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This user’s guide describes how to use GranSim for simulating the parallel execution of (anno-
tated) Haskell programs. In passing we will discuss how to write parallel, lazy functional programs
and how to tune their performance. To this end, some visualisation tools for generating activity
and granularity profiles of the execution will be discussed. A set of example programs demonstrates
the use of GranSim.

GranSim is part of the Glasgow Haskell Compiler (GHC), in fact it is a special setup of GHC,
which uses a slightly modified compiler (for instrumenting the code) and an extended runtime-
system. For users who are already familiar with the GHC and parallel functional programming in
general there is a quick introduction to GranSim available (see Chapter 1 [Quick Intro], page 2).
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1 A Quick Introduction to GranSim

If you already know how to compile a Haskell program with GHC and if you have an installed
version of GranSim available there are only a few changes necessary to simulate parallel execution.
Basically, a compile time flag has to be used to generate instrumented code. Runtime-system flags
then control the behaviour of the simulation.

1. Compile all modules with the additional options -gransim and -fvia-C. Use -gransim also
when linking object files. For example

ghc -gransim -fvia-C -o foo foo.hs
creates a GranSim executable file foo.

2. When running the program use the runtime-system option -bP to generate a full GranSim
profile (see Section 8.1 [Types of GranSim Profiles], page 50). See Chapter 5 [Runtime-System
Options|, page 17 for a description of all options that allow you to control the behaviour of

the simulated parallel architecture. For example

./foo +RTS -bP -bpl6 -b1l400

starts a simulation for a machine with 16 processors and a latency of 400 machine cycles. It
generates a GranSim profile ‘foo.gr’ .

3. Use one of the visualisation tools (see Chapter 7 [Visualisation Tools], page 39) to examine the
behaviour of the program. The first bet is to use ‘gr2ps’, which generates a graph showing

the overall activity of the machine in a global picture. For example
gr2ps -0 foo.gr

generates an activity profile as a colour PostScript file ‘foo.ps’. It shows how many threads
in total have been running, runnable (but not running), blocked (on data under evaluation),
fetching (remote data) and migrating (to another processor) at each point during the execution.
Other tools you might want to try are ‘gr2pe’ (giving a per-PE activity profile) and ‘gr2ap’
(giving a per-thread activity profile).

Additionally, another set of visualisation tools allows to focus on the granularity of the gener-
ated threads. The most important one is ‘gr2gran’, which generates bucket statistics showing
the runtime of the individual threads (see Section 7.2 [Granularity Profiles|, page 45).

As an example for an overall activity profile the graph below shows the result of running a parfib
program (see Section 2.4 [Example], page 7) on 16 processors with a latency of 400 cycles.
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Overall, for this simple program the utilisation is almost perfect as the green (medium-gray)
area reaches up to 16 almost through the whole computation. Only at the end of the computation
there is a significant number of runnable (amber or light-gray) and blocked (red or black) threads.

The header of the picture shows the average parallelism and the options used for this execution
(e.g. the -bp16 part shows that 16 processors have been simulated). The runtime shown in the
footer of the picture is measured in machine cycles. In GranSim all times are given in machine
cycles.
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2 Overview

GranSim is mainly intended to be a research tool for studying the dynamic behaviour of parallel,
lazy functional programs. By simulating the parallel execution it is possible to concentrate on the
amount and structure of the parallelism exposed by the program without being distracted by
‘external’ details like load of the machine produced by other users or the basic network traffic.
However, for obtaining results that are of relevance for a particular machine it is possible to set

parameters in GranSim that very accurately model the behaviour of this machine.

2.1 Components of the GranSim System

The overall GranSim System consists of the following components:

e The GranSim Simulator proper.

Some Visualisation Tools.

The GranSim Toolbox.

The GranSim T-shirt (not available, yet, sorry).

The GranSim simulator is built on top of the runtime-system (RTS) of the Glasgow Haskell Com-
piler (GHC). Thus, the major part of it is a (rather big) runtime system for GHC. This part is re-
sponsible for implementing the event driven simulation of parallelism. For example communication

is modelled by adding new features to the appropriate routines in the sequential runtime-system.

For simulating parallelism the generated code has to be instrumented, which is achieved by a
slightly modified code generator in GHC. To produce instrumented code the compile time option
-gransim of the Haskell compiler has to be used. This is what we mean by saying ‘compiling under
GranSim’. Note that it is not possible to use object file compiled for another setup of GHC to

generate a GranSim executable file.

Our approach is similar to that of GUM (a portable parallel implementation of Haskell), which
has also been developed in this department. Both systems are basically extensions of the sequential
runtime-system. GranSim is also similar to GUM in the way it implements several features like
the communication mechansim. To a large extend both systems actually use the same code. See

Chapter 11 [GranSim vs GUM], page 65 for a more detailled comparison.

In order to analyse the result of a simulation it is very important to visualise the abundance of
data. To this end the GranSim system contains a set of visualisation tools that generate PostScript
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graphs, focusing on specific aspects of the execution. The most important usage of these tools is

the generation of an overall activity profile of the execution.

The system contains a set of small tools, usually scripts processing the output of a simulation.
These tools are collected in the so-called GranSim Toolbox.

The final component, the GranSim T-shirt has not been implemented, yet. If you have sugges-
tions, feel free to email me.

2.2 Semi-explicit Parallelism

The underlying execution model of GranSim is one of semi-explicit parallelism where expressions
that should be evaluated in parallel have to be annotated by using the par annotation. However,
it is up to the runtime-system to decide when and where to create a parallel thread. It may even

discard potential parallelism altogether.

The communication between the threads is performed via accessing shared data structures. If
a thread tries to access a value that is under evaluation, it is put into a blocking queue attached
to that closure. When the closure is updated by the result this blocking queue is released. So, the

only extension of the sequential evaluation mechanism is the addition of blocking queues.

Because of these characteristics of hiding as many low-level details as possible in the runtime-
system we call this model semi-explicit. It is only necessary to mark potential parallelism in the
program. All issues related to communication, load balancing etc are handled by the runtime

system and can be ignored by the programmer.

For example in the expression

let

squares = [ i"2 | i <= [1..n] ]
in
squares ‘par‘ sum squares

the list of squares will be produced by one thread (the producer) and the result sum will be
computed by another thread (the consumer). Note that this producer-consumer structure of the
algorithm is solely determined by the data-dependencies in the program. All the programmer has
to do is to annotate a named subexpression (in this example squares), which should be computed
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in parallel. Thread placement, communication and whether the thread should be created at all are

up to the runtime-system.

In this introduction we don’t go into the operational details of this example. See (undefined)
[Example: Sum of Squares|, page (undefined) for a discussion how to improve the parallelism of
the algorithm.

This model of using par and seq annotations is the same as it is used for the GRIP machine and
for the GUM system. In fact, there is a strong correspondence between the GranSim and GUM. This
allows to carry results of a GranSim simulation over to a real parallel machine operating under
GUM (this issue will be addressed in more detail in Chapter 11 [GranSim vs GUM], page 65.).

2.3 GranSim Modes

This section outlines a methodology for parallelising lazy functional programs. The development
and performance tuning of a parallel algorithm typically proceeds in several stages:

1. Profiling of the sequential algorithm if the goal is the parallelisation of an already existing
algorithm. This stage should give an idea about the ‘big computations’ in the program. The

programmer can then concentrate on parallelising this part of the algorithm.

2. Extracting parallelism out of the algorithm. In our model of computation this means adding
seq and par annotations to the program (See Chapter 4 [Parallelism Annotations], page 14,
for a discussion of all available annotations).

3. Restructuring parts of the algorithm to increase the amount of parallelism. This can be called
performance tuning on an abstract level where the performance of the algorithm is solely
modelled by the amount of parallelism in the program.

4. Optimising the parallel algorithm for execution on a specific machine. In this stage low-level
details have to be addressed.

To facilitate such a process of parallelisation the GHC system provides several tools. In particular
GHC and GranSim support different modes reflecting different stages:

1. The sequential profiling setup of GHC allows to get accurate information about computation
time and heap usage of program expressions. Especially for parallelising big sequential pro-
grams the profiler gives invaluable information for the proper parallelisation. A more detailed
description of the profiler is part of the overall GHC documentation.
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2. The GranSim-Light mode simulates the parallel execution of a program with an unbounded
number of processors. In this mode no communication is modelled (i.e. access of remote data is
as expensive as access of local data). Thus, this mode mainly shows the amount of parallelism
in the program and indicates an upper bound of the parallelism when running the program on

a real machine.

3. In the usual mode GranSim can simulate the execution of up to 32 processors! with an exact
modelling of communication. Thus, the execution on a particular machine with the chosen

characteristics is simulated.

4. A set of visualisation tools allows to generate activity and granularity profiles of the execution.
These tools allow to generate overall profiles as well as per-PE and per-thread profiles (see
Section 10.4 [Visualisation], page 63). This especially facilitates the performance tuning of the

program.

