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We discuss the problem of computing the MLE of the parameters of a multivari-
ate Gaussian mixture. The most widely used method for solving this problem is
the EM algorithm. Although this method converges globally under some general
assumptions, does not require much storage and is simple to implement, it yields
only a (super-) linear convergence rate and may become extremely slow in certain
situations.

We introduce an alternative - a hybrid of the EM algorithm and an exact Newton’s
method, which converges locally quadratic and yields an estimate of the Fisher
information matrix. This alternative outperforms pure EM clearly in constellations
with a high proportion of missing data. In our context these are mixtures with a
high number of components and a large sample size.

We discuss a parameterization of the mixture density, which ensures the adherence
of several restrictions on the parameters during the Newton iterations.

For the involved first and second derivatives of a multivariate Gaussian mixture
log-likelihood expressions appropriate for implementation are presented2. The tech-
niques and results may also be useful for calculations of derivatives of mixtures in
other elliptical families.

Furthermore we consider a penalization of the log-likelihood function to avoid

convergence towards the boundary of the parameter space, as suggested by Chen

and Tan (2009).

Keywords : normal mixtures, maximum likelihood, Newton’s method, Fisher informa-
tion, EM algorithm.
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1 Introduction

Finite normal (or Gaussian) mixtures are widely used in statistical data analysis due to
their high flexibility and the fact that they are well studied, see e.g. Fraley and Raftery
(2002), McLachlan and Bashford (1988), Titterington et al (1985). Important areas of
application for normal mixtures are clustering and classification.

1E-mail: alexandrovich@mathematik.uni-marburg.de.
2See technical supplement: url
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Normal mixtures are usually estimated from data via ML (maximum likelihood) or
Bayesian approaches. The most widely used method to calculate the MLE is the EM
algorithm, see e.g. Redner and Walker (1984). A problem here is the mere linear conver-
gence rate of the EM algorithm and the lack of additional information about the estimate
like its Fisher information.

For these reasons, we apply Newton’s method (NM) for calculating the MLE. Newton’s
method has local quadratic convergence rate and provides as a by-product an estimate of
the Fisher information matrix.

The main difficulty involved in its the development were the elaborate calculations of
the first and second derivatives of a multivariate Gaussian mixture log-likelihood and
presenting them in a form appropriate for implementation. The analytic expressions
obtained may also be useful for the calculations of derivatives of mixtures in other elliptical
families.

The properties of the EM algorithm and respectively Newton’s method in its context
are subject of several contributions. Everitt (1984) compares six different algorithms for
calculation of the MLE of a two-component univariate Gaussian mixture (GM). In par-
ticular he compares the EM algorithm, variants of Newton’s method with approximated
and exact gradient and Hessian, Fletcher-Reeves algorithm and the Nedler-Mead simplex
algorithm and concludes that the most satisfactory algorithms are EM and NM with ex-
act gradient and Hessian. Aitkin and Aitkin (1994) also consider a hybrid EM/Newton’s
algorithm, which starts with five EM iterations and then switches to Newton’s method,
if Newton’s method yields a descent direction, another five EM iterations are done and
so on. They use this approach for estimating a MLE of a two-component univariate GM
and report a superior behavior of the hybrid algorithm over the pure EM.

Peters and Walker (1978) develop an iterative procedure for calculating the MLE of a
multivariate GM. Their approach is based on the so called likelihood equations, which
follow from the critical equation. They construct a locally contractive operator and ob-
tain a fixed point problem. In the proof of the contractibility they calculate the exact
derivatives of the operator. Unfortunately they do not compare their method with other
algorithms and it is hard to judge how well it works. No available implementation of their
method is known to us.

Lange (1995), proposes a quasi-Newton acceleration of the EM algorithm, where given
an estimate θk, the Hessian of the observed log-likelihood is approximated by a decom-
position into the Hessian of the conditional expectation of the complete log-likelihood
(Q(θ|θk) from the E-step) minus a part that is constructed via rank-one updates. The
gradient of the observed log-likelihood is approximated by the gradient of Q(θ|θk). In ac-
cordance with Lange, such an approach yields a faster converging sequence. Jamshidian
and Jennrich (1997) also consider several acceleration methods of the EM algorithm, in
which they use a Quasi-Newton approach among others. They find examples where the
accelerated versions are dramatically faster than the pure EM algorithm.

Xu and Jordan (1995) discuss the properties of the EM algorithm for calculation of
the MLE for GMs. They prove a superiority statement of the EM algorithm over the
constrained gradient ascent in a setting with known component weights and covariance
matrices and conjecture that it holds also in a general setting. In the numerical experi-
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ments they demonstrate a general superiority of EM over the constrained gradient ascent.
In their remarks Xu and Jordan speak against the use of NM for estimating GMs due
to computational costs and numerical considerations. However they do not compare NM
with EM in the numerical experiments and they do not address the problem of high
proportion of unobserved information in GM.

In contrast to the mentioned approaches, we suggest the use of the exact gradient
and Hessian of the observed log-likelihood of a multivariate Gaussian mixture without
restrictions on the number of components. Thanks to a convenient parameterization,
the implementation of the analytic derivatives in C, and the possibility to use parallel
calculations, the computation of these quantities is done relatively efficiently (see Section
6).

Since Newton’s method converges only locally, one needs to provide good starting val-
ues. For this purpose we use a k-means clustering followed by a few EM iterations.

An important question is the parameterization of the covariance matrices of the compo-
nents. The matrices must be symmetric and positive definite. To ensure these restrictions
we set Σ−1 = LLT and work with L, where L is a lower triangular matrix. Such an ap-
proach has the advantage that no matrix inversions have to be calculated during the
iterations, so many floating point operations are saved and numerical instabilities are
avoided. A similar technique was introduced by Pourahmadi (1999). The representation
of the mixture parameters is described in Section 2. In Section 3 Newton’s method is
briefly discussed. A further subject of the current work is the problem of penalizing the
log-likelihood to avoid divergence of the algorithm towards boundary points, see e.g. Chen
and Tan (2009), Ciuperca et al (2003). It is described in Section 4. The subject of Section
5 is the Fisher information and some aspects of its calculation.

