deligne, Griffiths, Morgan, Sullivan, 1975], [Meng, 2022]
 (~→ reason for formality of Kähler manifolds)
- if M has vanishing triple Massey products, then the same holds for N [Taylor, 2010] (\rightsquigarrow obstructions to formality)
- However: Taylors theorem does not generalize to quadruple and higher Massey Products [Milivojevich, Stelzig, Z., 2022]

2

Image: A matrix

2

Let $[a], [b], [c] \in H^*(M)$ with 0 = [a][b] = [b][c]

• choose $x, y \in \Omega(M)$ with dx = ab, dy = bc

6/12

Let $[a], [b], [c] \in H^*(M)$ with 0 = [a][b] = [b][c]

- choose $x, y \in \Omega(M)$ with dx = ab, dy = bc
- then $m = ay (-1)^{|a|}xc$ satisfies $d(m) = (-1)^{|a|}(ad(y) d(x)c) = 0$

Let $[a], [b], [c] \in H^*(M)$ with 0 = [a][b] = [b][c]

- choose $x, y \in \Omega(M)$ with dx = ab, dy = bc
- then $m = ay (-1)^{|a|}xc$ satisfies $d(m) = (-1)^{|a|}(ad(y) d(x)c) = 0$
- The (triple) Massey product ⟨[a], [b], [c]⟩ is the well-defined class induced by m in ^{H*(M)}/_([a], [c])

Let $[a], [b], [c] \in H^*(M)$ with 0 = [a][b] = [b][c]

- choose $x, y \in \Omega(M)$ with dx = ab, dy = bc
- then $m = ay (-1)^{|a|}xc$ satisfies $d(m) = (-1)^{|a|}(ad(y) d(x)c) = 0$
- The (triple) Massey product $\langle [a], [b], [c] \rangle$ is the well-defined class induced by m in $\frac{H^*(M)}{([a], [c])}$

M formal \implies all Massey products vanish

M formal \iff all (operadic) Massey products vanish uniformly

Theorem (Taylor)

Given a non-zero degree $f: M \to N$ and $\alpha, \beta, \gamma \in H^*(N)$ s.t. $0 \neq \langle \alpha, \beta, \gamma \rangle \in \frac{H^*(N)}{(\alpha, \gamma)}$ is defined. Then $\langle f^*(\alpha), f^*(\beta), f^*(\gamma) \rangle \neq 0$

- 4 同 ト 4 三 ト - 4 三 ト - -

э

Theorem (Taylor)

Given a non-zero degree $f: M \to N$ and $\alpha, \beta, \gamma \in H^*(N)$ s.t. $0 \neq \langle \alpha, \beta, \gamma \rangle \in \frac{H^*(N)}{(\alpha, \gamma)}$ is defined. Then $\langle f^*(\alpha), f^*(\beta), f^*(\gamma) \rangle \neq 0$

Proof.

One has

$$\overline{f^*} \colon \frac{H^*(N)}{(\alpha,\gamma)} \to \frac{H^*(M)}{(f^*(\alpha),f^*(\gamma))}$$

and $\overline{f^*}(\langle \alpha, \beta, \gamma \rangle) = \langle f^*(\alpha), f^*(\beta), f^*(\gamma) \rangle$. Show $\overline{f^*}$ injective

Theorem (Taylor)

Given a non-zero degree $f: M \to N$ and $\alpha, \beta, \gamma \in H^*(N)$ s.t. $0 \neq \langle \alpha, \beta, \gamma \rangle \in \frac{H^*(N)}{(\alpha, \gamma)}$ is defined. Then $\langle f^*(\alpha), f^*(\beta), f^*(\gamma) \rangle \neq 0$

Proof.

One has

$$\overline{f^*} \colon \frac{H^*(N)}{(\alpha,\gamma)} \to \frac{H^*(M)}{(f^*(\alpha),f^*(\gamma))}$$

and $\overline{f^*}(\langle \alpha, \beta, \gamma \rangle) = \langle f^*(\alpha), f^*(\beta), f^*(\gamma) \rangle$. Show $\overline{f^*}$ injective

Consider $f_{!}: H^{*}(M) \cong H_{n-*}(M) \xrightarrow{f_{*}} H_{n-*}(N) \cong H^{*}(N).$

Theorem (Taylor)

Given a non-zero degree $f: M \to N$ and $\alpha, \beta, \gamma \in H^*(N)$ s.t. $0 \neq \langle \alpha, \beta, \gamma \rangle \in \frac{H^*(N)}{(\alpha, \gamma)}$ is defined. Then $\langle f^*(\alpha), f^*(\beta), f^*(\gamma) \rangle \neq 0$

Proof.