2.4 A Simple Example Program

This section gives an example of how to write a simple parallel program in the parallel, lazy
functional execution model. Due to a sad lack of imagination we take our good old friend, nfib,

as an example program. This is the sequential function from which we start:

nfib :: Int -> Int
nfib 0 = 1
nfib 1 =1
nfib n = nfl+nf2+1
where nfi = nfib (n-1)
nf2 = nfib (n-2)

The straightforward idea for parallelising nfib is to start parallel processes for computing both
recursive calls. This is expressed with the par annotation, which ‘sparks’ a parallel process for com-
puting its first argument and whose result is its second argument (the exact operational semantics
of par is discussed in more detail in chapter Chapter 4 [Parallelism Annotations], page 14.). This
gives the following parallel program:

parfib :: Int -> Int

parfib 0 = 1
parfib 1 =1
parfib n = nf2 ‘par‘ (nfl ‘par‘ (nfi+nf2+1))

where nfl = parfib (n-1)
nf2 = parfib (n-2)

! In general the word size of the machine is the upper bound for the number of processors.
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The drawback of this program is the blocking of the main task on the two created child-tasks.
Only when both child tasks have returned a result, the main task can continue. It is more efficient
to have one of the recursive calls computed by the main task and to spark only one parallel process
for the other recursive call. In order to guarantee that the main expression is evaluated in the right

order (i.e. without blocking the main task on the child task) the seq annotation is used:

parfib :: Int -> Int

parfib 0 = 1
parfib 1 =1
parfib n = nf2 ‘par‘ (nfl ‘seq‘ (nfi+nf2+1))

where nfl = parfib (n-1)
nf2 = parfib (n-2)

The operational reading of this function is as follows: First spark a parallel process for computing
the expression parfib (n-2). Then evaluate the expression parfib (n-1). Finally, evaluate the
main expression. If the parallel process has not finished by this time the main task will be blocked

on nf2. Otherwise it will just pick up the result.

This simple example already shows several basic aspects of parallel, lazy functional program-

ming;:

e For adding parallelism to the program par annotations on local variables (that appear in the

main expression) are used.

e To specify evaluation order of the program seq annotations are used. It reduces the first
argument (usually a variable occurring in the definition of the second argument) to weak head
normal form (WHNF).

e For the efficiency of the parallel program it is important to avoid unnecessary blocking during

the execution.

Another aspect not shown in this example is the importance of evaluation degree. If the parallel
expressions create a compound type (e.g. a list) then it is important that they are evaluated to a
certain degree. Otherwise there won’t be a lot of parallelism in the program. We will revisit this

aspect again in Chapter 6 [Strategies], page 29.

Finally, here is the total example as a stand-alone program:

module Main where

import Parallel
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main = getArgs abort ( \ a ->
let
n = head ( map (\ al -> fst ((readDec al) !! 0)) a )
in
print ("parfib " ++ (show n) ++ " = " ++ (show (parfib n)) ++ "\n") )
nfib :: Int -> Int
nfib 0 = 1
nfib 1 = 1
nfib n = nfil+nf2+1
where nfl = nfib (n-1)
nf2 = nfib (n-2)

parfib :: Int -> Int

parfib 0 = 1
parfib 1 =1
parfib n = nf2 ‘par‘ (nfl ‘seq‘ (nfi+nf2+1) )

where nfl = parfib (n-1)
nf2 = parfib (n-2)

2.5 Running the Example Program

In a standard installation of GHC with GranSim enabled the example program can be compiled
as usually but with adding the compiler option -gransim. So, if the above program is in file
‘parfib.hs’ compile a GranSim version of the program with

ghc -gransim -fvia-C parfib.hs

GranSim requires a compilation using C code as an intermediate stage. Compiling with the

native code generator is not supported.
To simulate the execution on a machine with 4 processors type

./a.out +RTS -bP -bp4

This will generate a granularity profile (‘.gr’ extension). For getting an overall activity profile
of the execution use

gr2ps -0 a.out.gr
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Use your favourite PostScript viewer to examine the activity profile in ‘a.out.ps’. You’'ll get

the best results with GNU ghostview and ghostscript version 2.6.1 or later.
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3 Setting-up GranSim

[WARNING: THIS IS VERY DRAFTY FOR NOW. IF YOU HAVE SEVERE INSTALLATION PROBLEMS
PLEASE LET ME KNOW.]

This chapter describes how to get the latest version of GranSim, and how to install it.

The system requirements are basically the same as for GHC itself. So far, GranSim has been
tested on SUNs under SunOS 4.1 and Solaris 2, and on DEC Alphas under OSF 1 and OSF 3.2.
The visualisation tools require Perl, Bash and Gnuplot (only for granularity profiles).

3.1 Retrieving

The important addresses to check for the latest information about GHC and GranSim:

GranSim Home Page — http://www.dcs.glasgow.ac.uk/fp/software/gransim.html
e Anonymous FTP Server — ftp://ftp.dcs.glasgow.ac.uk/pub/haskell /glasgow/
e GHC home page — http://www.dcs.glasgow.ac.uk/fp/software/ghc.html

Glasgow FP group page — http://www.dcs.glasgow.ac.uk/fp/

To get the current version of GranSim go to the anonymous FTP Server at Glasgow and retrieve
version 0.29 of GHC. The sources of the compiler with GranSim support are in

ghc-0.29-src.tar.gz

Only if you don’t already have an installed version of GHC for bootstrapping the new version
you’ll have to download the HC files in that directory, too.

Check the README file on the F'TP server to get more information about the different versions
you can download. There should be at least one binary installation of GranSim available for Suns.

If you have the right machine and operating system you can just download and unpack this version.

3.2 Installing

Follow the instructions in the GHC Installation Guide (in the subdirectory ‘ghc/docs/install_guide’.]]
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Note that so far GranSim has only been tested with Haskell 1.2. I recommend using that version
until I have had a closer look at the interaction of GranSim with the new, shiny GHC for 1.3.

The only things different from a normal installation are:

e Call the configure script with the additional option
--enable-gransim
e Typing
make all
(after ‘configure’ and ‘STARTUP’) should create all necessary libraries. All GranSim specific

libraries (and hi files) have the extension ‘_mg.a’ (‘_mg.hi’).

You can find a copy of the GranSim User’s Guide in the subdirectory ‘ghc/docs/gransim’.

3.3 Trouble Shooting

If an installation with make all doesn’t run through smoothly, try to build the components
by hand. Often it’s just a problem with dependencies or old interface files. Try to recompile the
modules by hand on which the failing module depends.

The top level files for the installation are

e ‘hsc’in the directory ‘ghc/compiler/’: the compiler proper.

e The libraries ‘1ibHS_mg.a’ and ‘1ibHS13_mg.a’ in the directory ‘ghc/1ib/’: these are the
necessary built-in libraries (preludes). The libraries ‘1ibHSghc_mg.a’ and ‘libHShbc_mg.a’
are optional.

e ‘1ibHSrts_mg.a’ in the directory ‘ghc/runtime/’: the runtime-system.

You can create a version of the RTS with debugging information (and all GranSim debugging

options) by typing

make EXTRA_HC_OPTS="-optcO0-DGRAN -optcO-DGRAN_CHECK -optcO0-DDEBUG -optcO-g"
libHSrts_mg.a

For those Bravehearts who want to actually hack on the RTS I recommend first having a
closer look at the hackers sections of the general GHC User’s Guide (see (undefined) [(ghc-user-
guide.info) Top]|, page (undefined)). Eventually, I'll add GranSim specific stuff to the chapter about
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the internals of GranSim (see (undefined) [GranSim Internals], page (undefined)) but for now there

is not much in this chapter.
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4 Parallelism Annotations

This chapter discusses the constructs for adding parallelism to a Haskell program. All constructs
are annotations that do not change the semantics of the program (one exception to this rule is the
annotation for forcing sequential evaluation since it may change the strictness properties of the

program).

Normally the basic annotations that are discussed first are sufficient to write and tune a parallel
program. The advanced annotations allow to name static spark sites and to provide granularity

information.

NB: To use these annotations the module Parallel must be imported as shown in the intro-

ductory example (see Section 2.4 [Example], page 7).

4.1 Basic Annotations

The two basic parallelism annotations in GranSim (as well as in GUM and GRIP) are par and
seq. Both take two arguments and return the value of the second argument as result. However,

they differ in their operational behaviour:

par ::a->b->b Annotation
par x y creates a spark for evaluating x and returns the value of y as a result.

seq ::a->b->b Annotation
seq x y reduces x to weak head normal form and then returns the value of y as a result.

The process of sparking a parallel thread creates potential parallelism (a spark). Such a spark
may be turned into a thread or may be discarded by the runtime system. Several important facts

should be noted about these annotations:

e Semantically the value of seq x y equals that of y only if the evaluation of x terminates and
is error free. Thus, seq is strict in its first argument.

e Typically x is a local variable and y is an expression with x as a free variable. A typical idiom
for using par is

let x = ... in x ‘par‘ f x



Chapter 4: Parallelism Annotations

If x does not occur in y speculative parallelism is created, which might trigger the evaluation
of objects that are not needed for computing the result. This may also change the termination

properties of the program.

The evaluation degree of y is unaffected by these annotations. It is solely determined by the

expression in which the result of this annotated expression is used.

4.2 Advanced Annotations

The annotations in the previous section are actually specialisations of the following set of built-in

functions which can be called directly:

parGlobal :: Int -> Int -> Int -> Int ->a ->b ->Db Annotation
parGlobaln g s p x y creates a spark for evaluating x and returns the value of y as
a result. The spark gets the name n with the granularity information g, the size
information s and a degree of parallelism of p. The g, s and p fields just forward

information to the runtime system.

parLocal :: Int -> Int -> Int -> Int ->a->b ->b Annotation
parLocal n g s p x y behaves like parGlobal except that the thread (if it is generated
at all) must be executed on the current processor.

parAt :: Int -> Int -> Int -> Int ->a->b->c ->c Annotation
parAt n g s p v x y behaves like parGlobal except that the thread (if it is generated
at all) must be executed on the processor that contains the expression v.

parAtForNow :: Int -> Int -> Int -> Int ->a ->b ->c -> ¢ Annotation
parAtForNown g s p v x y behaves like parAt except that the generated thread may
be migrated to another processor during the execution of the program.