Several numerical results are given in Section 6, particularly comparisons with EM-
implementations from the R packages Mclust 3.4.11 by C. Fraley and A. E. Raftery and
Rmixmod 1.1.3. by Remi Lebret et al. An implementation of our method is contained in
the R package pGME3.

The analytic derivatives of the log-likelihood function of a normal mixture as well as
some additional results are given in the technical supplement.

2 Parameterization of the Gaussian mixture

A Gaussian mixture is a distribution in RD with a density of the following form:

g(x;µ1, . . . , µK ,Σ1, . . . ,ΣK , p1, . . . , pK−1) =
K∑
i=1

piφ(x;µi,Σi), (1)

where

φ(x;µi,Σi) =
1

√
2π

D√|Σi|
e−

1
2

(x−µi)TΣ−1
i (x−µi), pK = 1−

K−1∑
i=1

pi.

3http://www.uni-marburg.de/fb12/stoch/research/rpackage
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φ(x;µi,Σi) is the density of the D-dimensional multivariate Gaussian distribution with
mean µi and covariance matrix Σi. The weights of the components pi lie in [0, 1] and sum
to 1. Now, our aim is to calculate the MLE of the parameter vector

θ = (µ1, . . . , µK ,Σ1, . . . ,ΣK , p1, . . . , pK−1).

The log-likelihood function for an i.i.d. sample x1, . . . , xn is given by

l(θ) = log
n∏
t=1

g(xt, θ) =
n∑
t=1

log g(xt, θ).

As indicated before, we apply Newton’s method to maximize l(θ). First of all, we have
to find an appropriate parameterization of the mixture g. To ensure that the weights
p1, . . . , pK−1 stay in the interval [0, 1] during the iterations, we parameterize them as
follows:

pi = pi(q) :=
q2
i

q2
1 + . . .+ q2

K−1 + 1
, 1 ≤ i ≤ K − 1, (2)

where q = (q1, . . . , qK−1) ∈ RK−1. With this approach we avoid optimization under the

K inequality restrictions: pi ≥ 0, 1 ≤ i ≤ K − 1,
K−1∑
i=1

pi ≤ 1.

Regular covariance matrices and their inverses are s.p.d (symmetric and positive defi-
nite) matrices, so they can be written as

Σ−1
i = LiLi

T (3)

with lower triangular Li via the Cholesky-decomposition. The only requirement on Li is
that it has only non-zero elements on the diagonal.
From this point on, we parameterize the family of multivariate normals by µ and L:

φ(x;µ, L) =
1

√
2π

D
|L|e−

1
2

(x−µ)TLLT(x−µ),

and set Σ−1 = LLT.
So the mixture becomes

g(x;µ1, . . . , µK , L1, . . . , LK , q1, . . . , qK−1) =
K∑
i=1

pi(q)φ(x;µi, Li). (4)

3 Newton’s method

In this section we give a brief introduction to Newton’s method for maximizing a twice-
differentiable function f : U → V , where U ⊂ Rd, V ⊂ R for some d ∈ N. The essence of
the approach is to find an appropriate root of the equation ∇θf(θ) = 0. In our case the
log-likelihood function will play the role of f . For a more detailed overview of Newton’s
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method see e.g. Kelley (1995) or Nocedal and Wright (2006).

The Basics
Newton’s method is an iterative method, that constructs a sequence (θk)k∈N, which con-
verges towards the solution θ∗. The iteration is defined by

θk+1 = θk + tk∆k, (5)

where
∆k := −H−1

k ∇θf(θk). (6)

Hk is the Hessian of f evaluated at θk and tk is a positive step size at the iteration k. We
can consider ∆k as the maximizer of a quadratic approximation of f in θk: f(θk + p) ≈
f(θk)+∇θf(θk)

Tp+ 1
2
pTHkp. The quality of such an approximation depends on the length

of p and the smoothness of f in the neighbourhood of θk.
The iteration ends as soon as some convergence criterion is fulfilled, e.g. ||∆k|| ≤ ε for

some small ε, or the maximal number of iterations is achieved. To start the iterations
one has to supply an appropriate starting point θ1. The selection of the starting point
may be a hard problem, since the neighbourhood of θ∗ where Newton’s method converges
may be very small. One possibility to find a starting point, is to prefix another algorithm
such as a gradient method or as in our case the EM algorithm. In a sufficiently small
neighbourhood of θ∗ Newton’s method has a quadratic convergence rate, meaning that
||θk+1 − θ∗|| ≤ c||θk − θ∗||2 for a c > 0.

Line Search
Given a direction ∆k we need to decide how deep to follow it, i.e. to select an appropriate
step length tk, see (5). Since we want to maximize a function, namely the log-likelihood
function, one suitable choice would be

tk := argmax
t>0

f(θk + t∆k).

An exact solution of this problem is often difficult to obtain, so one tries to find an
approximation. To achieve a sufficient increase of the objective function, the step length
tk must satisfy the so called Wolfe conditions:

f(θk + tk∆k) ≥ f(θk) + c1tk∇θf(θk)
T∆k

∇θf(θk + tk∆k)
T∆k ≤ c2f(θk)

T∆k,

with 0 < c1 < c2 < 1. The constant c1 is often chosen quite small, near 10−4, see Nocedal
and Wright (2006).

The first inequality is sometimes called Armijo condition and ensures that f will make
a sufficient increase along the direction ∆k and the second condition ensures that the
step size tk will be not too small. In practice one often uses the so called backtracking
approach to find an appropriate step length. So do we in our implementation.
For more detailed explanation we again refer to Nocedal and Wright (2006).
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Solving for ∆k

At every iteration we have to solve the following system of linear equations for ∆k:

Hk∆k = −∇θf(θk).

