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Summary

A. Strominger, 1986: (M™, g) Riemannian Spin mfd (set dilaton=const)
with a 3-form T € A®(R"™) (field strength) and a spinor field W
(supersymmetry) such that

e Bosonic eq.: RicY =0, 67T =0
e Fermioniceq.: V¥ = 0, T -V = 0

with respect to the metric connection with antisymmetric torsion T°

1 1
VxY :=V4Y + JT(X,Y, ), Vxt:=Ve + (XaT) ¢,

This lecture: * Naturally reductive spaces and Kostant's cubic Dirac
operator

* Generalisation: Weitzenbock formulas and a Casimir operator on non
homogeneous spaces



Example: Naturally reductive spaces

e Homogeneous non symmetric spaces provide a rich source for manifolds
with characteristic connection [ = unique G-inv. metric ¥V with skew torsion]

Consider M = G/ H with isotropy repr. Ad : H — SO(m).
Lie algebra: g=H dm, (, ) a pos.def. scalar product on m.

The PFB G — G//H induces a distinguished connection on G/H, the
so-called canonical connection V1. lIts torsion is

THX,Y,Z) = —{([X,Y]m, Z) (= 0 for M symmetric)

Dfn. The metric (, ) is called naturally reductive if T* defines a 3-form,
(X, Y]m, Z) + (Y, | X, Z]n) = Oforall X,Y,Z cm.

They generalize symmetric spaces: V!T! =0, VIR! = 0.



A oneparametric family of connections
Dfn. VLY = V&Y —L1[X Y], for X,Y € m.
Torsion: TH(X,Y) = —t[X,Y]n.
Special ¢ values: e t = 0: LC connection
e { = 1: canonical connection

e t = 1/3: "Kostant-Slebarski connection”

M spin manifold = lift V? into spinor bundle, associated Dirac operator:

1—1
Dl = ZZ +——H (Z1,...,Z,: ONB of m),
H: the element in the Clifford algebra induced by torsion:

= = Z (Zi, Zilwy Zi) Zi - Z; - Zik
7,<J<k:



The symmetric case
Want: Weitzenbock formula for (J0%)2.

For M symmetric ([m, m| C b), one would have:
Thm (Parthasarathy, 1972). (P)? = Q4+ $Scal,
with 4: Casimir operator of g.

Consequences:

e Computation of spectrum of [

e Realisation of discrete series representations in the (twisted) kernel of
D for G non compact

e Character formulas (interpret character as an index)

In the homogeneous non symmetric case, this formula does no longer
hold!



The general Kostant-Parthasarathy formula

Thm [Kostant, '99 / IA, '01]. For n > 5 and arbitrary ¢:

D) = Qa(p) 4+ 3(3t — 1) .z_k (Zi, Zilws Zi) Zi - Z; - Zin(9)
1 ’3,9(1—75)2 | | |
3 5 (2 T(Z5, 2k, Z0) + STl Z5, 2k, Z) ) Zi 2y Tk D

i<j<k<l

+1 (SN2 Zlly + 2952 S 1120, Z5] ) ¥
1,7

1,7

Notation:

o Tn(X,Y,2Z) :=[X,[Y, Z]u]m+ cyclic

o 70(X,Y,Z) = [X,]Y, Z]s]+ cyclic

e (Q : the unique Ad G-invariant continuation of (, ) to g. It satisfies:

h L m, Q’m ={(,), Q’h not degenerate



The Kostant-Parthasarathy formula for ¢t = 1/3

Thm [Kostant, '99 / IA, '01]. For n > 5 and t = 1/3:

DYV = Qa(y) +=(x) ¥,

where (x) denotes the scalar
1
() =D _MZi Zjllly + 5 3 [Zi Zj)l .
i,7 1,J

It can be rewritten as

(%) = Q(oa, 0c) — Qy(omH, 0m)

and is thus always strictly positive.



First applications

Corollary. If 1) satisfies V') = 0 and T* -9 = 0 on M = G/H, then
t =0 and V! is the LC connection.

.. . purely mathematical applications:

Corollary. On M = G/H, there exists a G-invariant differential operator
of first order which has no symmetric counterpart:

D) = Y ([Zi,Zilw, Zk) Zi - Zj - Zi(¥).

i,k

Corollary. If the Casimir operator is non negative, the first eigenvalue
AL/3 satisfies (A1/3)2 > (x)/8. In particular, D'/3 has then no kernel.

