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Classical general relativity and electromagnetism
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Modern unified models

—

physical quantities: associate
moves along

string particle with every tangent plane a number

f . .
A SHrace = "“higher order potential’ A
higher order field how the potential A changes geometric concept
= : : : <~ :
strength F' = dA in all directions of torsion

torsion measures deviation from vacuum ( “integrable case”) ! 3



Relativistic describes point particles with electromagnetic charge,
electromagnetism relates it with abelian gauge transformations
1900-1940 gauge group = rotations in a plane

Maxwell Lorentzi Einstein Weyl Dirac

Standard model of describes point particles with additional gauge
elementary particles properties, like charge, isospin, colour. . .
1950-1980 internal symmetries are described by some Lie group

Yang Mills iSalam Weinberg

Unified theories Quantized internal symmetries are spinor fields
(super-)strings, supergravity on some space with special geometric structure,
> 1980 replacing the Lie group of the standard model

Nieuwenhuizen Strominger Seiberg Witten ... 4



Mathematical scheme for unified theories

No more described as Yang-Mills theories (electrodynamics, standard
model of elementary particles), but rather:

e Particles are “oscillatory states” on some high dimensional configuration

Space
YlO,ll _ V3—5®M5—8

V' configuration space visible to the outside, i.e. Minkowski space or
some solution from General Relativity (adS is popular here).

M : configuration space of internal symmetries = Riemannian manifold
with special geometric structure, quantized internal symmetries are
described by spinor fields.

Example: Supersymmetry transformation, transform bosons into fermions
and vice versa by tensoring with a (special) spin 1/2 field.

[ > 1980 Nieuwenhuizen, Strominger, Witten, Seiberg. . .| &



Common sector of Type Il string equations

e A. Strominger, 1986: (M"™, g) Riemannian Spin mfd with
a 3-Form T', a spinor field ¥, and a function .

(field strength) (supersymmetry) (dilaton)
e Bosonic eq.: Rz‘gj — iTimnijn—l—ZV‘iq@j(I) = 0, 6(e2°T) = 0.

e Fermionic eq.: (V§( + %XJT)-\IJ — 0, T-U = 24U

As in general relativity, it is impossible to fix the manifold and look
for solutions on it. Rather, finding the manifold is part of the solution

process!

— Geometric meaning of the 3-form 1" 7



|dea: The first fermionic eq. means that the spinor field W is parallel
w.r.t. a new connection,

1
VxY = V%Y + §T(X,Y,—).
The 3-form T’ is then the torsion of the new metric connection V and
the eqgs. are equivalent to:

e Bosonic eq.: Ricv+%5(T)+2V9d<I> = 0, (e 2*T) = 0.
0,

e Fermionic eq.: V¥ = T-v = 2d® -V,

Remarks:
e Bosonic eq. generalizes Einstein's eq. of general relativity

e Calabi-Yau and Joyce mfds are exact solution with 7" = 0 and ® =
const — Bergers' list + algebraic geometry

e For T' # 0, the relation between curvature and parallel spinor is subtler,
and there exists no holonomy theory for them



Intermezzo: Lifting metric connections into the spinor bundle
At first sight, the formulas on vectors and spinors look quite different!
Write VxY := V%Y + AxY,
where Ax defines an endomorphism T'M — T'M for every X.

V metric & g(AxY,Z)+g(Y,AxZ) =0
& Ax preserves g < Ax € so(n) = A%(R")
So Ax = ZKJ. aije; N e;.

Since the lift into spin(n) of e; Ae; is E; - £;/2, Ax defines an element
in spin(n) (= an endomorphism on the spinor bundle).



Observe: If Ax is written as a 2-form,

e its action on a vector Y as an element of so(n) is just AxY =Y 1Ay,

SO
VxY = vg(Y—FYJAx,

e the action of Ax on a spinor @ as an element of spin(n) is just
Axvy = (1/2) Ax - ¢ (Clifford product of a k-form by a spinor), hence
the lift of the connection V to the spinor bundle SM is

1

e Connection with vectorial torsion: Ax =2 X AV, V a vector field

e Connection with skew symmetric torsion: Ax = X 1T, T € A3(M).