The matrix Hk is symmetric, but not necessarily positive definite. We use the so-called
rational Cholesky decomposition Hk = CkDkCk

T with lower triangular matrix Ck and
diagonal matrix Dk. It is called rational, since no roots have to be calculated and it
works even if some elements in Dk are negative.

As mentioned above, we apply Newton’s method to find an appropriate root of the
equation

∇θl(θ) = 0,

where l is the log-likelihood function of the mixture and θ is the parameter vector. For
this purpose we need the gradient and the Hessian of the log-likelihood, which are given
in the appendix.

4 Penalization

In this section we subscript the log-likelihood and the penalty function with n, to indicate
that they depend on the sample size.

The log-likelihood function of a Gaussian mixture is unbounded. To see this, we observe
that for a parameter θ with µ1 = x1, Σ1 = εI and µ2, Σ2 > 0 arbitrary, the log-likelihood
diverges to ∞ for ε → 0. So it may happen that the algorithm converges toward such a
solution. In order to avoid such bad solutions one can penalize the log-likelihood with an
additive term sn(θ) = sn(L1, . . . , LK), where n is the sample size. Chen and Tan (2009)
formulate conditions that must be satisfied by sn in order to make the resulting estimator
consistent. A function which satisfies these conditions is

sn(L1, . . . , LK) = −an
( K∑
i=1

tr(SxLiLi
T) + log

1

|Li|2
)
,

where Sx is the sample covariance matrix and an → 0 (e.g. an = 1
n

or an = 1√
n
). The

penalized log-likelihood has now the form

pln(θ) = ln(θ) + sn(θ). (7)

If we enable penalization in our algorithm, the log-likelihood function is replaced by its
penalized version. The derivatives of this function arise as the sum of the derivatives of
the summands, both are given in the appendix.

5 Fisher information

5.1 Fisher information

At every iteration of Newton’s method we obtain the Hessian of the log-likelihood function
∇2
θl(θk). A well known result from the MLE framework is that under certain conditions
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(Redner and Walker, 1984)

√
n(θ̂n − θ0)

d→ Z, Z ∼ N(0, I−1
θ0

),

where θ̂n is a root of the gradient of the log-likelihood function based on n observations
and Iθ0 = E∇θ0 log g(X)∇θ0 log g(X)T = −E∇2

θ0
log g(X), the Fisher information matrix.

An approximation of E∇2
θ0

log g(X) is given by −Îθ̂n = 1
n

n∑
t=1

∇2
θ̂n

log g(Xt). The last term

is the Hessian of the log-likelihood multiplied by 1
n
. The covariance matrix of Z allows us

to construct confidence sets for θ0.

5.2 Parameter transformation

The parameter of interest is θint = (µ1, . . . , µK ,Σ1, . . . ,ΣK , p1, . . . , pK−1), we however
obtain the Hessian w.r.t θnew = (µ1, . . . , µK , L1, . . . , LK , q1, . . . , qK−1) as defined in Section
2. Let ψ be the map with ψ(θnew) = θint and Dψ its derivative matrix. By the chain
rule the Fisher information matrix for θint is D−Tψ Iθ0D

−1
ψ . ψ is identity in µ1, . . . , µk. The

partial derivatives of ψ w.r.t. qi and Li are given in the appendix 10.2.

6 Numerical experiments

The computation of the gradient and the Hessian of the log-likelihood is the most expen-
sive part of the algorithm and grows linearly with the sample size. We implemented this
step and the solver for linear equations in C, since a direct implementation in R was too
slow.

An advantage of deriving the log-likelihood is that we have to deal with sums:

∇θl(θ) =
n∑
t=1

1

g(xt, θ)
∇θg(xt, θ)

resp.

∇2
θl(θ) =

n∑
t=1

1

g(xt, θ)

(
∇2
θg(xt, θ)−

1

g(xt, θ)
∇θg(xt, θ)∇T

θ g(xt, θ)

)
.

The summands can be computed in parallel. We used the OpenMP API in our C-Code
for this purpose. The parallelized version is available only for Unix OS.

Algorithms
We compared our algorithm with the EM-implementations from the R packages Mclust
3.4.11. and Rmixmod 1.1.3.. In addition we considered the SEM algorithm, which is
also contained in the package Rmixmod. The SEM algorithm is a stochastic version of
the EM algorithm, where in each iteration the unobserved variables (the cluster labels
z) are drawn from the conditioned density gz(z|x; θk) = gc(x, z; θk)/g(x; θk) and then the
simulated complete likelihood gc is maximized. This algorithm was designed to overcome
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the drawbacks of the EM algorithm, such as convergence towards saddle points and slow
convergence rate. See [5] for a more detailed explanation.

The interesting characteristics were the execution time, the accuracy of the solution,
measured by the BIC values and the number of the iterations. The BIC (Bayesian informa-
tion criterion) of θ is given by 2l(θ)−k log n, where k is the number of free parameters. In
our case k was fixed, so we essentially compared the achieved values of the log-likelihood.

The initial solution for Newton’s method was found by a k-means clustering, followed
by the EM algorithm, which terminated as soon as the relative log-likelihood change
l(θk+1)−l(θk)

l(θk)
fell below 1e-6. The succeeding Newton’s method terminated as soon as one

of the following criteria was fulfilled:

C1. The number of iterations achieved 10.

C2. The Hessian of the log-likelihood became singular.

C3. No positive step length was found during back-tracking.

C4. The norm of the Newton’s direction ∆k and the norm of the gradient of the log-
likelihood fell below 1e-12.

Newton’s method was tested with enabled penalization (an > 0) and without it (an = 0).
In order to determine the effect of the parallelization, we also tested the parallel version.