4.3 Experimental Annotations

Some experimental annotations currently available in GranSim are:
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parAtAbs :: Int -> Int -> Int -> Int -> Int ->a->b ->b Annotation
parAtAbs n g s p m x y behaves like parAt except that the thread must be executed on
processor number m (the processors are numbered from 0 to p-1 where p is the runtime
system argument supplied via the -bp option).

parAtRel :: Int -> Int -> Int -> Int -> Int ->a ->b > b Annotation
parAtRel n g s pm x y behaves like parAtAbs except that the value of m is added to
the number of the current processor to determine the target processor.

copyable ::a->a Annotation
copyable x marks the expression x to be copyable. This means that the expression
will be transferred in its unevaluated form if it is needed on another processor. This
may duplicate work.

This annotation is not yet implemented.

noFollow :: a->a Annotation
noFollow x

This annotation is not yet implemented.
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5 Runtime-System Options

GranSim provides a large number of runtime-system options for controlling the simulation. Most

of these options allow to specify a particular parallel architecture in very much detail.

As general convention all GranSim related options start with -b to separate them from other
GHC RTS options. To separate the RTS options from usual options given to the Haskell program
the meta-option +RTS has to be used.

If you are not interested in the details of the available options and just want to specify a
somewhat generic setup for one class of parallel machines go to the last section of this chapter (see
Section 5.10 [Specific Setups], page 26).

5.1 Basic Options

The options in this section are probably the most important GranSim options the programmer
has to be aware of. They define the basic behaviour of GranSim rather than going down to a low
level of specifying machine characteristics.

-bP RTS Option
This option controls the generation of a GranSim profile (see Chapter 8 [GranSim
Profiles], page 50). By default a reduced profile (only END events) is created. With
-bP a full GranSim profile is generated. Such a profile is necessary to create activity
profiles. With -b-P no profile is generated at all.

-bs RTS Option
Generate a spark profile. The GranSim profile will contain events describing the cre-
ation, movement, consumption and pruning of sparks. Note: This option will drasti-
cally increase the size of the generated GranSim profile.

-bh RTS Option
Generate a heap profile. The GranSim profile will contain events describing heap allo-
cations. Note: This option will drastically increase the size of the generated GranSim
profile.
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-bpn RTS Option
Choose the number of processors to simulate. The value of n must be less than or
equal to the word size on the machine (i.e. usually 32). If nis 0 GranSim-Light mode

is enabled.

-bp: RTS Option
Enable GranSim-Light (same as -bp0). In this mode there is no limit on the number

of processors but no communication costs are recorded.

5.2 Special Features

The options in this section allow to simulate special features in the runtime-system of the
simulated machine. This allows to study how these options influence the behaviour of different
kinds of parallel machines. All of these flags can be turned of by inserting a - symbol after b (as
in -b-P).

5.2.1 Asynchronous Communication

If a thread fetches remote data by default the processor is blocked until the data arrives. This
synchronous communication is usually only advantageous on machines with very low latency. On
such machines it is better to wait and avoid the overhead of a context switch. Synchronous com-
munication may also increase data locality as a thread is only descheduled when it gets blocked on

data that is under evaluation by another thread.

On machines with high latency asynchronous communication is usually better as it allows the
processor to perform some useful computation while a thread waits for the arrival of remote data.
However, the processor might be even more aggressive in trying to get work while another thread is
waiting for data. The aggressiveness of the processor to get new work is determined by the fetching

strategy. Currently five different strategies are supported.

-byn RTS Option
Choose a Fetching Strategy (i.e. determine what to do while the running thread fetches

remote data):

0. Synchronous communication (default).
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1. This and all higher fetching strategies implement asynchronous communication.
This strategy schedules another runnable thread if one is available. This gives the
same behaviour as -bZ.

2. If no runnable thread is available a local spark is turned into a thread. This adds
task creation overhead to context switch overhead for asynchronous communica-
tion.

3. If no local sparks are available the processor tries to acquire a remote spark.

4. If the processor can’t get a remote spark it tries to acquire a runnable thread from
another busy processor provided that migration is also turned on (-bM).

-bZ RTS Option
Enable asynchronous communication. This causes a thread to be descheduled when
it fetches remote data. Its processor schedules another runnable thread. If none is
available it becomes idle. This gives the same behaviour as -by1.

Note that fetching strategies 3 and 4 involve the sending of messages to other processors. There-
fore, it’s likely that by the time a spark (or thread) has been fetched, the original thread has already
received its data and is being executed again. Therefore, in most cases strategies 1 and 2 yield
better results than 3 and 4.

5.2.2 Bulk Fetching

When fetching remote data there are several possibilities how to transfer the data. The options
-bG and -bQn allow to choose among them. By default GranSim uses incremental fetching (also
called single closure fetching, or lazy fetching). This means that only the closure that is immediately
required is fetched from a remote processor. Again, this strategy is preferable for low latency
systems as it minimises the total amount of data that has to be transferred. However, if the
overhead for creating a packet and for sending a message are high it is better to perform bulk
fetching, which transfers a subgraph with the required closure as its root. The size of the subgraph
can be bounded by specifying the maximal size of a packet or by specifying the maximal number
of thunks (unevaluated closures) that should be put into one packet. The way how to determine
which closures to put into a packet is called packing strategy.

-bG RTS Option
Enable bulk fetching. This causes the whole subgraph with the needed closure as its
root to be transferred.
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-bQn RTS Option
Pack at most n-1 non-root thunks into a packet. Choosing a value of 1 means that only
normal form closures are transfered with the possible exception of the root, of course.
The value 0 is interpreted as infinity (i.e. pack the whole subgraph). This is the default
setting.

-Qn RTS Option
Pack at most n words in one packet. This limits the size of the packet and does not

distinguish between thunks and normal forms. The default packet size is 1024 words.

The option for setting the packet size differs from the usual GranSim naming scheme as it is
also available for GUM. In fact, both implementations use almost the same source code for packing
a graph.

5.2.3 Migration

When an idle processor looks for work it first checks its local spark pool, then it tries to get
a remote spark. It might happen that no sparks are available in the system any more and that
some processors have several runnable threads. In such a situation it might be advantageous to
transfer a runnable thread from a busy processor to an idle one. However, this thread migration
is very expensive and should be avoided unless absolutely necessary. Therefore, by default thread

migration is turned off.

-bM RTS Options
Enable thread migration. When an idle process has no local sparks and can’t find
global sparks it tries to migrate (steal) a runnable thread from another busy processor.

Note that thread migration often causes a lot of fetching in order to move all required data to

the new processor, too. This bears the risk of destroying data locality.

5.3 Communication Parameters

The options in this section allow to specify the overheads for communication. Note that in
GranSim-Light mode all of these values are irrelevant (communication is futile).
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-bln

-ban

-bmn

-bxn

-brn

-bgn

5.4

The options in this section model overhead that is related to the runtime-system of the simulated

RTS Option
Set the latency in the system to n machine cycles. Typical values for shared memory
machines are 60 — 100 cycles, for GRIP (a closely-coupled distributed memory machine)
around 400 cycles and for standard distributed memory machines between 1000 and
5000 cycles. The default value is 1000 cycles.

RTS Option
Set the additional latency in the system to n machine cycles. The additional latency is
the latency of follow-up packets within the same message. Usually this is much smaller
than the latency of the first packet (default: 100 cycles).

RTS Option
Set the overhead for message packing to n machine cycles. This is the overhead for
constructing a packet independent of its size.

RTS Option
Set the overhead for tidying up the packet after sending it to n machine cycles. On
some systems significant work is needed after having sent a packet.

RTS Option
Set the overhead for unpacking a message to n machine cycles. Again, this overhead is
independent of the message size.

RTS Option
Set the overhead for fetching remote data to n machine cycles. By default this value is

two times latency plus message unpack time.

Runtime-System Parameters

parallel machine.

-btn

RTS Option
Set the overhead for thread creation to n machine cycles. This overhead includes costs
for initialising a control structure describing the thread and allocating stack space for
the execution.
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-bqn RTS Option
Set the overhead for putting a thread into the blocking queue of a closure to n machine
cycles.

-becn RTS Option

Set the overhead for scheduling a thread to n machine cycles.

-bdn RTS Option
Set the overhead for descheduling a thread to n machine cycles.

-bnn RTS Option
Set the overhead for global unblocking (i.e. blocking on a remote closure) to n machine
cycles. This value does not contain the overhead caused by the communication between

the processors.

-bun RTS Option
Set the overhead for local unblocking (i.e. putting a thread out of a blocking queue and
into a runnable queue) to n machine cycles. This value does not contain the overhead
caused by the communication between the processors.

5.5 Processor Characteristics

The options in this section specify the characteristics of the microprocessor of the simulated

parallel machine. To this end the instructions of the processor are divided into six groups. These

groups have different weights reflecting their different relative costs.

The groups of processor instructions are:

e Arithmetic instructions

e Load instructions

e Store instructions

e Branch instructions

e Floating point instruction

e Heap allocations

The options for assigning weights to these groups are:
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-bAn RTS Option

Set weight for arithmetic operations to n machine cycles.

-bLn RTS Option

Set weight for load operations to n machine cycles.

-bSn RTS Option
Set weight for store operations to n machine cycles.

-bBn RTS Option
Set weight for branch operations to n machine cycles.

-bFn RTS Option
Set weight for floating point operations to n machine cycles.

-bHn RTS Option

Set weight for heap allocations to n machine cycles.

Strictly speaking, the heap allocation costs is a parameter of the runtime-system. However, in
our underlying machine model allocating heap is such a basic operation that one can think of it as
a special instruction.

