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At border line between pure mathematics and theoretical physics

formation of building of
mathematical & physical
concepts models
differential geometry, general relativity,
analysis, unified field theories,
group theory string theory

Lecture |: Mathematical tools — geometry of metric connections
Lecture |l: Physical motivation & first applications
Lecture |lI: More on special geometries

Lecture IV: Geometric structures with parallel torsion and of vector type ,



Symmetry |

e (Classical mechanics: Symmetry considerations can simplify study of
geometric problems (i.e., Noether’'s theorem)

e Felix Klein at his inaugural lecture at Erlangen University, 1872
(" Erlanger Programm”):

“Es ist eine Mannigfaltigkeit und in derselben eine
Transformationsgruppe gegeben; man soll die der Mannigfaltigkeit
angehorigen Gebilde hinsichtlich solcher Eigenschaften untersuchen,
die durch die Transformationen der Gruppe nicht geandert werden” .

“Let a manifold and in this a transformation group be given; the
objects belonging to the manifold ought to be studied with respect
to those properties which are not changed by the transformations
of the group.”

— Isometry group of a Riemannian manifold (M, g)



Symmetry ||

e Around 1940-1950: Second intrinsic Lie group associated with a
Riemannian manifold (M, g) appeared, its holonomy group.

— strongly related to curvature and parallel objects

A priori, the holonomy group is defined for an arbitrary connection V on
I'M . For reasons to become clear later, we concentrate mainly on

Metric connections V : Xg(V,W) = g(VxV, W)+ g(V,VxW).
The torsion (viewed as (2, 1)- or (3, 0)-tensor)
T(X,Y) = VxY —VyX — [X,Y], T(X,Y,Z) := ¢(T(X,Y),Z)

can (for the moment. . . ) be arbitrary.



Types of metric connections

(M™, g) oriented Riemannian mnfd, V any connection:

VxY = VY + AX,Y).

Then: V is metric & ¢(A(X,Y),Z) +g(A(X,Z),Y) =0
& Ae A9 :=R"® A*(R")
This is also the space 7 of possible torsion tensors,

n?(n — 1).

A9 =2 T =2 R"@A*(R"), dim= 5

For metric connections: difference tensor A < torsion T’

Decompose this space under SO(n) action (E. Cartan, 1925):

R"® A*(R™) = R" @ A°R™) @ T .



e A e A°(R™): “Connections with (totally) antisymmetric torsion”:

1

Lemma. V is metric and geodesics preserving iff its torsion 7' lies in
A3(TM). In this case, 2A = T, and the V-Killing vector fields coincide
with the Riemannian Killing vector fields.

— Connections used in superstring theory (examples in Lecture Il)

o A € R™ "“Connections with vectorial torsion”, V' a vector field:

VxV = VLY — g(X,Y)-V + g(Y,V) - X |

In particular, any metric connection on a surface is of this type!



Mercator map

e conformal (angle preserving),
hence maps loxodromes to
straight lines

e Cartan (1923):

“On this manifold, the straight
lines [of the flat connection] are
the loxodromes, which intersect
the meridians at a constant angle.
The only straight lines realizing
shortest paths are those which
are normal to the torsion in every
point: these are the meridians.
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Bild 8. Winkeltreue Abbildung der Kugel auf die Ebene nach G. Mercator

— {N, S} — I x R (1569)

e Explanation & generalisation to arbitrary manifolds?

e Existence of a Clairaut style invariant?



Thm (A-Thier, '03). (M, g) Riemannian manifold, o € C°°(M) and
G = €27 g the conformally changed metric. Let

VY: metric connection with vectorial torsion V = —grad o on (M, g),
VLY = VLY — g(X,Y)V +g(Y,V)X

V9: Levi-Civita connection of (M, g). Then
(1) Every V9-geodesic () is (up to reparametrisation) a V9-geodesic;

(2) If X is a Killing vector field of g, then e?g(+’, X) is a constant of
motion for every V9-geodesic ~(t).

