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Summary

A. Strominger, 1986: (Mn, g) Riemannian Spin mfd (set dilaton=const)
with a 3-form T ∈ Λ3(Rn) (field strength) and a spinor field Ψ
(supersymmetry) such that

• Bosonic eq.: Ric∇ = 0, δT = 0

• Fermionic eq.: ∇Ψ = 0, T · Ψ = 0

with respect to the metric connection with antisymmetric torsion T

∇XY := ∇g
XY +

1

2
T (X,Y,−), ∇Xψ := ∇g

Xψ +
1

4
(X T ) · ψ.

This lecture: * Naturally reductive spaces and Kostant’s cubic Dirac
operator

* Generalisation: Weitzenböck formulas and a Casimir operator on non
homogeneous spaces
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Example: Naturally reductive spaces

• Homogeneous non symmetric spaces provide a rich source for manifolds
with characteristic connection [ = unique G-inv. metric ∇ with skew torsion]

Consider M = G/H with isotropy repr. Ad : H → SO(m).

Lie algebra: g = h ⊕ m, 〈 , 〉 a pos. def. scalar product on m.

The PFB G → G/H induces a distinguished connection on G/H, the
so-called canonical connection ∇1. Its torsion is

T 1(X,Y,Z) = −〈[X,Y ]m, Z〉 (= 0 for M symmetric)

Dfn. The metric 〈 , 〉 is called naturally reductive if T 1 defines a 3-form,

〈[X,Y ]m, Z〉 + 〈Y, [X,Z]m〉 = 0 for all X,Y, Z ∈ m .

They generalize symmetric spaces: ∇1T 1 = 0,∇1R1 = 0.
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A oneparametric family of connections

Dfn. ∇t
XY := ∇g

XY − t
2 [X,Y ]m for X,Y ∈ m.

Torsion: T t(X,Y ) = −t[X,Y ]m.

Special t values: • t = 0: LC connection

• t = 1: canonical connection

• t = 1/3: “Kostant-Slebarski connection”

M spin manifold ⇒ lift ∇t into spinor bundle, associated Dirac operator:

/Dtψ =
n∑

i=1

Zi(ψ) +
1 − t

2
H · ψ (Z1, . . . , Zn : ONB of m),

H: the element in the Clifford algebra induced by torsion:

H :=
3

2

∑

i<j<k

〈[Zi, Zj]m, Zk〉Zi · Zj · Zk
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The symmetric case

Want: Weitzenböck formula for (/Dt)2.

For M symmetric ([m,m] ⊂ h), one would have:

Thm (Parthasarathy, 1972). (/D)2 = Ωg + 1
8Scal,

with Ωg: Casimir operator of g.

Consequences:

• Computation of spectrum of /D

• Realisation of discrete series representations in the (twisted) kernel of
/D for G non compact

• Character formulas (interpret character as an index)

In the homogeneous non symmetric case, this formula does no longer
hold!
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The general Kostant-Parthasarathy formula

Thm [Kostant, ’99 / IA, ’01]. For n ≥ 5 and arbitrary t:

(/Dt)2ψ = ΩG(ψ) + 1
4(3t− 1)

P
i,j,k

〈[Zi, Zj]m, Zk〉Zi · Zj · Zk(ψ)

−1
2

P
i<j<k<l

D
Zi,Jh(Zj, Zk, Zl) + 9(1−t)2

4 Jm(Zj, Zk, Zl)
E
Zi · Zj · Zk · Zl · ψ

+1
8

` P
i,j

||[Zi, Zj]||h + 3(1−t)2

4

P
i,j

||[Zi, Zj]||m
´
ψ

Notation:

• Jm(X, Y, Z) := [X, [Y, Z]m]m+ cyclic

• Jh(X, Y, Z) := [X, [Y,Z]h]+ cyclic

• Q : the unique AdG-invariant continuation of 〈 , 〉 to g. It satisfies:

h ⊥ m, Q
˛̨
m

= 〈 , 〉 , Q
˛̨
h

not degenerate
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The Kostant-Parthasarathy formula for t = 1/3

Thm [Kostant, ’99 / IA, ’01]. For n ≥ 5 and t = 1/3:

(/D1/3)2ψ = ΩG(ψ) +
1

8
(∗)ψ ,

where (∗) denotes the scalar

(∗) =
∑

i,j

||[Zi, Zj]||h +
1

3

∑

i,j

||[Zi, Zj]||m.