The initial solution for the EM algorithm from the package Mclust was the same k-
means clustering, which was used for Newton’s method, and the algorithm terminated
as soon as the relative log-likelihood change fell below 1e-8 (default value in the package
Mclust). The method of initialization of the EM/SEM algorithms from the package
Rmixmod was an internal random start, since there was no possibility to supply an initial
solution. The termination rule was the same as for the EM algorithm from the package
Mclust. No restrictions on the parameters were made. We use the following abbreviations
for the considered algorithms:

• NM = Newton’s method without penalization

• NMP = Newton’s method with penalization

• EMC = EM algorithm from the package Mclust

• EMIX = EM algorithm from the package Rmixmod

• SEM = SEM algorithm from the package Rmixmod

Procedure
All experiments were realized on a benchmark machine with 12 Intel Xeon X5675 3.07GHz
CPUs and 24Gb RAM. We compared the algorithms for five different models, which
mimicked some relevant (but of course not all) situations which may occur in the practice.
The procedure was the following:
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1. Generate N data points from a model.

2. Calculate the MLE with Newton’s method (penalized and unpenalized).

3. Calculate the MLE with the EM and SEM algorithms (Mclust and Rmixmod).

4. Save the corresponding numbers of iterations, execution times and BICs.

We repeated this procedure 1000 times and obtained thereby samples of the execution
times, iterations numbers and BICs for all algorithms.

Comparing results
We evaluated the results by pairwise comparing the samples of the execution times and
the BIC values of the algorithms. In order to compare two samples we used the Wilcoxon-
Mann-Whitney test.

Given two algorithms A and B, and the corresponding time samples tA, tB and the BIC
samples BICA, BICB we considered the following four hypotheses and corresponding p-
values:

1. H t
A.B : tA ≥ tB and ptA.B,

2. HBIC
A.B : BICA ≤ BICB and pBICA.B,

3. H t
A&B : tA ≤ tB and ptA&B,

4. HBIC
A&B : BICA ≥ BICB and pBICA&B.

There is a significant advantage of A over B in terms of crit ∈ {t, BIC} if we can reject
the hypothesis Hcrit

A.B. We assume that there is no significant advantage of B over A if we

cannot reject the hypothesis Hcrit
A&B. These thoughts lead us to the following definition of

a benchmark bench(A,B) ∈ {−1, 0, 1, 2}.

bench(A,B) :=− 1{pt
A&B

≤0.05 ∧ pBIC
A&B

≤0.05}

+ 1{pt
A.B

≤0.05 ∧ pBIC
A&B

≥0.05}

+ 1{pBIC
A.B

≤0.05 ∧ pt
A&B

≥0.05}

+ 2 · 1{pt
A.B

≤0.05 ∧ pBIC
A.B

≤0.05}.

In words, we set bench(A,B) to −1 if A was both significantly slower and significantly
worse (in terms of BIC) than B. We set bench(A,B) to 1 if either A was significantly
faster than B and at the same time was not significantly worse or if A was significantly
better than B and at the same time was not significantly slower. Furthermore, if either
A was significantly faster and significantly worse than B or if A was significantly better
and significantly slower than B we set bench(A,B) to 0. Finally, we set bench(A,B) to 2
if A was significantly faster and significantly better than B.

A higher bench(A,B) implies an advantage of A over B in a given model/sample size
constellation. However bench(A,B) never achieved 2 in our simulations, since there were
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no significantly differences in BIC. Some tables with benchmark values are given in the
appendix and the rest in the supplementary material to this paper.

Convergence failures
Especially Newton’s method fails to converge if the initial solution is not well chosen. We
say the algorithm A failed to converge if either a fatal numerical error occurred (such as
an attempt to invert a singular matrix ) or the solution was an extreme outlier. We say
a result of the algorithm A as an extreme outlier if and only if the distance between the
corresponding BIC value and the median of the BIC sample is greater than 3 times the
interquartile range of the sample. Such atypical BIC values correspond to saddle points
or local maxima of the log-likelihood with very poor parameter estimates. We removed
all such failure cases from the data before we compared the algorithms. The counts of
such failures for each model and each sample size are given in the appendix in Table 5.

Models
Following models were considered:
Model 1 K = 2, D = 3.

µ1 = (1 1 1)T, µ2 = (2 2 2)T

Σi,j
1 = Σi,j

2 =

{
0.2 i 6= j

1 i = j
1 ≤ i, j ≤ D,

p1 = p2 = 0.5.

This model is interesting, since we are in R3 and the corresponding covarince matrices
are dense, so we have a relatively complex correlation structure within the components
and a moderate number of paramters to estimate.

Model 2 K = 5, D = 2.

µ1 = (4 5)T, µ2 = (1.5 5)T, µ3 = (2 4.5)T, µ4 = (4.1 1)T, µ5 = (5 1)T,

Σ1 =

(
0.3 0.05
0.05 0.3

)
, Σ2 =

(
0.1 0.05
0.05 0.1

)
, Σ3 =

(
0.2 0
0 0.2

)
, Σ4,5 =

(
0.2 0.1
0.1 0.2

)
,

p1 = p4 = p5 = 0.2, p2 = 0.25, p3 = 0.15.

The interesting characteristics of this model are the high number of components and a
strong overlap between components 2 and 3, and 4 and 5, the corresponding 2-component
mixtures are unimodal or weakly bimodal respectively.

Model 3 K = 2, D = 5.

µ1 = (1 1 1 1 1)T, µ2 = (2 2 2 2 2)T,

Σi,j
1 = Σi,j

2 =

{
0.2 i 6= j

1 i = j
1 ≤ i, j ≤ D,

p1 = p2 = 0.5.
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We include this model in our consideration, since it is quite high dimensional and it is
interesting to study the behavior of Newton’s method in higher dimensions, but with
small number of components.

Model 4 K = 7, D = 2.

µ1 = (4 5)T, µ2 = (1.5 5)T, µ3 = (2 4.5)T, µ4 = (4.1 1)T, µ5 = (5 1)T,

µ6 = (3 2)T, µ7 = (5 2)T,

Σ1 =

(
0.3 0.05
0.05 0.3

)
, Σ2 =

(
0.1 0.05
0.05 0.1

)
, Σ3 =

(
0.2 0
0 0.2

)
, Σ4,5,6,7 =

(
0.2 0.1
0.1 0.2

)
,

p1 = 0.2, p2 = p3 = 0.15, p4 = p5 = 0.1, p6 = p7 = 0.15.