N.B. The curvatures of VY and V9 coincide, but the curvatures of V9
and VY are unrelated.

— Beltrami’s theorem does not hold anymore ["If a portion of a surface
S can be mapped LC-geodesically onto a portion of a surface S™ of constant Gaussian
curvature, the Gaussian curvature of S must also be constant”]



Connections with vectorial torsion on surfaces

zZ

o Curve: a = (r(s),h(s)) N

Vo

e Surface of revolution:

(r(s) cos p, r(s) sin ¢, h(s))
e Riemannian metric:

g = diag(r2(s), 1)
e Orthonormal frame:

€1 — %6907 €2 — as

Dfn: Call two tangent vectors v; and vy of same length parallel if their
angles v1 and v with the generating curves through their origins coincide.



e Hence Ve; = Vey =0

e Torsion: T'(ey,ez) = 7;/((;) €9

e Corresponding vector field:

V = 7;/((5)) | = —grad( — Inr(s))

e geodesics are LC geodesics of the

conformally equivalent metric g =
e??g = diag(1/r?,1)

(coincides with euclidian metric

under z = ¢, y = [ ds/r(s))
o X =0, is Killing vector field for g, invariant of motion:

const = e”g(¥, X) = ;759(%, 0p) = g(*, e2)



Holonomy of arbitrary connections

e v from p to ¢, V any connection

o P, :T,M — T,M is the unique

map s.t. V(q) := P,V (p) is parallel

along v, VV(s)/ds = V;V = 0.

e C(p): closed loops through p
Hol(p; V) = 1P, [ v € C(p);

e Co(p): null-homotopic el'ts in C'(p) a
Holo(p; V) = {Py | v € Co(p)}

Independent of p, so drop p in notation: Hol(M; V), Holg(M; V).

T,M

M

A priori:
(1) Hol(M; V) is a Lie subgroup of GL(n,R),

(2) Holp(p) is the connected component of the identity of Hol(M; V).
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Holonomy of metric connections

Assume: M carries a Riemannian metric g, V metric

= parallel transport is an isometry:

d

Lo(vis).wis) = g

ds

W (s) + (V(s),

and Hol(M;V) C O(n,R), Holy(M;V) C SO(n,R).
Notation: Hol)(M;VY) = “Riemannian (restricted) holonomy group”
N.B. (1) Hol()(M;V) needs not to be closed!

(2) The holonomy representation needs not to be irreducible on

irreducible manifolds!

— Larger variety of holonomy groups, but classification difficult
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Curvature & Holonomy
Holonomy can be computed through curvature:

Thm (Ambrose-Singer, 1953). For any connection V on (M, g), the
Lie algebra hol(p; V) of Hol(p; V) in p € M is exactly the subalgebra of
s0(T,M ) generated by the elements

P loR(PV,P,W)o P, V,WeT,M, ~eC(p).

But only of restricted use:

Thm (Bianchi I). (1) For a metric connection with vectorial torsion

X,Y,Z X.,Y,Z
Ve TM™: o R(X,Y)Z: o dV(X,Y)Z.

(2) For a metric connection with skew symmetric torsion T' € A?(M™):

Yo RIX,Y, Z,V) = dT(X,Y, Z,V)—oT(X,Y, Z,V)+(VvT)(X,Y, Z).

n
201 := Y (e; 1T) A (e; 2T) for any orthonormal frame e, ..., e,.
i=1 13



Theorem (Berger, Simons, > 1955). For a non symmetric Riemannian
manifold (M,g) and the Levi-Civita connection V9, the possible

holonomy groups are SO(n) or

4n 2n 2n 4n 7 8 16
Sp,,Sp; U(n) SU(n) Sp,, Go Spin(7) (Spin(9))
quatern. Kahler Calabi- hyper- par. par. par.