One has

$$\overline{f^*} \colon \frac{H^*(N)}{(\alpha, \gamma)} \to \frac{H^*(M)}{(f^*(\alpha), f^*(\gamma))}$$

and $\overline{f^*}(\langle \alpha, \beta, \gamma \rangle) = \langle f^*(\alpha), f^*(\beta), f^*(\gamma) \rangle$. Show $\overline{f^*}$ injective

Consider $f_{!}: H^{*}(M) \cong H_{n-*}(M) \xrightarrow{f_{*}} H_{n-*}(N) \cong H^{*}(N)$.Recall that • $f_{!} \circ f^{*} = \deg(f) \cdot \operatorname{Id}_{H^{*}(N)}$

Theorem (Taylor)

Given a non-zero degree $f: M \to N$ and $\alpha, \beta, \gamma \in H^*(N)$ s.t. $0 \neq \langle \alpha, \beta, \gamma \rangle \in \frac{H^*(N)}{(\alpha, \gamma)}$ is defined. Then $\langle f^*(\alpha), f^*(\beta), f^*(\gamma) \rangle \neq 0$

Proof.

One has

$$\overline{f^*} \colon \frac{H^*(N)}{(\alpha, \gamma)} \to \frac{H^*(M)}{(f^*(\alpha), f^*(\gamma))}$$

and $\overline{f^*}(\langle \alpha, \beta, \gamma \rangle) = \langle f^*(\alpha), f^*(\beta), f^*(\gamma) \rangle$. Show $\overline{f^*}$ injective

Consider $f_{!}: H^{*}(M) \cong H_{n-*}(M) \xrightarrow{f_{*}} H_{n-*}(N) \cong H^{*}(N)$.Recall that • $f_{!} \circ f^{*} = \deg(f) \cdot \operatorname{Id}_{H^{*}(N)}$ • $f_{!}(f^{*}(x) \cdot y) = x \cdot f_{!}(y)$

Theorem (Taylor)

Given a non-zero degree $f: M \to N$ and $\alpha, \beta, \gamma \in H^*(N)$ s.t. $0 \neq \langle \alpha, \beta, \gamma \rangle \in \frac{H^*(N)}{(\alpha, \gamma)}$ is defined. Then $\langle f^*(\alpha), f^*(\beta), f^*(\gamma) \rangle \neq 0$

Proof.

One has

$$\overline{f^*} \colon \frac{H^*(N)}{(\alpha, \gamma)} \to \frac{H^*(M)}{(f^*(\alpha), f^*(\gamma))}$$

and $\overline{f^*}(\langle \alpha, \beta, \gamma \rangle) = \langle f^*(\alpha), f^*(\beta), f^*(\gamma) \rangle$. Show $\overline{f^*}$ injective

Consider $f_i : H^*(M) \cong H_{n-*}(M) \xrightarrow{f_*} H_{n-*}(N) \cong H^*(N)$. Recall that • $f_i \circ f^* = \deg(f) \cdot \operatorname{Id}_{H^*(N)}$ • $f_i(f^*(x) \cdot y) = x \cdot f_i(y)$ i.e. f_i is a morphism of $H^*(N)$ -modules

Theorem (Taylor)

Given a non-zero degree $f: M \to N$ and $\alpha, \beta, \gamma \in H^*(N)$ s.t. $0 \neq \langle \alpha, \beta, \gamma \rangle \in \frac{H^*(N)}{(\alpha, \gamma)}$ is defined. Then $\langle f^*(\alpha), f^*(\beta), f^*(\gamma) \rangle \neq 0$

Proof.

One has

$$\overline{f^*} \colon \frac{H^*(N)}{(\alpha, \gamma)} \to \frac{H^*(M)}{(f^*(\alpha), f^*(\gamma))}$$

and $\overline{f^*}(\langle \alpha, \beta, \gamma \rangle) = \langle f^*(\alpha), f^*(\beta), f^*(\gamma) \rangle$. Show $\overline{f^*}$ injective

Consider $f_i : H^*(M) \cong H_{n-*}(M) \xrightarrow{f_*} H_{n-*}(N) \cong H^*(N)$. Recall that • $f_i \circ f^* = \deg(f) \cdot \operatorname{Id}_{H^*(N)}$

• $f_i(f^*(x) \cdot y) = x \cdot f_i(y)$ i.e. f_i is a morphism of $H^*(N)$ -modules

Hence we obtain an induced left inverse $\frac{1}{\deg(f)}\overline{f_1}: \frac{H^*(M)}{(f^*(\alpha), f^*(\gamma))} \to \frac{H^*(N)}{(\alpha, \gamma)}$

Dual module

Leopo	ld Z	Zol	ler
-------	------	-----	-----

∃ ► < ∃ ►</p>

3

The dual space $D\Omega(M)$ is a dg $\Omega(M)$ -module via

$$darphi = (-1)^{|arphi|+1} arphi(dullet) \qquad \eta \cdot arphi = (-1)^{|\eta||arphi|} arphi(\eta \wedge ullet)$$

Image: Image:

æ

8/12

The dual space $D\Omega(M)$ is a dg $\Omega(M)$ -module via

$$darphi = (-1)^{|arphi|+1} arphi(dullet) \qquad \eta \cdot arphi = (-1)^{|\eta||arphi| arphi| arphi} arphi(\eta \wedge ullet)$$

The map

$$\phi_{\mathcal{M}} \colon \Omega(\mathcal{M}) o D\Omega(\mathcal{M})$$

 $\eta \mapsto \int_{\mathcal{M}} \eta \wedge ullet$

is a map of dg $\Omega(M)$ -modules.