Overview of general results

Non existence theorems

Thm. A full solution of Strominger's model with & = const satisfies
necessarily T'=0 or ¥ = 0.

[M compact: IA, 2002; general case: IA, Friedrich, Nagy, Puhle, 2004]
—> physical meaning ?

e Investigation of the homogeneous case, in particular of the relation
with Kostant's cubic Dirac operator and a generalized Casimir operator

e Investigation of the holonomy theory of metric connections with torsion,
Weitzenbock formulas for their Dirac operators

Thm ('03). On a Calabi-Yau or Joyce mnfd, a metric connection with
torsion T' s.t. dT' = 0 can have parallel spinors only for 7" = 0.

= “rigidity” of CYJ's under deformation of the connection

10



e Non compact solvmanifolds for which the rigidity theorem does not
hold

Existence results

Thm ('03). On every 7-dimensional 3-Sasaki mnfd, there exists a
family of metric connections with torsion admitting parallel spinors.

e Construction of partial solutions with particular properties, in particular,
with parallel spinors

e |nvestigation of the case VI' = 0

e Solution of spinorial field egs. with additional 4-flux-forms F,

Vxy = V§<¢+%(XJT)-w+ﬁ(XJF)—X/\F)-¢ = 0.

Observe: These connections exist only in the spinor bundle, not in the tangent bundle!

11



The characteristic connection of a geometric structure

Fix G C SO(n), A*>(R") = so(n) = g®m, F(M™): frame bundle of
(M", g).

Dfn. A geometric G-structure on M™ is a G-PFB 'R which is subbundle
of F(M™): R C F(M™).

Choose a (G-adapted local ONF eq,...,e, in R and define connection
1-forms of V9:

wij(X) = g(Vgcez-,ej), g(@i, Gj) = 5@' = Wi + Wji = 0.

Define a skew symmetric matrix € with values in A1(R") = R" by
Q(X) := (w;(X)) € s0(n) = g ®m und set

[':=pr, ().

12



e ['is a 1-Form on M™ with valuesinm, ', € R"®@m (x € M™)

[ “intrinsic torsion”, Swann/Salamon]
Fact: I' =0 < VY is G-invariant < Hol(V9) C G

Via I', geometric G-structures R C F(M™) correspond to irreducible
components of the G-representation R™ ® m.

e For the rest of this talk, consider only connections with
antisymmetric torsion.

Thm (’02). A geometric G-structure R C F(M™) admits a G-invariant
metric connection with antisymmetric torsion iff I' lies in the image of

©,

O: A’ (M™) - T*(M™)@m, O(T) := Y e ®@pry(e;aT).
=1
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If such a connection exists, it is called the characteristic connection V
and it is unique; its torsion is essentially I' and Hol(V) C G.

If existent, we can thus replace the (unadapted) LC connection by some
new unique G-invariant connection!

Examples.
e The canonical connection of a naturally reductive space (see below);
e The Bismut connection of an almost hermitian mnfd;

e The Gray connection of a nearly Kahler mnfd. . .

14



Example: (G5 structures in dimension 7

Fix Go C SO(7), s0(7) = go ®m’ = g, D R".

Intrinsic torsion I lies in R” @ m” = R' @ g, & So(R7) @ R = ., W,
= four classes of geometric Gy structures [Fernandez-Gray, '82]

e Decomposition of 3-forms: A3(R7) = R! & Sp(R7) @ R”.

G, is the isotropy group of a generic element of w € A?(R"):

Go = {A€S0(7) | A -w=w}.
Thm. A T7-dimensional Riemannian mfd (M7, g, w) with a fixed G
structure w € A3(M7) has a Go-invariant characteristic connection V

< the go component of I' vanishes
< There exists a VF 3 with ow = —f Jw

The torsion of V is then T' = — % dw — £(dw, *w)w + *(B Aw), and V
admits (at least) one parallel spinor.