It can be rewritten as

(∗) = Q(̺G, ̺G) −Qh(̺H, ̺H)

and is thus always strictly positive.
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First applications

Corollary. If ψ satisfies ∇tψ = 0 and T t · ψ = 0 on M = G/H, then
t = 0 and ∇t is the LC connection.

. . . purely mathematical applications:

Corollary. On M = G/H, there exists a G-invariant differential operator
of first order which has no symmetric counterpart:

D(ψ) :=
∑

i,j,k

〈[Zi, Zj]m, Zk〉Zi · Zj · Zk(ψ) .

Corollary. If the Casimir operator is non negative, the first eigenvalue
λ1/3 satisfies (λ1/3)2 ≥ (∗)/8. In particular, /D1/3 has then no kernel.

N.B. Character formulas generalize, too → splitting of H-representations
into families with similar properties

[> 1999: Kostant, Sternberg, Ramond, Brink. . . ]
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• Realisation of infinite dimensional representations for G non compact
inside kernels of twisted Dirac operators [> 2003, Zierau-Mehdi . . . ]

• Computation of the spectrum of (/D1/3)2

N.B. Consider lift of isotropy representation, Ãd : H → Spin(m):

Spin(m)

�
�

�
�

�
�

�
�

�

Ãd

�

H
Ad

- SO(m)

λ

?

Assume that it contains the trivial representation. Any such spinor
induces a section of the spinor bundle S = G ×κ( eAd ) ∆n if viewed as a
constant map G→ ∆n.

These are exactly the parallel spinors of the canonical connection!
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Another application: Construction of Lie algebras

Kostant’s work was based on the following extension idea for Lie algebras.
We formulate his work geometrically:

Let Mn be an Ambrose-Singer manifold, i. e.. a Riemannian manifold
with a connection ∇ with antisymmetric torsion T s. t.

∇T = 0 , ∇R = 0 .

Assumption: Universal cover of GT is compact.

⇒ Mn is regular and locally isometric to a homogeneous space G/GT .
The Lie algebra of G is g := gT ⊕ Rn and its commutator has to be

[Cleyton/Swann, 2002]

[
A+X,B + Y

]
:=

(
[A,B] −R(X,Y )

)
+

(
AY −BX − T (X,Y )

)
.

Bianchi I ⇒ R is unique:
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Lemma. The curvature of ∇ is proportional to the orthogonal projection
onto gT ,

R : Λ2(Rn) = so(n) −→ gT , R(X,Y ) = 4prgT
(X ∧ Y ).

Choose an ONF of 2-forms ωi for gT .

Lemma. The commutator above defines an extension of gT iff

T 2 + 4
∑

ω2
i

is a scalar in the Clifford algebra of Rn. [a priori: parts of degree 4 + scalar]

– this identity can be understood as a Kostant-Parthasarathy type formula
for the symbol of the operator /D1/3.
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Construction of naturally reductive spaces

General construction:
Consider M = G/H with restriction of the Killing form to m:

β(X,Y ) := −tr(XtY ), 〈X,Y 〉 = β(X,Y ) for X,Y ∈ m.

Suppose that m is an orthogonal sum m = m1 ⊕ m2 such that

[h,m2] = 0, [m2,m2] ⊂ m2 .

Then the new metric, depending on a parameter s > 0

〈X,Y 〉s =





0 for X ∈ m1, Y ∈ m2

〈X,Y 〉 for X,Y ∈ m1

s · 〈X,Y 〉 for X,Y ∈ m2

is naturally reductive for s 6= 1 w. r. t. the realisation as

M = (G×M2)/(H ×M2) =: G/H .