э

The dual space $D\Omega(M)$ is a dg $\Omega(M)$ -module via

$$darphi = (-1)^{|arphi|+1} arphi(dullet) \qquad \eta \cdot arphi = (-1)^{|\eta||arphi|} arphi(\eta \wedge ullet)$$

The map

$$\phi_{\mathcal{M}} \colon \Omega(\mathcal{M}) o D\Omega(\mathcal{M})$$

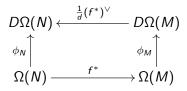
 $\eta \mapsto \int_{\mathcal{M}} \eta \wedge ullet$

is a map of dg $\Omega(M)$ -modules.

In fact ϕ_M is a quasi isomorphism by Poincaré duality since $H(D\Omega(M)) \cong DH^*(M)$

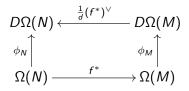
∃ >

If $f: M \to N$ has degree $d \neq 0$ we obtain commutative diagram



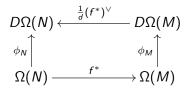
9/12

If $f: M \to N$ has degree $d \neq 0$ we obtain commutative diagram



of dg $\Omega(N)$ -modules

9/12



æ

$$D\Omega(N) \xleftarrow{\frac{1}{d}(f^*)^{\vee}} D\Omega(M)$$
$$\phi_N \uparrow \qquad \phi_M \uparrow$$
$$\Omega(N) \xrightarrow{f^*} \Omega(M)$$

• "Invert" ϕ_N to obtain a "retract" $r: \Omega(M) \to \Omega(N)$ inducing $f_!$

글 에 에 글 어

Image: A matrix

3

$$D\Omega(N) \xleftarrow{\frac{1}{d}(f^*)^{\vee}} D\Omega(M)$$
$$\phi_N \uparrow \qquad \phi_M \uparrow$$
$$\Omega(N) \xrightarrow{f^*} \Omega(M)$$

• "Invert" ϕ_N to obtain a "retract" $r: \Omega(M) \to \Omega(N)$ inducing $f_!$

Show: f: A → B morphism of cdgas, r: B → A retract with suitable algebraic properties. Then B formal ⇒ A formal.

- "Invert" ϕ_N to obtain a "retract" $r: \Omega(M) \to \Omega(N)$ inducing $f_!$ ϕ_N is quasi isomorphism of dg $\Omega(N)$ -modules
- → invertible as an A_∞ Ω(N)-bimodule map [Lefèvre-Hasegawa, 2003]
 Show: f: A → B morphism of cdgas, r: B → A retract with suitable algebraic properties. Then B formal ⇒ A formal.

$$D\Omega(N) \xleftarrow{\frac{1}{d}(f^*)^{\vee}} D\Omega(M)$$
$$\begin{pmatrix} \phi_N \\ \phi_N \\ & \phi_M \\ & f^* \\ \Omega(N) \xrightarrow{f^*} \Omega(M) \end{pmatrix}$$

• "Invert" ϕ_N to obtain a "retract" $r: \Omega(M) \to \Omega(N)$ inducing $f_!$

 ϕ_N is quasi isomorphism of dg $\Omega(N)$ -modules \rightarrow invertible as an $A_{\infty} \Omega(N)$ -bimodule map [Lefèvre-Hasegawa, 2003]

Show: f: A → B morphism of cdgas, r: B → A retract with suitable algebraic properties. Then B formal ⇒ A formal. This is solved by

Theorem (Milivojevic, Stelzig, Z.)

Let $A \to B$ be a morphism of A_{∞} -algebras that admits an A_{∞} A-bimodule homotopy retract $B \to A$. If B is formal then so is A.

Leopold Zoller

An A_{∞} -algebra is a vector space A together with operations

$$m_k \colon A^{\otimes k} \to A$$

for $k = 1, 2, \ldots$ satisfying certain equations.

э

An A_∞ -algebra is a vector space A together with operations

$$m_k \colon A^{\otimes k} \to A$$

for $k = 1, 2, \ldots$ satisfying certain equations.

Example

A differential graded algebra structure on A is the same thing as an A_{∞} -algebra structure with $m_k = 0$ for $k \ge 3$.

An A_∞ -algebra is a vector space A together with operations

 $m_k: A^{\otimes k} \to A$

for $k = 1, 2, \ldots$ satisfying certain equations.

Example

A differential graded algebra structure on A is the same thing as an A_{∞} -algebra structure with $m_k = 0$ for $k \ge 3$.

Advantage:

much more flexible but same homotopy category

An A_∞ -algebra is a vector space A together with operations

 $m_k: A^{\otimes k} \to A$

for $k = 1, 2, \ldots$ satisfying certain equations.

Example

A differential graded algebra structure on A is the same thing as an A_{∞} -algebra structure with $m_k = 0$ for $k \ge 3$.

Advantage:

- much more flexible but same homotopy category
- the classical Massey products are very much related to an A_{∞} -structure on $H^*(M)$

イロト イヨト イヨト イヨト

Thank you!

Image: A matrix

æ