Examples: Explicit constructions of (G5 structures:

[Friedrich-Kath, Fernandez-Gray, Fernandez-Ugarte, Aloff-Wallach, Boyer-Galicki. . . |

M7: 3-Sasaki mnfd, corresponds
to SU(2) C G5 C SO(7).
e Has 3 compatible contact 77#
structures n; € T*M’ and 3 '
Killing spinors ¢; = Ansatz:

3

T = Z aijni/\nj+7771/\772/\773,

3
Y = Z:l pit;.

Thm ('03). Every 7-dimensional 3-Sasaki mnfd admits a P*-family of
metric connections with antisymmetric torsion and parallel spinors. Its
holonomy is Gb.

—> First constructive global existence thm for supersymmetries!
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Example: U(n) structures in dimension 2n

Thm. An almost hermitian manifold (M?", g, J) admits a U(n)-invariant
characteristic connection if and only if the Nijenhuis tensor

N(X,Y,Z) = g(N(X,Y), Z)

is skew-symmetric. Its torsion is then

T(X,Y,Z) = —dQJX,JY,]Z)+ N(X.,Y, Z).

In particular for n = 3: [Gray-Hervella]

¢ 50(6)=u3)dm’, TeR@m 2 Wi Wb e Wi2e W)

"lues

e N is skew-symmetric < I' has no Ws-part
o I' € Wi: nearly Kahler manifolds (S, 5% x S3, F(1,2), CP?)

o I' ¢ W35 ® Wy: hermitian manifolds (N = 0)



Example: Naturally reductive spaces

e Homogeneous non symmetric spaces provide a rich source for manifolds
with characteristic connection.

Consider M = G/H with isotropy repr. Ad : H — SO(m).
Lie algebra: g=H ®m, (, ) a p.d. scalar product on m.

The PFB G — G//H induces a distinguished connection on G/H, the
so-called canonical connection V1 lts torsion is

THX,Y,Z) = —{([X,Y]m, Z).

Dfn. The metric (, ) is called naturally reductive if T! defines a 3-form,
(X, Y]m, Z) + (Y, | X, Z]n) = Oforall X,Y,Z cm.

They generalize symmetric spaces: V!T! =0, VIR! = 0.

18



A oneparametric family of connections
Dfn. VLY = V&Y —L1[X Y], for X,Y € m.
Torsion: TH(X,Y) = —t[X,Y]n.
Special ¢ values: e t = 0: LC connection
e t = 1: canonical connection

e t = 1/3: "Kostant-Slebarski connection”

M spin manifold = lift V* into Spinor bundle, associated Dirac operator:

1—1
Dl = ZZ +——H (Z1,...,Z,: ONB of m),
H: the element in the Clifford algebra induced by torsion:

7,<J<k:
19



The symmetric case
Want: Weitzenbock formula for (J0%)2.

For M symmetric ([m, m| C b), one would have:
Thm (Parthasarathy, 1972). (P)? = Q4+ $Scal,
with 4: Casimir operator of g.

Consequences:

e Computation of spectrum of [

e Realisation of discrete series representations in the (twisted) kernel of
D for G non compact

e Character formulas (interpret character as an index)

In the homogeneous non symmetric case, this formula does no longer
hold!

20



The general Kostant-Parthasarathy formula

Thm [Kostant, '99 / IA, '01]. For n > 5 and arbitrary ¢:

D) = Qa(p) 4+ 3(3t — 1) .z_k (Zi, Zilws Zi) Zi - Z; - Zin(9)
1 ’3,9(1—75)2 | | |
3 5 (2 T(Z5, 2k, Z0) + STl Z5, 2k, Z) ) Zi 2y Tk D

i<j<k<l

+1 (SN2 Zlly + 2952 S 1120, Z5] ) ¥
1,7

1,7

Notation:

o Tn(X,Y,2Z) :=[X,[Y, Z]u]m+ cyclic

o 70(X,Y,Z) = [X,]Y, Z]s]+ cyclic

e (Q : the unique Ad G-invariant continuation of (, ) to g. It satisfies:

h L m, Q’m ={(,), Q’h not degenerate

21



The Kostant-Parthasarathy formula for ¢t = 1/3

Thm [Kostant, '99 / IA, '01]. For n > 5 and t = 1/3:

DYV = Qa(y) +=(x) ¥,

where (x) denotes the scalar
1
() =D _MZi Zjllly + 5 3 [Zi Zj)l .
i,7 1,J

It can be rewritten as

(%) = Q(oa, 0c) — Qy(omH, 0m)

and is thus always strictly positive.