N.B. Character formulas generalize, too — splitting of H-representations
into families with similar properties

[> 1999: Kostant, Sternberg, Ramond, Brink. . .] 4



e Realisation of infinite dimensional representations for G non compact
inside kernels of twisted Dirac operators [> 2003, Zierau-Mehdi . . . ]

e Computation of the spectrum of (191/3)2

N.B. Consider lift of isotropy representation, Ad : H — Spin(m):

Spin(m)
Ad \
Ad
H SO(m)

Assume that it contains the trivial representation. Any such spinor
induces a section of the spinor bundle S = G X o(Ad) A,, if viewed as a
constant map G — A,,.

These are exactly the parallel spinors of the canonical connection!



Another application: Construction of Lie algebras

Kostant's work was based on the following extension idea for Lie algebras.
We formulate his work geometrically:

Let M™ be an Ambrose-Singer manifold, i.e.. a Riemannian manifold
with a connection V with antisymmetric torsion 7' s. t.

VI' =0, VR = 0.

Assumption: Universal cover of G is compact.

= M™ is regular and locally isometric to a homogeneous space G/Gr.
The Lie algebra of GG is g := gr & R™ and its commutator has to be

[Cleyton/Swann, 2002]
A+ X,B+Y] = ([4,B]-R(X,Y)) + (AY — BX - T(X,Y)).

Bianchi | = R is unique:



Lemma. The curvature of V is proportional to the orthogonal projection
onto gr,

R : A*(R") = so(n) — gr, R(X,Y) = 4pr, (X AY).

Choose an ONF of 2-forms w; for gr.

Lemma. The commutator above defines an extension of gp iff

T2—|—4sz-2

is a scalar in the Clifford algebra of R™. [a priori: parts of degree 4 + scalar]

— this identity can be understood as a Kostant-Parthasarathy type formula

for the symbol of the operator lDl/?’.

11



Construction of naturally reductive spaces

General construction:

Consider M = GG/ H with restriction of the Killing form to m:
B(X,Y):= —tr(XY), (X,Y) = B(X,Y) for X,V € m.

Suppose that m is an orthogonal sum m = m; & msy such that

h,my] =0, [my, my] C my.

Then the new metric, depending on a parameter s > 0

0 forXEml,YEmg
<X,Y>8: (X,Y) for X, Y e my
s (X,Y) for XY €my

is naturally reductive for s # 1 w.r.t. the realisation as
M = (G x My)/(H x M) =: G/H .

[Chavel, 1969; Ziller / D'Atri, 1979] 12



Jensen metrics on the Stiefel manifold
M° = G/H with G = SO(4), H = SO(2) and embed H in G as

[ 1 I 800(2) ] Then so(4) = 50(2) + m with (a € R, X € M o(R))

T O —a _Xt 7] )

m = < 00 =: (a,X) ;.
X 0 0

\ L - /

Set my := {(0, X)} and ms :={(a,0)} = new metric

(0, X), (b.Y)), = 5B(X.Y) + 2a-b.

Properties: ® Two V-parallel spinors for s = 1, none for other values

of t and s;

e Ric’ = (2 — s)diag(0,1,1,1,1), Ricci-flat only for s =2 und t =0. |,



The square of the Dirac operator

Extend this to non-homogeneous mnfds!

e (M", g, V) — Riemannian spin mnfd, T'€ A3(M™) torsion of V,

1
VxY = V&Y + ST(X,Y. ).

e Lift into spinor bundle: Vxi = V% + i(XJT) X

n

e A first order differential operator: Dy := Z(ek 1T) - Ve, ¢
k=1
1 n
e A 4-form from T' [appeared in Bianchi l]: op = 5 Z(ek JT)N (exaT)
k=1
e [D: Dirac operator of connection V with torsion T°

olDl/?’: Dirac operator of connection with torsion 77/3. "



“Classical” Weitzenbock Formula:

3 1 1 1
D? = A —dT — — -0l — D — V.
T+4d 20T+25 +4Sca

Rescaled Weitzenbock Formula:
1
4
[ 1/3-Rescaling: Slebarski ('87), Bismut ('89), Kostant ('99), IA ('02), IA & TF ('03)]

1 1
(DY32 = Ap + —dT + ZScalg — g||TH2.