Model 5 K = 9, D = 2.

µ1 = (4 5)T, µ2 = (3 5)T, µ3 = (2 4.5)T, µ4 = (4.1 1)T, µ5 = (5 1)T,

µ6 = (3 2)T, µ7 = (5 2)T, µ8 = (−1 2)T, µ9 = (1 − 2)T.

Σ1 =

(
0.3 0.05
0.05 0.3

)
, Σ2 =

(
0.1 0.05
0.05 0.1

)
, Σ3 =

(
0.2 0
0 0.2

)
, Σ4,5,6,7,8 =

(
0.2 0.1
0.1 0.2

)
,

Σ9 =

(
0.3 −0.1
−0.1 0.3

)
, pi = 1/9, 1 ≤ i ≤ 9.

Last two models represent settings with a high amount of the unobserved information.

Sample sizes
We chose sample sizes 250, 500 and 1000 for Models 1, 2 and 3. Model 4 and Model 5
were constructed to have a high amount of unobserved information, so we tested them
only for the sample size 5000.

Choice of the penalty weight
The theory doesn’t say anything concrete about the optimal choice of the penalty weights
an in practice. We determined the best choice for each model and each sample size by
a grid search over an equidistant grid of 200 values in [0, 5√

n
]. For each value of an on

the grid, each model and each sample size (n ∈ {250, 500, 1000}) Newton’s method was
applied 1000 times to a randomly generated sample and the number of failures nf was
counted. The grid value with the lowest nf was used in the simulation study. It came out
that penalization could not effectively reduce the number of failures. In several situations
the best choice for the penalization weight was 0 (no penalization). We will discuss this
point below.

Simulation results
The complete set of tables and figures is contained in the supplementary material. We
present here only a few of them. As we can see from the results, our algorithm was
in many cases faster than the EM algorithm. The differences in BIC were in the most
cases not significant, as the p-values from the corresponding Wilcoxon tests suggest. An
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exception was the SEM algorithm for Models 2 and 3 - in the cases where SEM converged,
it achieved a significantly better BIC values than the rest. The only problem was, that
such cases were quite rare (see Table 5), so we could achieve the same effect for any other
algorithm by considering e.g. only the best 30% of results.

The results differ depending on the model and the sample size. For sample sizes 250 and
500 the EM algorithm usually had a better performance, followed by Newton’s method and
the SEM algorithm. The comparison of both the EM implementations shows an advantage
for the package Mclust in most cases. In many cases when the Mclust implementation of
EM was faster, the Rmixmod’s one was slower than Newton’s method. The constellations
where the Rmixmod EM implementation was faster than the Mclust’s one, were Model 3
and n = 1000 and Model 4 and Model 5 and n = 5000.

Newton’s method outperformed the rest clearly for n = 1000 and Model 2 and n = 5000
and Model 4 and Model 5 - the constellations with the highest amount of the unobserved
information in the EM setting.

The plots of the ecdfs of the time samples show that the ecdf of Newton’s method often
lies under the corresponding ecdf of the EM algorithm for small values on the x axis, and
above it for higher values. That means that the EM time distribution has more mass at
small values but also more mass at high values than Newton’s method.

The failure counts are presented in Table 5. We note that the numbers for Newton’s
method are higher than for both EM implementations. The reason for such a behaviour,
is the quite small convergence radius of Newton’s method. The penalization could not
reduce the number of the failures of Newton’s method (see Table 5). The reason for
this is that most failures of Newton’s method correspond to saddle points and other
critical points of the log-likelihood and not to the boundary of the parameter space. One
astonishing observation is that penalized Newton’s method was in some cases superior
over the non-penalized version, see e.g. Table 2 or supplement material. In fact the ecdf’s
of the time samples confirm this claim. A possible explanation of this fact may be that
penalizing makes the log-likelihood more smoothly.

A notable observation is that the SEM algorithm was outperformed by other algorithms
throughout almost all models and all sample sizes and failed to converge conspicuously
often, especially in the case of Model 2 and sample sizes 500 and 1000 and Model 3 and
all sample sizes (see Table 5). SEM was very unstable as well, as the standard deviations
of the corresponding BIC samples suggest. It is quite an unexpected result, since the
SEM algorithm was designed as an improvement of the EM algorithm. Gaussian mixture
models seem not to be the application where the advantages of SEM justify its usage, like
mixtures of distributions outside the exponential family (see e.g. [11]).

The parallel version of Newton’s method was 2-6 times faster than the non-parallel one,
depending on model and sample size.

7 Conclusion

The numerical experiments show that our algorithm, which is a combination of the EM
algorithm and Newton’s method, is in many cases faster than the pure EM algorithm.
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It is well known that the EM algorithm has difficulties if the amount of missing data is
high. This amount increases with K and n, and indeed we see a clear advantage of our
approach for Model 2 (K = 5) and sample size n = 1000 and Models 4 (K = 7) and
5 (K = 9) and sample size n = 5000. These constellations correspond to the highest
amount of unobserved information in the EM setting among the tested models.

Such results would be impossible without the chosen parameterization of the covari-
ance matrices of the components. It avoids the numerically unstable and costly matrix
inversions.

However, compared to the EM algorithm, Newton’s method requires much more stor-
age and much more floating point operations per iteration. The size of the Hessian is
O(K2D4), so one would guess the EM algorithm should outperform Newton’s method in
higher dimensions. Indeed, our implementation of Newton’s method became slower than
the EM algorithm on average machines for dimensions D ≥ 5 (see results of Model 3).

Better implementations and faster computers should redress this problem. Quasi-
Newton methods, which do not require the computation of the Hessian matrix, would
redress the dimensionality issue as well. However the local quadratic convergence rate
would become lost in that case.