22



First applications

Corollary ('01). If ¢ satisfies Vi¢p =0and T* -4y =00on M = G/H,
then t = 0 and V? is the LC connection.

.. . purely mathematical applications:

Corollary ('01). On M = G/H, there exists a G-invariant differential
operator of first order which has no symmetric counterpart:

D(y) := Z (Zis Zjlm, Zx) Zi - Zj - Zx(¥) -

0,5,k

Corollary ('01). If the Casimir operator is non negative, the first
eigenvalue A1/3 satisfies (A1/3)2 > (x)/8. In particular, D*/3 has then no
kernel.

N.B. Character formulas generalize, too — splitting of H-representations
into families with similar properties

[> 1999: Kostant, Sternberg, Ramond, Brink. . .] o5



e Realisation of infinite dimensional representations for G non compact
inside kernels of twisted Dirac operators [> 2003, Zierau-Mehdi . . . ]

e Computation of the spectrum of (191/3)2

N.B. Consider lift of isotropy representation, Ad : H — Spin(m):

Spin(m)
Ad \
Ad
H SO(m)

Assume that it contains the trivial representation. Any such spinor
induces a section of the spinor bundle S = G X o(Ad) A,, if viewed as a
constant map G — A,,.

These are exactly the parallel spinors of the canonical connection!

24



Another application: Construction of Lie algebras

Kostant's work was based on the following extension idea for Lie algebras.
We formulate his work geometrically:

Let M™ be an Ambrose-Singer manifold, i.e.. a Riemannian manifold
with a connection V with antisymmetric torsion 7' s. t.

VI' =0, VR = 0.

Assumption: Universal cover of G is compact.

= M™ is regular and locally isometric to a homogeneous space G/Gr.
The Lie algebra of G is g := gr & R™ with the commutator

[Cleyton/Swann, 2002]
A+ X,B+Y] = ([4,B]-R(X,Y)) + (AY — BX - T(X,Y)).

Bianchi | = R is unique:



Lemma. The curvature of V is proportional to the orthogonal projection
onto gr,

R : A*(R") = so(n) — gr, R(X,Y) = 4pr, (X AY).

Choose an ONF of 2-forms w; for gr.

Lemma. The commutator defines an extension of gr iff

T2—|—4sz-2

is a scalar in the Clifford algebra of R".
[a priori: parts of degree 4 + scalar]

— this identity can be understood as a Kostant-Parthasarathy type formula

for the symbol of the operator lDl/?’.

26



Construction of naturally reductive spaces

General construction:

Consider M = GG/ H with restriction of the Killing form to m:
B(X,Y):= —tr(XY), (X,Y) = B(X,Y) for X,V € m.

Suppose that m is an orthogonal sum m = m; & msy such that

h,my] =0, [my, my] C my.

Then the new metric, depending on a parameter s > 0

0 forXEml,YEmg
<X,Y>8: (X,Y) for X, Y e my
s (X,Y) for XY €my

is naturally reductive for s # 1 w.r.t. the realisation as
M = (G x My)/(H x M) =: G/H .

[Chavel, 1969; Ziller / D'Atri, 1979] 27



Jensen metrics
M° = G/H with G = SO(4), H = SO(2) and embed H in G as

[ (1) I SOO(Q) ] . Then s0(4) = s50(2) + m with (a € R, X € M5 5(R))

T O —a _Xt 7] )

m = < 00 =: (a,X) ;.
X 0 0

\ L - /

Set my := {(0, X)} and ms :={(a,0)} = new metric

(0, X), (b.Y)), = 5B(X.Y) + 2a-b.

Properties: ® Two V-parallel spinors for s = 1, none for other values

of t and s;

e Ric’ = (2 — s)diag(0,1,1,1,1), Ricci-flat only for s =2 und ¢t = 0.