Kahler Yau Kahler
VJ#A0 VIJ=0 VIJ=0 VIJ=0 V=0 —— ——
Ric = A\g —— Ric=0 Ric=0 Ric=0 Ric=0 ——

Existence of Ricci flat compact manifolds:

e Calabi-Yau, hyper-Kahler: Yau, 1980's.

e (G5, Spin(7): D. Joyce since ~ 1995, Kovalev (2003). Both rely on
heavy analysis and algebraic geometry |

No such theorem for metric connections! 14



General Holonomy Principle

Thm (General Holonomy Principle). (M, g) a Riemannian manifold,
FE a (real or complex) vector bundle over M with (any!) connection V.
Then the following are equivalent:

(1) E has a global section a which is invariant under parallel transport,
i.e. a(q) = P,(a(p)) for any path ~ from p to g;

(2) E has a parallel global section «, i.e. Va = 0;

(3) In some point p € M, there exists an algebraic vector ay € E,, which
is invariant under the holonomy representation on the fiber.

Corollary. The number of parallel global sections of E coincides with the
number of trivial representations occuring in the holonomy representation
on the fibers.
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Example. Orientability from a holonomy point of view:

Lemma. The determinant ist an SO(n)-invariant element in A"(R")
that is not O(n)-invariant.

Corollary. (M™, g) is orientable iff Hol(M; V) C SO(n) for any metric
connection V, and the volume form is then V-parallel.

[Take dM,, := det = e; A ... Ae, in p € M, then apply holonomy principle to
E =A"(TM)|]

An orthonormal frame that is parallel transported along the drawn curve reverses its

orientation.
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Geometric stabilizers

Philosophy: Invariants of geometric representations are candidates
for parallel objects. Find these!

e Invariants for G C SO(m) in tensor bundles (as just seen)
e Assume that G C SO(m) can be lifted to a subgroup G C Spin(m)
= (G acts on the spin representation A,,, of Spin(m)
Recall: e m = 2k even: A,, = At ® A, both have dimension 2~~1
e m =2k+1odd: A,, is irreducible, of dimension 2%

Elements of A,,: “algebraic spinors” (in opposition to spinors on M that
are sections of the spinor bundle)

Now decompose A,, under the action of G.

In particular: Are there invariant algebraic spinors?

17



U(n) in dimension 2n
e Hermitian metric h(V, W) = g(V, W) —ig(JV, W)

e h is invariant under A € End(R*") iff A leaves invariant g and the
Kahler form Q(V, W) := g(JV, W) =

U(n) = {A€S0(2n) | A*Q = Q}.

Lemma. Under the restricted action of U(n), A2*(R?"),k =1,...,n
contains the trivial representation once, namely, Q,Q?, ..., Q".

U(n) can be lifted to a subgroup of Spin(2n), but it has no invariant
algebraic spinors:

12

() generates the one-dimensional center of u(n) (identify A%(R*")
s0(2n)).

Set S, ={¢y € Ay, : QY =1i(n—2r)yY}, dimS, = (”), 0<r<n.

r 18



Sy = (0, r)-forms with values in Sy and

Adlum & Sn@®Su2® ..y Aglyy = Sn-1@Sn-3® ...

e no trivial U(n)-representation for n odd

e For n = 2k even, () has eigenvalue zero on Si, but this space is an
irreducible representation of dimension (%¥) # 1

e Sp and S,, are one-dimensional, and they become trivial under SU(n)

Lemma. AL contain no U(n)-invariant spinors. If one restricts further
to SU(n), there are exactly two invariant spinors.

19



(G5 in dimension 7

e Geometry of 3-forms plays an exceptional role in Riemannian geometry,
as it ocurs only in dimension seven:

n | dim GL(n,R) — dim A°R" | dim SO(n)
3 9—-1=28 3
/4 16 —4 =12 6
5 20 —10 =15 10
6 36 — 20 = 16 15
I 49 -35 =14 21
3 64 — 56 = 8 28
= stabilizer G; := {A € GL(n,R) | w® = A*w?} of a generic 3-form

w3 cannot lie in SO( ) for n < 6 (for example: G2, = SL(3,R)).