The advantages of Newton’s method should carry more weight in other mixture models,
such as mixtures of t-distributions, since no explicit update formulas for all parameters in
the EM algorithm exist there. Also in other settings with a high fraction of the unobserved
information, where the EM algorithm is applied for the parameter estimation, Newton’s
method should perform faster.

One of the most relevant drawbacks of Newton’s method in practice is the necessity
of providing rather accurate starting values. The preceding EM iterations can resolve
this problem only partly, since it is not clear a-priori how long to iterate before starting
the Newton’s iterations. Our approach to iterate the EM algorithm until the relative
log-likelihood change fell below 1e-6 worked well, but in some few cases it was not enough
to achieve the convergence region of Newton’s method and algorithm failed, see Table 5.
Xu und Jordan find in [22] a representation of the EM iteration as θk+1 = θk + Pk∇l(θk),
where a Pk is a well-conditioned matrix, which takes the place of the inverse of the Hessian
H−1
k in NM iterations. Hence EM can be considered as a variant of the Quasi-Newton

methods. A possible approach for improvement of the both methods should be the use of
a convex combination of the both matrices ωkPk+(1−ωk)H−1

k as the iteration matrix. In
doing so, one should adapt ωk ∈ [0, 1] during the iterations. At the beginning ωk should
be near 1 and at the end near 0. The difficulty is to find appropriate criteria for adapting
ωk, it may depend on the condition number of the resulting matrix and/or on the negative
definiteness of Hk.
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9 Tables and figures

9.0.1 Tables

All tables and figures are given in the supplement to this paper. We present here only
some results for Models 2, 3 and 4.

Algo Model 1 Model 2 Model 3 Model 4 Model 5
n = 250 500 1000 250 500 1000 250 500 1000 5000 5000
NM 3 2 2 7 11 30 2 9 20 48 70
NMP 2 2 2 7 11 30 6 10 23 48 70
EMC 0 0 0 11 5 2 0 0 1 0 23
EMIX 0 0 0 6 4 0 7 0 3 0 3
SEM 52 1 0 814 637 333 397 347 222 91 249

Table 1: Failure counts (out of 1000).

A \ B NM NMP EMC EMIX SEM

n = 1000
NM - 0 1 1 0
NMP 0 - 1 1 0
EMC 0 0 - 0 0
EMIX 0 0 1 - 0
SEM 0 0 0 0 -

Table 2: Model 2. Benchmarks bench(A,B)
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A \ B NM NMP EMC EMIX SEM

n = 250
NM - 0 0 -1 -1
NMP 1 - 0 -1 0
EMC 1 1 - 0 0
EMIX 1 1 0 - 0
SEM 1 0 0 0 -

n = 500
NM - 0 0 -1 0
NMP 1 - 0 -1 0
EMC 1 1 - 1 0
EMIX 1 1 0 - 0
SEM 0 0 0 0 -

n = 1000
NM - 0 0 0 0
NMP 1 - 0 0 0
EMC 1 1 - 0 0
EMIX 1 1 1 - 0
SEM 0 0 0 0 -

Table 3: Model 3. Benchmarks bench(A,B)

A \ B NM NMP EMC EMIX SEM

n = 5000
NM - 0 1 1 0
NMP 0 - 1 1 0
EMC 0 0 - 0 0
EMIX 0 0 1 - 0
SEM 0 0 0 0 -

Table 4: Model 4. Benchmarks bench(A,B)
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A \ B NM NMP EMC EMIX SEM

n = 5000
NM - 0 1 0 0
NMP 0 - 1 0 0
EMC 0 0 - -1 -1
EMIX 0 0 1 - -1
SEM 0 0 1 1 -

Table 5: Model 5. Benchmarks bench(A,B)
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Table 7: ecdf’s of the time samples (left) and the BIC samples (right) of the New-
ton’s method (black) and the Mclust-EM algorithm (grey) for Model 5
and sample size of fitted data 5000.

9.0.2 Figures

Table 6: ecdf’s of the time samples (left) and BIC samples (right) of Newton’s
method (black) and the Mclust-EM algorithm (grey) for Model 4 and
sample size of fitted data 5000.
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Table 8: ecdf’s of the time samples (left) and BIC samples (right) of Newton’s
method (black) and the penalized Newton’s method (grey) for Model 3
and sample size of fitted data 1000.
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Table 9: ecdf’s of the time samples of Newton’s method (black) and the Mclust-
EM algorithm (grey) for the Models 2 (left column) and 3 (right column)
and sample sizes of fitted data 250, 500, 1000 (top-down).
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The following part is intended for online publication only.

10 Technical supplement

List of Notations

ei The i’th unit-vector
vk The k’th vector
vik The i’th element of the vector vk
Lk The k’th matrix

Li,jk The element in the i’th row and the j’th column of the matrix Lk
Li,·k The i’th row of the matrix Lk
L·,ik The i’th column of the matrix Lk
~Lk The half-vectorization of the quadratic matrix Lk (see definition 10.1)
~Lik The i’th element of the vector ~Lk
~zi The index of the row of the i’th element of ~Lk in Lk
~si The index of the column of the i’th element of ~Lk in Lk
|L| The absolute value of the determinant of the matrix Lk
∇θl The gradient of the function l w.r.t. θ
∇2
θl The Hessian of the function l w.r.t. θ
||v|| The euclidean norm of the vector v
δi(j) Kronecker delta
diag(v) For a vector v: a diagonal matrix with elements of v on the diagonal
diag(L) For a matrix L: the diagonal elements of M as a vector
R The set of real numbers
RD×D The set of real D ×D matrices
RD The set RD×1

RD×D
lt The set of real lower triangular D ×D matrices

It is important to note, that in the following subscripts are used as labels of the
objects (vectors or matrices) and superscripts are used to pick elements from the
objects.

10.1 Derivatives

For the calculation of the derivatives we express the parameter θ as a vector in
RK(D+ 1

2
(D+1)D+1)−1. In order to vectorize a lower triangular matrix L, we need the

following definition:

Definition 10.1 Let L ∈ RD×D
lt (a D×D lower triangular or symmetric matrix).