5.6 Granularity Control Mechanisms
There are three granularity control mechanisms:

1. Explicit threshold
No spark whose priority is smaller than a given threshold will be turned into a thread.

2. Priority sparking
The spark queue is sorted by priority. This guarantees that the highest priority spark is turned
into a thread. Priorities are not maintained for threads.

3. Priority scheduling

The thread queue is sorted by priority, too. This guarantees that the biggest available thread
is scheduled next. This imposes a higher runtime overhead.
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-bYn RTS Option
Use the value n as a threshold when turning sparks into threads. No spark with a
priority smaller than n will be turned into a thread.

-bXx RTS Option
Enable priority sparking. The letter x indicates how to use the granularity information
attached to a spark site in the source code:

e Use the granularity information field as a priority.

e I Use the granularity information field as an inverse priority.

R Ignore the granularity information field and use a random priority.

N Ignore the granularity information field and don’t use priorities at all.

-bIl RTS Option
Enable priority scheduling.

-bKn RTS Option
Set the overhead for inserting a spark into a sorted spark queue to n machine cycles.

-b0n RTS Option
Set the overhead for inserting a thread into a sorted thread queue to n machine cycles.

5.7 Miscellaneous Options

-bC RTS Option
Force the system to eagerly turn a spark into a thread. This basically disables the
lazy thread creation mechanism of GranSim and ensures that no sparks are discarded

(except for sparks whose closures are already in normal form).

-be RTS Option
Enable deterministic mode. This means that no random number generator is used for
deciding where to get work from. With this option two runs of the same program with
the same input will yield exactly the same result.
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-bT

-bN

-bfn

-bwn

5.8

These options are mainly intended for debugging GranSim. Only those options that might be

RTS Option
Prefer stealing threads over stealing sparks when looking for remote work. This is
mainly an experimental option.

RTS Option
When creating a new thread prefer sparks generated by local closures over sparks that
have been stolen from other processors. This is mainly an experimental option, which
might improve data locality.

RTS Option
Specify the maximal number of outstanding requests to acquire sparks from remote
processors. High values of n may cause a more even distribution of sparks avoiding
bottlenecks caused by a ‘spark explosion’ on one processor. However, this might harm
the data locality. The default value is 1.

RTS Option
Set the time slice of the simulator to n machine cycles. This is an internal variable that
changes the behaviour of the simulation rather than that of the simulated machine. A
longer time slice means faster but less accurate simulation. The default time slice is
1000 cycles.

Debugging Options

of interest to the friendly (i.e. non-hacking) user of GranSim are listed here for now.

Note:
GRAN_

-bDE

If you are really interested in all the hidden options in GranSim look into the file ‘ghc/runtime/main/RtsFlags.

CHECK (see Section 3.2 [Installing], page 11).

RTS Option
Print an event statistics at the end of the computation. This also includes a statistics
about the packages sent (if bulk fetching) has been enabled.

These options are only available if the RTS has been compiled with the cpp flag
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5.9 General GHC RTS Options

Some options of the GHC runtime-system that are not specific for GranSim are of special

interest, too. They are discussed in this section.

-on RTS Option
This option sets the initial size of the stack of a thread to n words. This might be
of importance for GranSim-Light, which can create an abundance of parallel threads
filling up the heap. The default stack size in GranSim-Light is already reduced to 200
words (usually the default is 1024 words). If you run into problems with heap size in
a GranSim-Light setup you might want to reduce it further.

-sf RTS Option

Print messages about garbage collections to the file f (or to stderr).

-F2s RTS Option
Use a two-space garbage collector instead of a generational garbage collector. Previous
versions of GranSim had problems with the latter. If you experience problems try this

option and send me a bug report (see Chapter 13 [Bug Reports], page 67).

5.10 Specific Setups

When using GranSim a programmer often just wants to specify the general architecture of the
machine rather than going down to the details of a specific machine. To facilitate this approach

this section presents examples of standard set-ups for GranSim.

Note that these setups specify the characteristics of a machine, but not of the runtime-system.
Thus characteristics like thread creation costs are left open. However, the default setting fairly
closely reflect the real costs for example under GUM. So, unless you have a different implementation

of runtime-system details in mind the default settings should be sufficiently accurate.

5.10.1 The Ideal GranSim Setup

This setup reflects the ideal case, where communication is for free and where there is no limit on

the number of processors. This is used to show the maximal amount of parallelism in the program.
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Using such a GranSim-Light setup is usually the first step in tuning the performance of a parallel,

lazy functional program (see Section 2.3 [GranSim Modes], page 6).

The typical GranSim-Light setup is:

+RTS -bP -b:

5.10.2 GranSim Setup for Shared-Memory Machines

In a shared memory machine the latency is roughly reduced to the costs of a load operation.
Potentially, some additional overhead for managing the shared memory has to be added. Also the
caching mechanism might be more expensive than in a sequential machine. In general, the latency

should be between 5 and 20 machine cycles.

For machines where the latency is of the same order of magnitude as loading and storing data,
it is reasonable to assume incremental, synchronous communication. Migration should also be

possible.

This gives the following setup (for 32 processors):

+RTS -bP -bp32 -b110 -b-G -by0 -bM

5.10.3 GranSim Setup for Strongly Connected Distributed Memory
Machines

Strongly connected DMMs put a specific emphasis on keeping the latency in the system as low as
possible. One example of such a machine is GRIP, which has been built specifically for performing

parallel graph reduction. Therefore, this setup is of special interest for us.

Most importantly the latency in such machines is typically between 100 and 500 cycles (400
for GRIP). Furthermore, the GRIP runtime-system, as an example for such kind of machines, uses

incremental, synchronous communication. Migration is also possible.

This gives the following setup (for 32 processors):

+RTS -bP -bp32 -b1400 -b-G -byO0 -bM
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5.10.4 GranSim Setup for Distributed Memory Machines

General distributed memory machines usually have latencies that are a order of magnitude higher
than that of strongly connected DMMs. However, especially in this class of machines the differences
between specific machines are quite significant. So, I strongly recommend to use the exact machine
characteristics if GranSim should be used to predict the behaviour on such a machine.

The high latency requires a fundamentally different runtime-system to avoid long delays for
fetching remote data. Therefore, usually synchronous bulk fetching is used. I’d recommend choosing
a fetching strategy of 1 or 2 (it’s hard to say which one is better in general). Thread migration is
such expensive on DMMs that it is often not supported at all.

This gives the following setup (for 32 processors):

+RTS -bP -bp32 -b12000 -bG -by2 -b-M
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6 Parallel Functional Programming in the Large:
Strategies

[SEE THE STRATEGY PAPER: "STRATEGIES FOR WRITING PARALLEL NON-STRICT PROGRAMS"
TrINDER P.W., LoipL H.W., HammonD K., PEYTON JONES S.L. (IN PREPARATION). |

This chapter deals with parallel, lazy functional programming in the large. It introduces the

notion of strategies and shows how they make it easier to develop large parallel programs.

6.1 Motivation for Strategies

The following naive version parmap often does not give good parallelism:

parmap :: (a => b) -> [a] -> [b]
parmap £ [] = [
parmap f (x:xs) = fx ‘par® pmxs ‘par‘ (fx:pmxs)
where fx = f x
pmxs = parmap f xs

If in this version the spark for pmxs is discarded almost all parallelism in the program is lost.
On the other hand, if all par’s are executed more parallel threads than necessary are created (two
for each list element).

An alternative version of parmap reduces the total number of generated threads by replacing
the second par with a seq:

parmap :: (a => b) -> [a] -> [b]
parmap £ [] = [
parmap f (x:xs) = fx ‘par‘ pmxs ‘seq‘ (fx:pmxs)
where fx = f x
pmxs = parmap f xs

The problem of this version is that in a context that requires the result of parmap only in weak
head normal form, the recursive call to parmap will be deferred until its value is needed. This
drastically reduces the total amount of parallelism in the program. Especially, if such a function
is used as the producer in a program with producer-consumer parallelism, this gives very poor
parallelism (see Section 6.4 [Sum of Squares (Example)], page 33).
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To improve this behaviour one can write a forcing function, which guarantees that all of the
result is demanded immediately:

forcelist [] = QO
forcelist (x:xs) = x ‘seq‘ (forcelist xs)

Using this function in parmap gives the following function:

parmap :: (a => b) -> [a] -> [b]
parmap f [] = [
parmap f (x:xs) = fx ‘par® (forcelist pmxs) ‘seq‘ (fx:pmxs)
where fx = f x
pmxs = parmap f xs

However, following this approach yields a big set of forcing functions and a mixture of defining
the result and driving the computation. We want to avoid both.

6.2 The Main Idea

[FOR NOW MAINLY THE ABSTRACT OF THE STRATEGY PAPER]
Separate the components of a parallel, lazy functional program:

1. Parallelism
2. Evaluation degree

3. Definition of the result

In most current parallel non-strict functional languages, a function must both describe the value
to be computed, and the dynamic behaviour. The dynamic behaviour of a function has two aspects:
parallelism, i.e. what values could be computed in parallel, and evaluation-degree, i.e. how much
of each value should be constructed. Our experience is that specifying the dynamic behaviour of a
function obscures its semantics. Strategies have been developed to address this problem; a strategy
being an explicit description of a function’s potential dynamic behaviour. The philosophy is that
it should be possible to understand the semantics of a function without considering it’s dynamic
behaviour.

In essence a strategy is a runtime function that traverses a data structure specifying how much
of it should be evaluated, and possibly sparking threads to perform the construction in parallel.
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Because strategies are functions they can be defined on any type and can be combined to specify
sophisticated dynamic behaviour. For example a strategy can control thread granularity or specify
evaluation over an infinite structure. A disadvantage is that a strategy requires an additional
runtime pass over parts of the data structure. Example programs are given that use strategies on

divide-and-conquer, pipeline and data-parallel applications.