Reichel, 1907 (Ph D student of F. Engel in Greifswald):
e computed a system of invariants for a 3-form in seven variables
e showed that there are exactly two GL(7,R)-open orbits of 3-forms

e showed that stabilizers of any representatives w3, w3 of these orbits

are 14-dimensional simple Lie groups of rank two, a compact and a
non-compact one:

G75 = Gy C SO(7), GL, = Gj C SO(3,4)

e realized g, and g3 as explicit subspaces of s0(7) and s0(3,4)

As in the case of almost hermitian geometry, one has a favourite normal
form for a 3-form with isotropy group Gb:

3 .__
W™ = €127 t €347 — €567 + €135 — €245 + €146 T+ €236.

An element of the second orbit (— G%) may be obtained by reversing

any of the signs in w?.

21



Lemma. Under Go: A3(R7) 2R @ R7 @ So(R7), where
R”: 7-dimensional standard representation of G5 C SO(7)
So(R7): traceless symmetric endomorphisms of R (has dimension 27).

e (55 can be lifted to a subgroup of Spin(7). From a purely representation
theoretic point of view, this case is trivial:

dim A7 = 8 and the only irreducible representations of (G5 of dimension
< 8 are the trivial and the 7-dimensional representation =-

Lemma. Under Go: A- =R P R”.

In fact, the invariant 3-form w?® and the invariant algebraic spinor 1 are
equivalent data:

wB(X7Y72> — <XYY¢7¢>

But dim Ay = 8 < dim A3(R7) = 35, so the spinorial picture is easier to
treat!
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Assume now that G C G5 fixes a second spinor = G = SU(3)

e this is one of the three maximal Lie subgroups of G2, SU(3), SO(4)
and SO(3)

e SU(3) has irreducible real representations in dimension 1, 6 and 8, so
Lemma. Under SU(3) C Go: A7 =ZRPRPR® and R" =R ¢ RS,

This implies:

o If V9 on (M7, g) has two parallel spinors, M has to be (locally)
reducible, M7 = M2 M" and the situation reduces to the 6-dimensional
case.

o If V is some other metric connection on (M7, g) with two parallel
spinors, M7 will, in general, not be a product manifold. lts Riemannian
holonomy will typically be SO(7), so V9 does not measure this effect!

= geometric situations not known from Riemannian holonomy will
typically appear.

23



In a similar way, one treats the cases

Spin(7) in dimension 8. As just seen, Spin(7) has an 8-dimensional
representation, hence it can be viewed as a subgroup of SO(8). Ag has
again one Spin(7)-invariant spinor.

Sp(n) in dimension 4n. Identifying quaternions with pairs (21, 29) € C?
yields Sp(n) € SU(2n), and SU(2n) is then realized inside SO(4n) as
before. It has n 4+ 1 invariant spinors.

24



The easiest case: VY-parallel spinors

Thm (Wang, 1989).
(M™, g): complete, simply connected, irreducible Riemannian manifold
N: dimension of the space of parallel spinors w.r.t. V9

If (M™, g) is non-flat and N > 0, then one of the following holds:

(1) n = 2m (m > 2), Riemannian holonomy repr.: SU(m) on C™, and
N = 2 (“Calabi-Yau case”),

(2) n = 4m (m > 2), Riemannian holonomy repr.: Sp(m) on C*™, and
N =m + 1 (“hyperkahler case”),

(3) n = 7, Riemannian holonomy repr.: 7-dimensional representation of
Ga, and N =1 (“parallel G5 case”),

(4) n = 8, Riemannian holonomy repr.: spin representation of Spin(7),
and N =1 (“parallel Spin(7) case”). -