[Chavel, 1969; Ziller / D’Atri, 1979]
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Jensen metrics on the Stiefel manifold

M5 = G/H with G = SO(4), H = SO(2) and embed H in G as[
1 0
0 SO(2)

]
. Then so(4) = so(2) + m with (a ∈ R, X ∈ M2,2(R))

m =








0 −a
a 0

−Xt

X
0 0
0 0


 =: (a,X)




.

Set m1 := {(0, X)} and m2 := {(a, 0)} ⇒ new metric

〈(a,X), (b, Y )〉s =
1

2
β(X,Y ) +

s

2
a · b .

Properties: • Two ∇0-parallel spinors for s = 1, none for other values

of t and s;

• Ric0 = (2 − s)diag(0, 1, 1, 1, 1), Ricci-flat only for s = 2 und t = 0.
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The square of the Dirac operator

Extend this to non-homogeneous mnfds!

• (Mn, g, ∇) – Riemannian spin mnfd, T ∈ Λ3(Mn) torsion of ∇,

∇XY := ∇g
XY +

1

2
T (X,Y,−) .

• Lift into spinor bundle: ∇Xψ := ∇g
Xψ + 1

4 (X T ) · ψ

• A first order differential operator: Dψ :=

n∑

k=1

(ek T ) · ∇ekψ

• A 4-form from T [appeared in Bianchi I]: σT :=
1

2

n∑

k=1

(ek T ) ∧ (ek T )

• /D: Dirac operator of connection ∇ with torsion T

• /D1/3: Dirac operator of connection with torsion T/3.
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“Classical” Weitzenböck Formula:

D2 = ∆T +
3

4
dT − 1

2
σT +

1

2
δT − D +

1

4
Scal∇ .

Rescaled Weitzenböck Formula:

(D1/3)2 = ∆T +
1

4
dT +

1

4
Scalg − 1

8
||T ||2.

[ 1/3-Rescaling: Slebarski (’87), Bismut (’89), Kostant (’99), IA (’02), IA & TF (’03)]

A Vanishing Thm. Let (Mn, g, T ) be a compact Riemannian spin
mnfd with Scalg ≤ 0, and suppose dT acts on spinors as a negative
endomorphism. If there exists a spinor ψ 6= 0 in the kernel of ∆T , then
T = 0 = Scalg, and ψ is parallel w.r.t. the LC connection.

Corollary. On a Calabi-Yau or Joyce mnfd (Scalg = 0), a metric
connection with closed torsion (dT = 0) can have parallel spinors only
for T = 0.

⇒ “Rigidity” of vacuum solutions under deformation of the connection
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N.B. Different situation if Mn is not compact:

Consider solvmanifolds Y 7 = N × R, n : nilpotent 6-dim. Lie algebra
( 6= h3 ⊕ h3) ⇒ [Chiossi/Fino, 2004]

1) N carries “half flat” SU(3) structure,

2) Y carries a G2 structure (ω, g) with antisymmetric torsion,

3) Y carries – after a conformal change of the metric – an integrable G2

structure (ω̃, g̃). In particular, g̃ is Ricci flat und admits (at least) one
LC-parallel spinor.

Thm (’05). For n ∼= (0, 0, e15, e25, 0, e12), there exists on (Y, ω̃, g̃) a
oneparametric family (Th, ψh) ∈ Λ3(Y )×S(Y ) s. t. every connection ∇h

with torsion Th satisfies:
∇hψh = 0.

For h = 1: Th = 0,∇h = ∇g und ψh coincides with the LC-parallel
spinor.
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Parallel spinors in oneparametric families

Define the family of connections

∇s
Xψ := ∇g

Xψ + s · (X T) · ψ .

Q: For which values of s can there be parallel spinors ?

Example. G a simple Lie group, g its biinvariant metric and the torsion
form

T (X,Y,Z) := g([X,Y ], Z) .