6.3 Example Program: Quicksort

This section compares two version of parallel quicksort: one using a forcing function and another
one using strategies.
6.3.1 Parallel Quicksort using Forcing Functions

The following naive attempt to introduce parallelism in quicksort fails because the threads
generating loSort and hiSort only create a single cons cell.

O
[x]

quicksortN []
quicksortN [x]
quicksortN (x:xs)
losort ‘par
hisort ‘parf
result
where
losort = quicksortN [yly <- xs, y < x]
hisort = quicksortN [yly <- xs, y >= x]
result = losort ++ (x:hisort)

The current practice of parallel Haskell programmers is to introduce a forcing function that
forces the evaluation of the required elements of a data structure. For example

forceList :: [a] -> ()
forcelList [1 = ()
forcelist (x:xs) = x ‘seq‘ forcelist xs

Quicksort can be rewritten to have the desired behaviour using forceList as follows.

O
[x]

quicksortF []
quicksortF [x]
quicksortF (x:xs)
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(forceList losort) ‘par®

(forceList hisort) ‘par

losort ++ (x:hisort)

where
losort = quicksortF [yly <- xs, y < x]
hisort = quicksortF [yly <- xs, y >= x]

To obtain the required dynamic behaviour for the parMap example we might use forcelList
within the definition of f:

f x = forcelist result ‘seq‘ result
where
result = [fib x]

When programs are written in this style, a number of forcing functions are required: at least one
for each type, e.g. forcePair. To obtain good dynamic behaviour, par, seq and forcing functions
are inserted throughout the program. In consequence the dynamic behaviour and static semantics
of the computation are intertwined. This intertwining obscures the semantics of the program.
Small-scale programs remain manageable, but in larger programs, particularly those with complex

data structures and parallel behaviour, discerning the meaning of a program becomes very hard.

6.3.2 Parallel Quicksort using Strategies

In the strategy version we can specify the evaluation degree by applying one of the predefined
strategies to the components of the result. These strategies are then combined by using either par
or seq to specify the parallelism.

In quicksort, each parallel thread should construct all of its result list, and rnf expresses this
neatly. The interesting equation becomes

quicksortS (x:xs) = losort ++ (x:hisort) ‘using‘ strategy
where

losort = quicksortS [yly <- xs, y < x]
hisort = quicksortS [yly <- xs, y >= x]
strategy result =

rnf losort ‘par®

rnf hisort ‘par®

rnf result ‘par®

O
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6.4 Example Program: Sum of Squares

Although the sum-of-squares program is a very simple producer-consumer program, it already
shows some basic problems in this model. Unfortunately, the simple version of the program, which
was presented in Section 2.2 [Semi-explicit Parallelism], page 5, produces hardly any parallelism at
all. The reason for this behaviour is that because of the lazy evaluation approach the producer will
only create the top cons cell of the intermediate list. When the consumer then demands the rest
of the list it computes squares as well as the result sum. In the example below version 1 (with

res_naive) shows this behaviour.

To improve the parallelism one can use a forcing function on the intermediate list. The parallel
thread is then the application of this forcing function on the squares list. As expected, this creates
two threads that are computing most of the time and occasionally have to exchange data. Version

2 (with res_force) shows this behaviour.

A better way to achieve the same operational behaviour is to define a strategy, how to compute
the result. The strategy describes the parallelism and the evaluation degree. In doing so, it uses the
reduce to normal form (rnf) strategy, which is defined in the class NFData. Compared to version 2
the strategy version 3 (with res_strategy) achieves a clean separation of defining the result and

specifying operational details like parallelism and evaluation degree.

module Main where
import StrategiesVII

main = getArgs abort ( \ a —>

let
args :: [Int]
args = map (\ al -> fst ((readDec al) !! 0)) a
version = args !! O
n=args !! 1
--1=1[1..]
squares :: [Int]

squares = [ i"2 | i <= [1..n] 1]

-- Naive version sparks a producer for list squares but doesn’t force it]]
res_naive = squares ‘par‘ sum squares

-- This version sparks a forcing function on the list (producer)
res_force = (foldll seq squares) ‘par‘ sum squares

-- The strategy version

res_strat = sum squares ‘using‘ (rnf squares ‘par‘ rnf)

res = case version of
1 -> res_naive
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2 => res_force
3 -> res_strat
_ —> res_naive
str = case version of

1 -> "Naive version"
2 -> "Forcing version"
3 -> "Strategy version"
_ —> "Naive version"

in

print ("Sum of squares (" ++ str ++ ") of length " ++ (show n) ++

o= 1 44 (ShOW res) ++ n\nn) )

When running the naive version of this program the spark for the consumer process is pruned and
all the computation of the consumer is subsumed by the producer. This gives a totally sequential

program. The relevant parts of the GranSim profile are:

Granularity Simulation for sq 1 99 +RTS -bP -bp: -bs

+++++++ bbb+

PE 0 [0]: START 0 0x100620 [SN 0]

PE 0 [67445]: SPARK 20004 0x347dbc [sparks 0]

PE 0 [68241]: PRUNED 20004 0x347dbc [sparks 1]

PE 0 [327088]: END O, SN 0, ST O, EXP F, BB 847, HA 5426, RT 327088, BT 0 (0), FT 0 (0),

The other two versions of the program create one producer and one consumer thread as expected.

The per thread activity profile shows the behaviour of the strategy version of the program.
Thread 1 is the main thread which computes sum squares and therefore is the consumer process.
It creates thread 2 as the producer process, which evaluates squares. The producer is evaluating
the list to normal form and therefore is one continuous thread. The consumer has to wait for the

results from the producer from time to time and is blocked during these periods.
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SN SO 2 99 +RTS -bP -bp: Fri Jul 12 17:44:25 BST 1996/

tasks

(0] 28315 56630 84945 113260 141575 169889 198204 226519 254834

6.5 Using a Class of Strategies
[FOR NOW THIS SECTION IS JUST A SHORT DISCUSSION OF THE STRATEGIES MODULE]

This section discusses the contents of the strategies module. It shows how strategies are imple-
mented on top of the basic par and seq annotations. Haskell’s overloading mechanism is used to
define a strategy for reducing to normal form. The current implementation is based on Haskell 1.2

but in the near future we want to use constructor classes as provided in Haskell 1.3.

6.5.1 Type Definition of Strategies

A strategy does not return a meaningful result it only specifies parallelism and evaluation degree.

Therefore, we use the following type for strategies

type Strategy a = a -> ()
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We can now define a strategy application, which adds information about the operational be-

haviour of the execution to an expression

using :: a -> Strategy a -> a
using x s = s x ‘seq‘ x

Note that x ‘using‘ s is a projection on x, i.e. both

e a retraction: x ‘using‘ s [ x

e - and idempotent: (x ‘using‘ s) ‘using‘ s = x ‘using‘ s

6.5.2 Primitive Strategies

The primitive strategies are basically just syntactic sugar to fit par and seq into the strategy
scheme.

sPar is a strategy corresponding to par,i.e. x ‘par‘ e <=> e ‘using‘ sPar x

sPar :: a -> Strategy b
sPar x y = x ‘par‘ ()

sSeq is a strategy corresponding to seq, i.e. x ‘seq‘ e <=> e ‘using‘ sSeq x

sSeq :: a —> Strategy b
sSeq x vy = x ‘seq‘ ()

6.5.3 Basic Strategies
Three basic strategies describe the evaluation degree of a data structure:

e r0 is a strategy which performs no evaluation at all
r0 :: Strategy a
r0 x = ()
e rwhnf reduces a data structure to weak head normal form

rwhnf :: Strategy a
rwhnf x = x ‘seq‘ ()
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e rnf reduces a data structure to normal form. This strategy can’t be defined independent of the
type of the data structure. Therefore, we define a class NFData and overload the rnf strategy

class NFData a where
-- rnf reduces it’s argument to (head) normal form
rnf :: Strategy a
-- Default method. Useful for base types. A specific method is necessary for]]
-- constructed types
rnf = rwhnf

For primitive types like Ints and Chars the default methods can be used

instance NFData Int
instance NFData Char

6.5.4 Strategy Combinators

When defining a strategy on a compound data type we can use these three basic strategies and
compose them with the strategy combinators below. These combinators describe the parallelism
in the evaluation.

-- Pairs
instance (NFData a, NFData b) => NFData (a,b) where
rnf (x,y) = rnf x ‘seq‘ rnf y

seqPair :: Strategy a -> Strategy b -> Strategy (a,b)
seqPair strata stratb (x,y) = strata x ‘seq‘ stratb y

parPair :: Strategy a -> Strategy b -> Strategy (a,b)

parPair strata stratb (x,y) = strata x ‘par‘ stratb y

-- Lists
instance NFData a => NFData [a] where
rnf [J] = O

rnf (x:xs) = rnf x ‘seq‘ rnf xs

-- Applies a strategy to every element of a list in parallel
parList :: Strategy a -> Strategy [al

parList strat [] = 0

parlist strat (x:xs) = strat x ‘par‘ (parlList strat xs)

-- Applies a strategy to the first n elements of a list in parallel
parListN :: (Integral b) => b -> Strategy a -> Strategy [a]
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O
O
strat x ‘par‘ (parListN (n-1) strat xs)

parListN n strat []
parListN O strat xs
parListN n strat (x:xs)

-- Sequentially applies a strategy to each element of a list
seqlist :: Strategy a -> Strategy [al]

seqlist strat [] = Q)

seqlist strat (x:xs) = strat x ‘seq‘ (seqlist strat xs)

-- Sequentially applies a strategy to the first n elements of a list
seqListN :: (Integral a) => a -> Strategy b -> Strategy [b]

seqlistN n strat [] O

seqListN O strat xs = Q

seqlistN n strat (x:xs) = strat x ‘seq‘ (seqlistN (n-1) strat xs)

Now we can use these predefined strategies to define a parallel map function

-- parMap applies a function to each element of the argument list in
-- parallel. The result of the function is evaluated using ‘strat’
parMap :: Strategy b -> (a -> b) -> [a] -> [b]

parMap strat £ xs = map f xs ‘using‘ parlList strat

For bigger programs the programmer only has to define strategies on the most important data
structures in order to introduce parallelism in to his program. With this approach the parallel
program will not be cluttered with par annotations and it’s easier to determine semantics and
dynamic behaviour of the individual functions.