A Vanishing Thm. Let (M",g,T) be a compact Riemannian spin
mnfd with Scal? < 0, and suppose d1' acts on spinors as a negative
endomorphism. If there exists a spinor @ = 0 in the kernel of A, then
T =0 = Scal?, and ) is parallel w.r.t. the LC connection.

Corollary. On a Calabi-Yau or Joyce mnfd (Scaly = 0), a metric
connection with closed torsion (d1" = 0) can have parallel spinors only
for T'= 0.

= "Rigidity” of vacuum solutions under deformation of the connection

15



N.B. Different situation if M™ is not compact:

Consider solvmanifolds Y7 = N x R, n : nilpotent 6-dim. Lie algebra
(#£ b3 D bh3) = [Chiossi/Fino, 2004]

1) N carries “half flat” SU(3) structure,
2) Y carries a G5 structure (w, g) with antisymmetric torsion,

3) Y carries — after a conformal change of the metric — an integrable G5
structure (@, g). In particular, g is Ricci flat und admits (at least) one
LC-parallel spinor.

Thm (’05). For n = (0,0, e15, €25,0,€e12), there exists on (Y,©,g) a
oneparametric family (17,,47,) € A3(Y) x S(Y) s.t. every connection V"
with torsion 1} satisfies:

Vi, = 0.
For h =1: T = 0,V" = V9 und v}, coincides with the LC-parallel
spinor.

16



Parallel spinors in oneparametric families

Define the family of connections
Vi = Vi + s-(X1T) 9.

Q: For which values of s can there be parallel spinors ?

Example. GG a simple Lie group, ¢ its biinvariant metric and the torsion

form
T(X,Y,Z):=¢g(X,Y],Z).

The connections V=1/# are flat. In particular, there exist V=!/*-parallel
spinor fields.

Thm. Assume M compact. Every V?-parallel spinor v satisfies the eq.

6452/n<aT-w,w> +/n8ca18-\w — 0.

17



If the mean values (o1 -1, 1) does not vanish, the parameter s is given

’ =5 wrwn/ [ orvw).

If (o1-7, 1) =0, the parameter s depens only on the Riemannian scalar
curvature and the length of T,

0 = Scal® = Scaly — 2452/ |T|)?.
Mn M’n n

Corollary. If the 4-forms d'T and o1 are proportional, there exist at most
three parameter values with V?-parallel spinors.

e On the Aloff-Wallach spaces M" := N(1,1) = SU(3)/SU(2), there
exist examples of GGo-structures such that s and —s admit parallel spinors.

Sometimes, the value of s is fixed through the geometry of M:

Thm. On a 5-dimensional Sasaki mnfd, only the characteristic connection
can have parallel spinors.

18



The Casimir operator of a characteristic connection
(M™, g,V,T): Riemannian manifold with torsion.
Dfn. The Casimir operator acting on spinor fields is defined by

1 1 1
~(dT = 207) + 76(T) — FScal? -

: |
8 16
1
= Ap+ §<3dT — 2071 + 25(T) + Scal).

Q = (DY3)?24 T

Motivation: For a naturally reductive space and its canonical connection,
() coincides with the usual Casimir operator.

Example: For the Levi-Civita connection (7' = 0), we obtain:
2 1 g 1 g
Q = (DY)* — §S(3al = AY 4 §Scal

Proposition. The kernel of the Casimir operator contains all V-parallel
spinors. 19



The case VT = 0 : () then simplifies,

1
QO = (DY3)? — 16 (2Scal? + [|T]7)

1 2 L,
= Ar + E(2SCalg + ||T7) — ZT
1
= Ap + §(2dT - Scal) .

Proposition. (M",g,V) compact, VI' = 0. If
28cal?! < —||T||* or 2Scal?! > 4T% — ||T|?

holds, the Casimir operator is non-negative.

Proposition. If VT =0,  and (D'/3)? commute with T,
QoT = ToQ, (DY?20T = To (D32,

In the compact case, T preserves the kernel of D1/3.