The connections ∇±1/4 are flat. In particular, there exist ∇±1/4-parallel
spinor fields.

Thm. Assume M compact. Every ∇s-parallel spinor ψ satisfies the eq.

64 s2
∫

Mn
〈σT · ψ , ψ〉 +

∫

Mn
Scals · ||ψ||2 = 0 .
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If the mean values 〈σT · ψ , ψ〉 does not vanish, the parameter s is given
by

s =
1

8

∫

Mn
〈dT · ψ , ψ〉

/ ∫

Mn
〈σT · ψ , ψ〉.

If 〈σT ·ψ , ψ〉 = 0, the parameter s depens only on the Riemannian scalar
curvature and the length of T ,

0 =

∫

Mn
Scals =

∫

Mn
Scalg − 24s2

∫

Mn
||T||2 .

Corollary. If the 4-forms dT and σT are proportional, there exist at most
three parameter values with ∇s-parallel spinors.

• On the Aloff-Wallach spaces M7 := N(1, 1) = SU(3)/SU(2), there
exist examples of G2-structures such that s and −s admit parallel spinors.

Sometimes, the value of s is fixed through the geometry of M :

Thm. On a 5-dimensional Sasaki mnfd, only the characteristic connection
can have parallel spinors.
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The Casimir operator of a characteristic connection

(Mn, g,∇, T ): Riemannian manifold with torsion.

Dfn. The Casimir operator acting on spinor fields is defined by

Ω := (D1/3)2 +
1

8
(dT − 2σT ) +

1

4
δ(T ) − 1

8
Scalg − 1

16
||T ||2

= ∆T +
1

8
(3dT − 2σT + 2δ(T) + Scal).

Motivation: For a naturally reductive space and its canonical connection,
Ω coincides with the usual Casimir operator.

Example: For the Levi-Civita connection (T = 0), we obtain:

Ω = (Dg)2 − 1

8
Scalg = ∆g +

1

8
Scalg

Proposition. The kernel of the Casimir operator contains all ∇-parallel
spinors.
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The case ∇T = 0 : Ω then simplifies,

Ω = (D1/3)2 − 1

16

(
2 Scalg + ||T ||2

)

= ∆T +
1

16

(
2 Scalg + ||T ||2

)
− 1

4
T 2

= ∆T +
1

8

(
2 dT + Scal

)
.

Proposition. (Mn, g,∇) compact, ∇T = 0. If

2 Scalg ≤ − ||T ||2 or 2 Scalg ≥ 4T 2 − ||T ||2

holds, the Casimir operator is non-negative.

Proposition. If ∇T = 0, Ω and (D1/3)2 commute with T ,

Ω ◦ T = T ◦ Ω , (D1/3)2 ◦ T = T ◦ (D1/3)2 .

In the compact case, T preserves the kernel of D1/3.
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5-Dimensional Sasakian Manifolds

• M5: a 5-dimensional Sasakian manifold, η its contact structure.

• Consider characteristic connection with torsion T :

∇T = 0 , T = η ∧ dη = 2 (e12 + e34) ∧ e5 ,
T 2 = 8 − 8 e1234 , T = diag(4 , 0 , 0 , −4) .

⇒ the Casimir operator splits into Ω = Ω0 ⊕ Ω4 ⊕ Ω−4,

Ω0 = ∆T +
1

8
Scalg +

1

2
= (D1/3)2 − 1

8
Scalg − 1

2
,

Ω±4 = ∆T +
1

8
Scalg − 7

2
= (D1/3)2 − 1

8
Scalg − 1

2
.

• If Scalg 6= −4 , Ker(Ω0) = 0.

• If Scalg < −4 or Scalg > 28, Ker(Ω±4) = 0.

• The interesting cases: −4 ≤ Scalg ≤ 28.
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If Scalg = −4: Ω0 = ∆T = (D1/3)2, Ω±4 = ∆T − 4 = (D1/3)2.