6.6 Experiences with Strategies

[STRATEGIES ARE COOL]
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7 Visualisation Tools

The visualisation tools that come together with GranSim take a GranSim profile as input and
create level 2 PostScript files showing either activity or the granularity of the execution. A collection
of scripts in the GranSim Toolbox allows to focus on specific aspects of the execution like the ‘node

flow’ i.e. the movement of nodes (closures) between the PEs.

Most of these tools are implemented as Perl scripts. This means that they are very versatile
and it should be easy to modify them. However, processing a large GranSim profile can involve a
quite big amount of computation (and of memory). Speeding up crucial parts of the scripts is on
my ToDo-list but better don’t hold your breath.

7.1 Activity Profiles

Three tools allow to show the activity during the execution in three levels of detail:

The overall activity profile (created with ‘gr2ps’) shows the activity of the whole machine (see
Section 7.1.1 [Overall Activity Profile], page 40).

The per-processor activity profile (created with ‘gr2pe’) shows the activity of all simulated
processors (see Section 7.1.2 [Per-Processor Activity Profile], page 42).

The per-thread activity profile (created with ‘gr2ap’) shows the activity of all generated threads
(see Section 7.1.3 [Per-Thread Activity Profile], page 43).

All tools discussed in this section print a help message when called with the option -h. This
message shows the available options. In general, all tools understand the option -o <file> for
specifying the output file and -m for generating a monochrome profile (by default the tools generate
colour PostScript).

The ‘gr2ps’ and ‘gr2ap’ scripts work in two stages:
1. First the ‘.gr’ file is translated into a ‘.qp’ file, which is basically a stripped down version of

a GranSim profile.

2. Then the ‘.qp’ file is translated into a ‘.ps’ file.

The ‘gr2pe’ script works directly on the ‘. gr’ file.
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7.1.1 Overall Activity Profile

The overall activity profile (created via gr2ps) shows the activity of the whole machine by
separating the threads into up to five different groups. These groups describe the number of

e running threads (i.e. threads that are currently performing a reduction),

e runnable threads (i.e. threads that could be executed but that have not found an idle PE),

e blocked threads (i.e. threads that wait for a result that is being computed by another thread),
o fetching threads (i.e. threads that are currently fetching data from a remote PE),

e migrating threads (i.e. threads that are currently being transferred from a busy PE to an idle

PE).

If the GranSim profile includes information about sparks (-bs option) it is also possible to show
the number of sparks. However, this number is usually much bigger than the number of all threads.
Therefore, it doesn’t make much sense mixing the groups for sparks and threads in one profile.

The option -0 reduces the size of the generated PostScript file. The option -I <string> is used
to specify which groups of threads should be shown in which order. For example

gr2ps -0 -I "arb" parfib.gr

generates a profile ‘parfib.ps’showing only active (‘a’), runnable (‘r’) and blocked (‘b’) threads.
The letter code for the other groups are ‘f” for fetching, ‘m’ for migrating and ‘s’ for sparks.

In the current version the marks on the y-axis of the generated profile may be stretched or
compressed. This might happen if many events occur at exactly the same time. If this is the case,
the initial count of the maximal number of y-values may be wrong causing a rescaling at the very
end. In practice that happens rarely (more often for GranSim-Light profiles, though).

The picture below shows an overall activity profile for a simple parallel divide-and-conquer
program. The header of the graph shows the runtime-system options for the execution.
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The overall runtime is measured in machine cycles. The average parallelism is the area covered
by the running (green or medium-gray) threads, normalised with respect to the total runtime. In
this graph only three groups show up: Most of the time 16 threads are running, utilising all available
processors with occasional dips in the green area. The big amber (or light-gray) area of runnable
threads indicates that this program can easily use all available processors. The large amount of
blocking indicated by the large red (or black) area in the graph is caused by nodes near the root
in the computation tree. They have to wait for the results of their children to combine them into
the overall result. The sequential part at the beginning of the computation is due to I/O overhead
including the initialisation of the basic I/O monad. Towards the end of the computation, when
combining results near the root of the computation tree, the overall utilisation drops significantly.
In this setup the latency is so small that no large areas of fetching (blue) threads appear. Also
migration is turned of in this case (it can be turned on with the runtime system option -bM).
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7.1.2 Per-processor Activity Profile

The idea of the per-processor activity profile is to show the most important pieces of information
about each processor in one graph. Therefore, it is easy to compare the behaviour of the different

processors and to spot imbalances in the computation.

This profile shows one strip for each of the simulated processors. Each of these strips encodes

three kinds of information:

e Is the processor active at a certain point? If it is active the strip appears in some shade of green
(gray in the monochrome version). If it is idle it appears in red (white in the monochrome
version). The area before starting the first thread and after terminating the last thread is left

blank in both versions.

e How high is the load of the processor? The load is measured by the number of runnable threads
on this processor. A high load is shown by a dark shading of green (or grey). A palette at the
top of the graph shows the available shadings (two ticks indicate the range that is used in the
graph). It is possible to distinguish between 20 different values. Therefore, all processors with

more than 20 runnable threads are shown in the same (dark) colour.

e How many blocked threads are on the processor? This information is shown by the thickness
of blue (black) bar at to bottom of each strip. Without any blocked threads no bar is shown.
If 20 or more threads are blocked the bar covers 80% of strip. Thus, the load information is
always visible ‘in the background’.

This script also allows to produce variants of the same kind of graph that focus on different

features of GranSim:

e Migration: With the option =M this script produces a graph that draws arrows between proces-
sors indicating the migration of a thread from one processor to another. No load or blocking

information is shown in this graph.

e Sparking: With the option -S a spark graph is generated. It shows information about the
number of sparks on a processor in the same way as the the number of runnable threads (i.e.

by shading). This graph is useful to highlight processors that create a lot of work.

No more than about 32 processors should be shown in one graph otherwise the strips are getting
too small. This profile can not be generated for a GranSim-Light profile.

The graph below shows a per-processor activity profile for the same parallel divide-and-conquer

program as in the previous section.
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The graph shows the activity of each of the 16 processors in this simulation. The dark green
areas in the first third of the computation show that processors 2, 4 and 14 have a significantly
higher load of runnable threads than the rest. Also note the pattern that a decreasing number of
blocked threads (thinner blue bar) is accompanied by an increasing number of runnable threads
(darker green area).

7.1.3 Per-Thread Activity Profile

The per-thread activity profile shows the activity of all generated threads. For each thread a
horizontal line is shown. The line starts when the thread is created and ends when it is terminated.
The thickness of the line indicates the state of the thread. The possible states correspond to the
groups shown in the overall activity profile (see Section 7.1.1 [Overall Activity Profile], page 40).

The states are encoded in the following way:

e A running thread is shown as a thick green (gray) line.

e A runnable thread is shown as a medium red (black) line.
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o A fetching (or migrating) thread is shown as a thin blue (black) line.
e A blocked thread is shown as a gap in the line.

This profile gives the most accurate kind of information and it often allows to ‘step through’ the
computation by relating events on different processors with each other. For example the typical
pattern at the beginning of the computation is some short computation for starting the thread
followed by fetching remote data. After that the thread may become runnable if another thread

has been started in the meantime.

The picture below shows an example of a per-thread activity profile. Note the short period of
fetching immediately after starting a thread in order to get the data for the spark that has just
been turned into a thread. The high degree of suspension is mainly due to the fact that migration

is turned off in this example.
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However, such a detailed analysis is only possible for programs with a rather small number of

threads. Usually, GranSim profiles of bigger executions have to be pre-processed to reduce the
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number of threads that are shown on one graph (see Section 7.3 [Scripts], page 49). As the level
of detail provided by this graph is rarely needed for bigger executions no automatic splitting of a
profile into several graphs has been implemented.

7.2 Granularity Profiles

The tools for generating granularity profiles aim at showing the relative sizes of the generated
threads. Especially the number of tiny threads, for which the overhead of thread creation is
relatively high is of interest.

All tools discussed in this section require Gnuplot to generate the granularity profiles. 1 am
using version 3.5 but it should work with older versions, too.

For showing granularity basically two kinds of graphs can be generated:

e A bucket graph (see Section 7.2.1 [Bucket Graphs], page 46), which collects threads with similar
runtime in the same bucket and shows the number of threads in each bucket.

e A cumulative graph (see Section 7.2.2 [Cumulative Graphs], page 47), which shows how many
threads have a runtime less than or equal a given number..

The main tools for generating such graphs are:

e gr2gran creates one bucket graph and one cumulative graph from a given GranSim profile.
The information about the partitioning for the bucket statistics and other set-up information
is usually provided in a template file (see Section 7.2.3 [Template Files], page 48), which is
specified via the -t option (-t , uses the global template file in $GRANDIR/bin).