20



5-Dimensional Sasakian Manifolds
e M?: a 5-dimensional Sasakian manifold, 7) Its contact structure.

e Consider characteristic connection with torsion T:

VI = 0, T = nAdn = 2(e12 + e3q4) Nes,
T? = 8 — 8eiou, T = diag(4,0,0, —4).

= the Casimir operator splits into 2 = Q¢ & Qg B Q_4,

1 1 1 1

_ - g i 1/3\2 = g =

Qo Ar + 8Scal + 5 (D) 8Scal 5
1 7 1 1
Qyy = Ar + gSCalg 5 = (DY/3)2 — §Scalg - 5

o If Scal? # —4 , Ker(€g) = 0.
e If Scal’ < —4 or Scal’ > 28, Ker(244) = 0.

e The interesting cases: —4 < Scal? < 28.



If Scalg = —4: Q() = AT = (D1/3)2, Qj:4 = AT — 4 = (D1/3>2.

e The kernel of )y coincides with the space of V-parallel spinors 1) such
that T"- ¢ = 0. [Examples: TF/Ivanov, 2002]

e Spinors in both kernels Ker(€)y) and Ker({2+4) exist on the 5-
dimensional Heisenberg group

er = dri/2, es=dy/2, e3=dxa/2, e4=dy2/2,
n = (dz —y1 dx1 — Yo dxg)/Q.

€5
e Spinors in the kernel of {214 occur on Sasakian 7-Einstein manifolds of
type Ric? =—-2-g + 6-n®n [Examples: TF/Kim, 2000]
If Scal? = 28: Qo= Ap+4=(DY3H2 -4, Quu=Ar= (D324

e The kernel of €)1, coincides with the space of V-parallel spinors v
such that 1" - ¢ = £44).

22



Einstein-Sasaki manifolds, Scal? = 20:

Qo=Ar +3, Qu=Ap —1=(DV3? -3,

Thm. The Casimir operator of a compact 5-dimensional Einstein-Sasaki
manifold has trivial kernel.

Example: Stiefel manifold V4o = SO(4)/SO(2) with its Einstein-Sasaki
metric. There exist Riemannian Killing spinors. The Casimir operator is
equivalent to the operators

5% 5%
3
Qo=-3) X2+3, Qi4:—BZX§—Zi\/§i-X5
a=1

a=1

acting on functions f : SO(4) — C satisfying the quasi-periodicity
conditions Fs4(f) = £ f and E34(f) = 0, respectively.

23



6-Dimensional nearly Kahler manifolds
o (MS,g,J): 6-dimensional nearly Kihler manifold, Kahler form Q.
e M is Einstein, Ric? = 57“9, a > 0.
e Consider its characteristic connection with torsion T' = N /4.
VI =0, RicY=2ag, 20r=dl=aQAQ, |T|?=2a.

e We compute

2dT + Scal = 16a-diag(0,0,1,1,1,1,1,1).

1
Q = Ap + g(ZdT + Scal) = (DY3)?2 — 24

o If MY is compact, then Ker(Q2) = Ker(V) = {Killingspinors} and

2
1/312 g _ 9.
(DY) > 1580&1 = 2-a > 0. 9



7-Dimensional GGo-manifolds

e (M7, g,w) cocalibrated Go-manifold (type W3 ® W, < d*w = 0), and
suppose that (dw, *w) is constant.

e Its characteristic connection:
1
T = — xdw + é(dw, xw)-w, oT) = 0.

e Main difference to the previous examples: VI £ 0, d1T' # 207.

e Scalar curvature: Scal? = 2(T,w)? — 1||T'||%.

e The parallel spinor 1y corresponding to w satisfies

25



e Casimir operator:

2 _ L

1
Q = (DY3) 4(T,w)2+§(dT—20T)
1 1
— AT+Z(T,w)2+§(3dT—2aT—2HT||2).

Nearly parallel GG>-structures (type W1): dw = —a (xw).

Q0 = (DV3)? - 22 42,

Thm. Let (M7, g,w) be a compact, nearly parallel G,-manifold and
denote by V its characteristic connection. The kernel of the Casimir
operator of the triple (M7, g, V) coincides with the space of V-parallel
spinors,

Ker(Q)={¢ : V¢ =0, T-¢ = ga-zp} = Ker(V).

26
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