The bijective mapping

vech : RD×D
lt → R

D(D+1)
2 , L 7→ ~L,
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where ~Li := L~zi,~si for 1 ≤ i ≤ D(D + 1)/2, with

~zi := d1
2

+

√
1

4
+ 2i− 1e, (8)

~si := i− ~zi(~zi − 1)

2
. (9)

is the half-vectorization of the matrix L.

The mapping vech concatenates the elements of L row wise into a vector. In each
row only elements up to the diagonal are taken: ~L = (Li,j : i = 1, . . . , D, j =
1, . . . , i).
The equations (8) and (9) have the following motivation: the coordinates of the

i’th element of ~L in L, namely ~zi (row index) and ~si (column index), must satisfy

i =
(~zi − 1)~zi

2
+ ~si,

0 < ~si ≤ ~zi.

The only solution of this problem is given by the displayed equations. In the
following we will use ~L as well as L in our formulas, depending on what is more
suitable in a concrete situation. See also the list of notations to avoid confusion.

Proposition 10.2 Let L be a D×D lower triangular or symmetric matrix, then
for 1 ≤ j ≤ i ≤ D we have Li,j = ~Lk

∆(i,j), where k∆(i, j) = i(i−1)
2

+ j.

In order to select the i’th row of L in ~L we need to pass the first i− 1 rows, which
form the first i(i−1)

2
elements in ~L.

In the following subsection we calculate the derivatives of the log-likelihood
function with respect to the parameter vector

θ = (µ1, . . . , µK , ~L1, . . . , ~LK , q1, . . . , qK−1).

10.1.1 First derivatives of the mixture density

Now we calculate the first partial derivatives of g w.r.t. the parameters µi, ~Li and
qi.

For 1 ≤ i ≤ K holds

∂g

∂µi
= piφ(x;µi, Li)(x− µi)TΣ−1

i .

For 1 ≤ i ≤ K − 1 and p = (p1, . . . , pK−1) ∈ R1×K−1 holds

∂g

∂qi
=
∂g

∂p

∂p

∂qi
,

where

∂g

∂p
= (φ1 − φK , . . . , φK−1 − φK) and (10)

∂p

∂qi
= − 2qi

(
K−1∑
j=1

q2
j + 1)2

(q2
1, . . . ,

ith component︷ ︸︸ ︷
−

K−1∑
j=1, j 6=i

q2
j − 1, . . . , q2

K−1)T, (11)
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where φj = φ(x;µj, Lj).
Before we can obtain formulas for derivatives with respect to the covariance pa-
rameters, we need the following properties of a lower triangular matrix L:

1.

|L| =
D∏
i=1

Li,i,

2. For i ≥ j :

∂|L|
∂Li,j

=


0 i 6= j

D∏
k=1, k 6=i

Lk,k otherwise
,

3.
∂(x− µ)TLLT(x− µ)

∂L
= 2(x− µ)(x− µ)TL.

The notation ∂f
∂L

for a function f which maps a matrix L onto a real number

f(L) means a matrix of derivatives ( ∂f
∂Li,j

)i,j. With above formulas we obtain: for

1 ≤ i ≤ K holds

∂g

∂~Li
= vech

(
pi
|Li|

φ(x;µi, Li)

[
diag(

D∏
k 6=1

Lk,ki , . . . ,
D∏

k 6=D

Lk,ki )− |Li|(x− µi)(x− µi)TLi

])
.

Since Li is a lower triangular matrix, we can speedup the calculations of (qr,s)r,s :=
(x− µi)(x− µi)TLi by setting Mi := (x− µi)(x− µi)T and considering

qr,s =
D∑
k=1

Mk,r
i Lk,si =

D∑
k=s

Mk,r
i Lk,si .

Now we can calculate the gradient of the mixture-density w.r.t. θ:

∇θg =
(

∂g
∂µ1

. . . ∂g
∂µK

∂g

∂~L1
. . . ∂g

∂~LK

∂g
∂q1

. . . ∂g
∂qK−1

)T
.

10.1.2 First derivatives of the log-likelihood

In the next step we differentiate the log-likelihood function

l(θ) = log(
n∏
t=1

g(xt, θ)) =
n∑
t=1

log(g(xt, θ)).

With the formulas we obtained above, it is easily done:

∇l(θ) =
n∑
t=1

1

g(xt, θ)
∇θg(xt, θ).
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10.1.3 Second derivatives of the mixture density

For Newton’s method we also need the second derivatives of the log-likelihood
function, e.g. its Hessian. In the first step we calculate the Hessian of the mixture
density ∇2

θg(x, θ) for a fixed x. For two natural numbers a, b the value δa(b) is 1 if
a = b and 0 otherwise.
For the following computations we use Mi = (x− µi)(x− µi)T.

For 1 ≤ i < k ≤ K holds

∂2g

∂qi∂qk
=
∂g

∂p

∂2p

∂qi∂qk
,

where for i 6= k, 1 ≤ l ≤ K − 1:

∂2pl
∂qi∂qk

=
1

(
K−1∑
j=1

q2
j + 1)3

·



8qiqkq
2
l l 6= i, k,

4qiqk((
K−1∑
j=1

q2
j + 1)− 2(

K−1∑
j 6=i

q2
j + 1)) l = i,

4qiqk(2q
2
k − (

K−1∑
j=1

q2
j + 1)) l = k.

∂2pl
∂q2

i

=
1

(
K−1∑
j=1

q2
j + 1)3

·


2q2
l

[
4q2
i − (

K−1∑
j=1

q2
j + 1)

]
l 6= i,

2(
K−1∑
j 6=i

q2
j + 1)

[
(
K−1∑
j=1

q2
j + 1)− 4q2

i

]
else.