This script works in three stages:

1. First a ‘RTS’ file is generated, which is only a sorted list of runtimes extracted out of the
END events of a GranSim profile (see Chapter 8 [GranSim Profiles], page 50).

2. The main stage generates a ‘gnuplot’ file by grouping the threads into buckets and com-
puting cumulative values.

3. Finally, Gnuplot is used to generate ‘PostScript’ files showing the graphs.

e gran-extr is based on the same idea as gr2gran, but it produces even more graphs, showing
the communication percentage, determining a correlations coefficient between heap allocations
and runtime etc.
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7.2.1 Bucket Graphs

In a bucket graph the x-axis indicating execution times of the threads is partitioned into intervals
(dfnbuckets). The graph shows a histogram of the number of threads in each bucket (i.e. whose
execution time falls into this interval). For generating this kind of graph only a restricted GranSim
profile (containing only END events) is required.

For example one of the files generated by running

gr2gran -t , pf.gr

is g.ps, which contains such a bucket statistics. The -t option of this tool selects the right
template file (, is a shorthand for the global template in $GRANDIR/bin).

Here is the bucket statistics of executing parfib 22:
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2000 - I

1000 10000 100000
Granularity (pure exec. time)
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It shows that this program creates a huge number of tiny threads (note the log scale in the

graph). Refining the intervals for these tiny threads further gives the following bucket statistics

12000 A -
10000 A -

n

g 8000 - .

£

5

o 6000 - -

=

>

prd
4000 - -
2000 - | -

0 L | T T T T L | T T T T T 'I' L

100 1000 10000
Granularity (pure exec. time)

The necessary change in the template file for this bucket statistics is

-- Intervals for pure exec. times
G: (100, 200, 500, 1000, 2000, 5000, 10000)

7.2.2 Cumulative Graphs

In a cumulative graph the x-axis again represents execution times of the individual threads. The
value in the graph at the time t represents the number of threads whose execution time is smaller
than t. Therefore, the values in the graph are monotonically increasing until the right end shows
the total number of threads in the execution.
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Again, running

gr2gran -t , pf.gr

generates cumulative graphs for the runtime in the files cumu-rts.ps and cumu-rtsO.ps (one
file shows absolute numbers of threads, the other the percentage of the threads on the y-axis).

Here is the cumulative runtime statistics of executing parfib 22:
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©
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e
>
P
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1 10 100 1000 10000
Cumulative pure exec. times

7.2.3 Template Files

The functions for reading template files can be found in ‘template.pl’. This file also contains
documentation about the available fields.
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7.2.4 Statistics Packages

A set of statistics functions for computing mean value, standard deviation, correlation coeflicient
etc can be found in ‘stats.pl’.

7.3 Scripts

The GranSim Toolbox contains not only visualisation tools but also a set of scripts that work
on GranSim profiles and provide specific information.

e The tf script aims at showing the task flow (as well as node flow) in the execution of a
program. It is used in the GranSim Emacs mode to narrow a GranSim profile (see Section 8.3
[The Emacs GranSim Profile Mode], page 55).

e The SN script creates a summary of spark names that occur in a GranSim profile. This summary
is shown as a impulses graph via Gnuplot. It allows to compare the relative number of threads

generated by each static spark site.

e The AVG and avg-RTS scripts compute the average runtime from an RTS file, which is generated
by ‘gr2RTS’.
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8 GranSim Profiles

This chapter describes the contents of a GranSim profile (a ‘.gr’ file). In most cases the profiles
generated by the visualisation tools should provide sufficient information for tuning the performance
of the program. However, it is possible to extract more information out of the generated GranSim
profile. This chapter provides information how to do that.

8.1 Types of GranSim Profiles

Depending on some runtime-system options different kind of profiles are generated:

A reduced GranSim profile contains in the body component only END events. This is sufficient
to extract granularity profiles, but it is not sufflicient to generate activity profiles. This is the

default setting for GranSim profiles.

e A full GranSim profile contains one line for every major event in the system (see (undefined)
[Contents of a Granularity Profile], page (undefined)). A generation of such a profile is enabled
by the RTS option -bP.

e A spark profile additionally contains events related to sparks (for creating, using, pruning,
exporting, acquiring sparks). Such a profile is generated when using the RTS option -bs.

e A heap profile additionally contains events for allocating heap. Such a profile is generated
when using the RTS option -bh.

8.2 Contents of a GranSim Profile

This section describes the syntactic structure of a GranSim profile.

8.2.1 Header

The header contains general information about the execution. It is split into several sections
separated by lines only consisting of - symbols. The end of the header is indicated by a line only

consisting of + symbols.

The sections of the header are:
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e Name of the program, arguments and start time.

e General parameters describing the parallel architecture. This covers the number of processors,
flags for thread migration, asynchronous communication etc. Finally, this section describes
basic costs of the parallel machine like thread creation time, context switch time etc.

e Communication parameters describing basic costs for sending messages like latency, message

creation costs etc.

e Instruction costs describing the costs of different classes of machine operations.

8.2.2 Body

The body of the GranSim profile contains events that are generated during the execution of the
program. The following subsections first describe the general structure of the events and then go

into details of several classes of events.

8.2.2.1 General Structure of an Event

Each line in the body of a GranSim profile represents one event during the execution of the
program. The general structure of one such line is:

e The keyword PE.

e The processor number where the event happened.

e The time stamp of the event (in square brackets).

e The name of the event.

e The thread id of the affected thread (a hex number).

e Optionally a node as an additional argument to the event (e.g. the node to be reduced in
case of a START event). This is either a hex number or the special string ______ indicating a

Nil-closure.

e Additional information depending on the event. This can be the processor from which data is
fetched or the length of the spark queue after starting a new thread.

The fields are separated by whitespace. A : symbol must follow the time stamp (which must
be in sqare brackets).
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8.2.2.2 END Events

END events are an exception to this general structure. The reason for their special structure is
that they summarise the most important information about the thread. Therefore, information
about e.g. the granularity of the threads can be extracted out of END events alone without having
to generate a full GranSim profile.

The structure of an END event is:

e The keyword PE.

e The processor number where the event happened.
e The time stamp of the event (in square brackets).
e The name of the event (END in this case).

e The keyword SN followed by the spark name of the thread. This information allows to associate
a thread with its static spark site in the program (See Chapter 4 [Parallelism Annotations],

page 14, on how to give names to spark sites.)
e The keyword ST followed by the start time of the thread.

e The keyword EXP followed by a flag indicating whether this thread has been exported to another
processor or has been evaluated locally (possible values are T and F).

e The keyword BB followed by the number of basic blocks that have been executed by this thread.
e The keyword HA followed by the number of heap allocations.

e The keyword RT followed by the total runtime. This is the most important information in an

END event. It is used by the visualisation tools for generating granularity profiles.

e The keyword BT followed by the total block time and a block count (i.e. how often the thread
has been blocked).

e The keyword FT followed by the total fetch time and a fetch count (i.e. how often the thread
fetched remote data).

e The keyword LS followed by the number of local sparks (sparks that have to be executed on
the local processor) generated by the thread.

e The keyword GS followed by the number of global sparks generated by the thread.

e The keyword EXP followed by a flag indicating whether this thread was mandatory or only
advisable (in the current version this flag is not used; it would be important in a combination
of GranSim with a concurrent set-up).

8.2.2.3 Basic Thread Events

The main events directly related to threads are:
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e START: Generated when starting a thread (after adding overhead for thread creation to the
clock of the current processor). After the thread id it has two additional fields: one specifying
the node to be evaluated (as a hex number) and the spark site that generated this thread

(format: [SN n] where n is a dec number).

e START(Q): Same as START but the new thread is put into the runnable queue rather than being

executed (only if the current processor is busy at that point).

e BLOCK: A thread is blocked on data that is under evaluation by another thread. It is desched-
uled and put into the blocking queue of that node. Two additional fields contain the node on
which the thread is blocked and the processor on which this node is lying (format: (from n)

where n is a processor (dec) number).

e RESUME: Continue to execute the thread after it has been blocked or has been waiting for

remote data. This event does not contain additional fields.

e RESUME(Q): Same as RESUME but the new thread is put into the runnable queue rather than
being executed (only if the current processor is busy at that point).

e SCHEDULE: The thread is scheduled on the given processor (no additional fields). This event is
usually emitted after terminating a thread on the processor. It may also occur after a FETCH

(if asynchronous communication is turned on) or after a BLOCK event.

e DESCHEDULE: The thread is descheduled on the given processor (no additional fields). After
this event the thread is in the runnable queue. This event is not used for implicit descheduling
that is performed after events like BLOCK or FETCH. DESCHEDULE events should only occur if

fair scheduling is turned on.

8.2.2.4 Communication Events

Events that are issued when sending data between processors are:

e FETCH: Send a fetch request from the given thread (on the given processor) to another processor.
This event has two additional fields: The first field is the node (hex number) that should be
fetched. The last field is the processor where this node is lying and from which the data has

to be fetched (format: (from n) where n is a processor (dec) number).

e REPLY: A reply for a fetch request of the given thread arrived at the given processor. The
first additional field contains the node and the last field contains the processor from which it
arrived (format: (from n) where nis a processor (dec) number). Note: This event only marks
the arrival of the data. It is usually followed by a RESUME or RESUME(Q) event for the thread
that asked for the data.
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8.2.2.5 Thread Migration Events
These events are only produced when thread migration is enabled (-bM):

e STEALING: Indicates the stealing of a thread on the given processor. The thread which is being
stolen appears in the thread field. One additional field (the last field) indicates which processor

is stealing that thread (format: (by n) where n is a processor (dec) number).

e STOLEN: Indicates the arrival of a stolen thread on the given processor. Two additional fields
show the node which will be evaluated by this thread next. The last field shows from which
processor the thread has been stolen (format: (from n) where n is a processor (dec) number).
Note: This thread is immediately being executed by the given processor (no RESUME event

follows).

e STOLEN(Q): Same as STOLEN but the new thread is put into the runnable queue rather than
being executed (only if the current processor is busy at that point).