• The kernel of Ω0 coincides with the space of ∇-parallel spinors ψ such
that T · ψ = 0. [Examples: TF/Ivanov, 2002]

• Spinors in both kernels Ker(Ω0) and Ker(Ω±4) exist on the 5-
dimensional Heisenberg group

e1 = dx1/2, e2 = dy1/2, e3 = dx2/2, e4 = dy2/2,

e5 = η :=
(
dz − y1 dx1 − y2 dx2

)
/2.

• Spinors in the kernel of Ω±4 occur on Sasakian η-Einstein manifolds of
type Ricg = − 2 · g + 6 · η ⊗ η [Examples: TF/Kim, 2000]

If Scalg = 28: Ω0 = ∆T +4 = (D1/3)2−4, Ω±4 = ∆T = (D1/3)2−4.

• The kernel of Ω±4 coincides with the space of ∇-parallel spinors ψ
such that T · ψ = ±4ψ.
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Einstein-Sasaki manifolds, Scalg = 20:

Ω0 = ∆T + 3 , Ω±4 = ∆T − 1 = (D1/3)2 − 3 .

Thm. The Casimir operator of a compact 5-dimensional Einstein-Sasaki
manifold has trivial kernel.

Example: Stiefel manifold V4,2 = SO(4)/SO(2) with its Einstein-Sasaki
metric. There exist Riemannian Killing spinors. The Casimir operator is
equivalent to the operators

Ω0 = −3
5∑

α=1

X2
α + 3, Ω±4 = −3

5∑

α=1

X2
α − 3

4
±
√

3i ·X5

acting on functions f : SO(4) → C satisfying the quasi-periodicity
conditions E34(f) = ± i f and E34(f) = 0, respectively.



24

6-Dimensional nearly Kähler manifolds

• (M6, g, J): 6-dimensional nearly Kähler manifold, Kähler form Ω.

• M6 is Einstein, Ricg = 5a
2 g, a > 0.

• Consider its characteristic connection with torsion T = N/4:

∇T = 0, Ric∇ = 2a g, 2σT = dT = aΩ ∧ Ω, ||T ||2 = 2a.

• We compute

2 dT + Scal = 16 a · diag( 0 , 0 , 1 , 1 , 1 , 1 , 1 , 1).

Ω = ∆T +
1

8
(2 dT + Scal) = (D1/3)2 − 2 a

• If M6 is compact, then Ker(Ω) = Ker(∇) = {Killingspinors} and

(D1/3)2 ≥ 2

15
Scalg = 2 · a > 0 .
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7-Dimensional G2-manifolds

• (M7, g, ω) cocalibrated G2-manifold (type W3⊕W4 ⇔ d∗ω = 0), and
suppose that (dω , ∗ω) is constant.

• Its characteristic connection:

T = − ∗ dω +
1

6
(dω , ∗ω) · ω , δ(T ) = 0 .

• Main difference to the previous examples: ∇T 6= 0, dT 6= 2σT .

• Scalar curvature: Scalg = 2(T, ω)2 − 1
2||T ||2.

• The parallel spinor ψ0 corresponding to ω satisfies

∇ψ0 = 0 , T · ψ0 = − 1

6
(dω , ∗ω) · ψ0 .
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• Casimir operator:

Ω = (D1/3)2 − 1

4
(T , ω)2 +

1

8
(dT − 2σT )

= ∆T +
1

4
(T , ω)2 +

1

8
(3 dT − 2σT − 2 ||T ||2).

Nearly parallel G2-structures (type W1): dω = − a (∗ω).

Ω = (D1/3)2 − 49

144
a2.

Thm. Let (M7, g, ω) be a compact, nearly parallel G2-manifold and
denote by ∇ its characteristic connection. The kernel of the Casimir
operator of the triple (M7, g,∇) coincides with the space of ∇-parallel
spinors,

Ker(Ω) =
{
ψ : ∇ψ = 0, T · ψ =

7

6
a · ψ

}
= Ker(∇).
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