∂2g

∂qi∂~Lj
=

∂2g

∂~Lj∂p

∂p

∂qi
,

where for 1 ≤ l ≤ K − 1

∂2g

∂~Lj∂pl
= (δj(l) + δj(K))

(−1)δj(K)

|~Lj|
φ(x, µj, Lj)

[
vech(diag(

D∏
k 6=1

Lk,kj , . . . ,
D∏

k 6=D

Lk,kj )

− |Lj|Mj
~Lj)

]

and ∂p
∂qi

is given by (10.1.1).
For 1 ≤ i, j ≤ K holds

∂2g

∂µi∂µT
j

= δi(j)piφ(x, µi, Li)
[
Σ−1
i (x− µi)(x− µi)TΣ−1

i − Σ−1
i

]
,

∂2g

∂~Li∂µj
= δi(j)

(
∂2g

∂~L1
i ∂µi

. . . ∂2g

∂~L
D(D+1)/2
i ∂µi

)
,

where

∂2g

∂~Lji∂µi
=

pi
|Li|

φ(x, µi, Li)

(x− µi)TΣ−1
i

δ~zj(~sj) D∏
k 6=~zj

Lk,ki − |Li|[MiLi]
~zj ,~sj


+ |Li|L

·,~sj
i

T
(x− µi)~zj + e~zjL

·,~sj
i

T
(x− µi)

]
.
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Further

∂2g

∂qi∂µj
=

∂2g

∂µj∂p

∂p

∂qi
,

where
∂2g

∂pl∂µj
= (δj(l) + δj(K))(−1)δK(j)φ(x, µj, Lj)(x− µj)TΣ−1

j .

∂2g

∂~Li∂~Lj
= δi(j)

(
∂2g

∂~L1
i ∂
~Li

. . . ∂2g

∂~L
D(D+1)/2
i ∂~Li

)
,

where

∂2g

∂~Lji∂
~Li

=
piφ(x, µi, Li)

|Li|

 ~(MiLi)

|Li|(MiLi)
~zj ,~sj − δ~zj(~sj)

D∏
k 6=~zj

Lk,ki


+δ~zj(~sj)vech(diag(

D∏
k 6=1,~zj

Lk,ki , . . . , 0
j↑
, . . . ,

D∏
k 6=D,~zj

Lk,ki ))− ξj

 ,
where ξj is a D(D+1)

2
-vector with

ξj,p := δ~zp(~sp)
D∏

k 6=~zp

Lk,ki (MiLi)
~zj ,~sj + δ~zj (~zp)|L|(x− µi)

~zj (x− µi)~zp .

We are now able to calculate ∇2
θg(xt, θ).

10.1.4 Second derivatives of the log-likelihood

Now we have some formulas for the calculation of the Hessian w.r.t. the parameters
of the mixture density. To obtain a formula for the Hessian of the log-likelihood,
we need the following proposition.

Proposition 10.3 Let f : RD → RD and h : RD → R be continuously differen-
tiable functions. Then Jx(hf) = hJx(f) + f∇xh

T,

where Jx(f) is the Jacobian of f w.r.t. x and ∇xh is the gradient of h w.r.t. x.

Proof. hf(x) =

 h(x)f1(x)
...

h(x)fD(x)

 and using the product rule we obtain

∇x(hfj) = h∇xfj + fj∇xh.

Our goal now is to calculate the Jacobian of

∇θl(θ) =
n∑
t=1

1

g(xt, θ)
∇θg(xt, θ).
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We use Proposition 10.3 with f = ∇θg and h = 1
g

and observe that

∇θ
1

g(xt, θ)
=

−1

g(xt, θ)2
∇θg(xt, θ).

Summing over all i’s we finally get

∇2
θl =

n∑
t=1

1

g(xt, θ)

(
∇2
θg(xt, θ)−

1

g(xt, θ)
∇θg(xt, θ)∇T

θ g(xt, θ)

)
.

10.1.5 Derivatives of the penalty terms

The penalty function used in our algorithm is given by

sn(L1, . . . , LK) = −an
( K∑
i=1

tr(SxLiLi
T) + log

1

|Li|2
)
.

Now we omit the index of the covariance parameter. Hence L represents any of
the L1, . . . , LK . For 1 ≤ s ≤ D(D+1)

2
holds

∂sn

∂~Ls
= −an

(
2

D∑
k=~ss

(Sx)
k,~zsLk,~ss − 2δ~zs(~ss)

~Ls

)
,

∂2sn
∂L∆

s ∂L
∆
t

= −an
(
2δ~ss(~st)(Sx)

δ~zt (~st) +
2δ~zs(~ss)δs(t)

(~Ls)
2

)
.

10.2 Derivatives of the parameter transformation ψ

We calculate the derivatives of

ψ(µ1, . . . , µK , L1, . . . , LK , q1, . . . , qK−1) = (µ1, . . . , µK ,Σ1, . . . ,ΣK , p1, . . . , pK−1).

The derivatives ∂ψ
∂q

are given in (11). Now we calculate the partial derivatives of
ψ w.r.t. Li. We represent the matrices as vectors and calculate the derivatives of
the function ~L 7→ vech(LLT−1

), for a lower triangular matrix L. This function can

be expressed as a composition ψ1 ◦ψ2 for ψ1 : ~A 7→ ~A−1, and ψ2 : ~L 7→ vech(LLT).

Proposition 10.4 i) Let A be a regular matrix, i ≥ j two integers. Then

∂ψ1

∂Aij
= −vech(A−1eiej

TA−1)

ii) Let L be a lower triangular Matrix, i ≥ j, p ≥ q four integers. Then

∂ψ2p,q

∂Lij
= δi(p)Lq,j + δi(q)Lp,j

Proof. i)

A−1A = I ⇒ ∂A−1A

∂Aij
=
∂A−1

∂Aij
A+ A−1 ∂A

∂Aij︸ ︷︷ ︸
=eiejT

= 0

⇔ ∂A−1

∂Aij
= −A−1 ∂A

∂Aij
A−1

ii) It follows immediately from (LLT)i,j = LT
i,·Lj,·.

27