8.2.2.6 Spark Events
When enabling spark profiling, events related to sparks will appear in the profile:

e SPARK: Indicates the generation of a spark on the given processor for the given node. At that
point it is added to this processor’s spark pool. Two additional fields show the node to which
this spark is pointing and the current size of the spark pool (format: [sparks n] where n is

a dec number).

e SPARKAT: Same as SPARK but with explicit placement of the spark on this processor. This
is usually achieved in the program by using a parLocal or parAt rather than a parGlobal
annotation (see Chapter 4 [Parallelism Annotations|, page 14).

e USED: Indicates that this spark is turned into a thread on the given processor. A START or
START(Q) event will follow soon afterwards.

e PRUNED: A spark is removed from the spark pool of the given processor. This might occur when
the spark points to a normal form (there is no work to do for that spark). This is checked
when creating a spark and when searching the spark pool for new work.

e EXPORTED: A spark is exported from a given processor. Two additional fields show the node
to which this spark is pointing and the current size of the spark pool (format: [sparks n]

where n is a dec number).

e ACQUIRED: A spark that has been exported by another proceessor is acquired by the given
processor. Two additional fields have the same meaning as for EXPORTED.



Chapter 8: GranSim Profiles

8.2.2.7 Debugging Events

Certain debug options generate additional events that allow to monitor the internal behaviour
of the simulator. This information shouldn’t be of interest for the friendly user but might come in
handy for those who dare hacking at the runtime-system:

e SYSTEM_START: Indicates that the simulator is executing a “system” routine (a routine in the
runtime-system that is not directly related to graph reduction). This allows to show when
exactly rescheduling is done in the simulator. It may be useful in GranSim-Light to check that
the costs during system operations are attached to the right thread.

e SYSTEM_END: See previous event. From this point on normal graph reduction is performed.

8.3 The Emacs GranSim Profile Mode

Looking up information directly in a GranSim profile is very tedious (believe me, I have done
it quite often). To make this task easier the GranSim Toolbox contains a GNU Emacs mode for
GranSim profiles: the GranSim Profile Mode.

The most useful features (IMNSHO) are highlighting of parts of a GranSim profile and narrowing

of the profile to specific PEs, threads, events etc.

8.3.1 Installation

To use this mode just put the file ‘GrAnSim.el’ somewhere on your Emacs load-path and load
the file. I don’t have autoload support at the moment, but the file is very short anyway, so directly
loading it is quite fast. Currently, the mode requires the hilit19 package for highlighting parts of

the profile. It also requires the ‘tf’ script in the bin dir of your GranSim installation.

I use Emacs 19.31 with the default ‘hilit19.el’ package, but the GranSim profile mode has
been successfully tested with Emacs 19.27. However, if you have problems with the mode please
report it to the address shown at the end of this document (see Chapter 13 [Bug Reports], page 67).

8.3.2 Customisation

A few Emacs variables control the behaviour of the GranSim Profile mode:
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gransim-auto-hilit Variable
This variable indicates whether highlighting is turned on by default. Note that you
can customise ‘hilit19’ such that it does not automatically highlight buffers that are
bigger than a given size. Since GranSim profiles tend to be extremely large you might
want to reduce the default value.

grandir Variable
The root of the GranSim installation. The mode searches for scripts of the GranSim
Toolbox in the directory grandir/bin. By default this variable is set to the contents of
the environment variable GRANDIR.

hwl-hi-node-face Variable

Face to be used for specific highlighting of a node.

hwl-hi-thread-face Variable
Face to be used for specific highlighting of a thread.

Here are the hilit19 variables that are of some interest for the GranSim Profile Mode:

hilit-auto-highlight Variable
T if we should highlight all buffers as we find ’em, nil to disable automatic highlighting
by the find-file hook. Default value: t.

hilit-auto-highlight-maxout Variable
Auto-highlight is disabled in buffers larger than this. Default value: 60000.

8.3.3 Features
The main features of the GranSim profile mode are:

e Highlighting of parts of the profile. Colour coding is used to distinguish between events that
start a reduction, finish a reduction and block a reduction. Within END events the total runtime
is specially highlighted.

e Narrowing of the profile. This should not be confused with the narrowing mode in Emacs.
The narrowing in GranSim profile mode is done by running a script (‘t£’) over the buffer and
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displaying the output in another buffer. Hence, narrowing can be further refined be improving
the ‘tf’ script, which is written in Perl.

It is possible to narrow a GranSim profile to a specific
e processor (PE),
e event,
e thread,

e node,

spark (only possible for spark profiles)

This feature is particularly useful to e.g. follow a node, which has been moved between pro-
cessors or to concentrate on the reductions on one specific processor.

Of course, for those pagans, who don’t believe in Emacs it is also possible to run the ‘tf’ script
directly on a ‘.gr’ file.

A second form of highlighting, specialised for nodes and threads is available, too. With the
commands hwl-hi-thread and hwl-hi-node every occurrence of the thread or node in the
profile after the current point is highlighted. The function hwl-hi-clear undoes all such
highlighting.

There is a menu item for calling most of the functions described here. It automatically appears
in any GranSim profile (i.e. any file that has a ‘. gr’ extension).

Default key bindings in GranSim profile mode:

C-c

t, M-x hwl-truncate
Truncate event lines such that exactly one line is shown for one event in the body of a
profile.

W, M-x hwl-wrap
Wrap lines to show them in full length.

s M-x hwl-toggle-truncate-wrap
Toggle between the above two modes.

h, M-x hilit-rehighlight-buffer
Rehighlight the whole buffer.

P, M-x hwl-narrow-to-pe
Narrow the profile to a PE.
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C-c t, M-x hwl-narrow-to-thread

Narrow the profile to a thread.

C-c e, M-x hwl-narrow-to-event

Narrow the profile to an event.

C-c C-e, (lambda () (hwl-narrow-to-event "END"))
Narrow the profile to an END event.

C-c , M-x hwl-toggle-truncate-wrap
Toggle between the above two modes.

C-c N, M-x hwl-hi-node
Highlight a node in the profile.

C-c T, M-x hwl-hi-thread
Highlight a thread in the profile.

C-c C-c, M-x hwl-hi-clear

Remove highlightings of nodes and threads.
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9 The Parallel NoF'ib Suite

While developing GranSim (and GUM) we have started to collect a set of interesting and non-
trivial parallel programs written in parallel Haskell. These programs are used as a test suite for
GranSim and part of the NoFib Suite of GHC.

Currently this suite contains the following programs:

1. Sieve of Erathostenes (sieve), which creates a bidirectional pipeline, where each processor

filters the multiples of one prime number out of an input list.

2. Warshall’s shortest path algorithm in a graph (warshall), which creates a cyclic pipeline of
processors.

3. A function matmult, which performs a parallel matrix multiplication.
4. A function determinant, which computes for a given square matrix its determinant.

5. A function LinSolv, which solves a given set of linear equations over integers by using multiple
homomorphic images, computing the result in each image via Cramer’s Rule. The main part
of this algorithm is the parallel determinant computation.

6. A function coins, which computes the number of possibilities how to pay a given value with
a given set of coins.

7. An award assignment program, that basically has to compute permutations of a given list

(pperms).
8. A parallel verion of Quicksort (sort).

9. A function word search program soda7, which searches a given grid of letters for a given set
of words.

10. An RSA encryption program rsa (taken out of the sequential nofib suite).
11. An n-queens program queens.
12. The parallel database manager for GUM dcbm. It performs queries to a database in parallel.

13. The bill of materials program bom developed (under GranSim) by Phil Trinder as part of the
Parallel Databases Project.

14. A ray-tracer nray based on a version taken from Kelly’s thesis and ported to GRIP by Ham-
mond.

15. A univariant resultant computation, using the SACLIB library for computer algebra. Mainly
the basic polynomial arithmetic has been taken form that library.

16. One of the FLARE programs, solving a problem in the area of computational fluid dynamics
cfd.

17. A function minimax, which computes for a given position in the game of tic-tac-toe the best
next move using an Alpha-Beta pruning algorithm.
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18. Several NESL programs, including a numerical integration algorithm integrate, a quick hull
algorithm ghull for computing the convex hull of a set of points in a plane, a matrix inversion
based on gauss-jordan elimination mi and a fast fourier transformation ££ft. All algorithms
are based on the NESL versions published by Guy Blelloch in CACM 39(3) and translated to
Haskell.

19. A Newton-Raphson iteration for finding a root of a polynomial. This program has been taken
from the Impala suite of implicitly parallel benchmark programs (written in Id).

Despite its name the parallel nofib suite also contains some fib-ish programs. These programs
should be of interest for getting a start with parallel functional programming using GranSim:

1. A parallel factorial function (parfact), which computes the sum of all numbers from 1 up to
a given value n by bisecting the interval and computing results of the intervals in parallel.

2. A parallel fib-like function (parfib), which performs an additional gcd computation and 2
additional multiplications in each recursive call.
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10 Internals

This chapter discusses details of the implementation of GranSim.

[THIS TEXT IS TAKEN FROM A DRAFT OF A PREVIOUS PAPER. IT NEEDS UPDATES TO COVER
THE MORE RECENT CHANGES LIKE ADDING GRANSIM-LIGHT. SEE aALso THE HPFC’95 PAPER
FOR THE BASICS]

10.1 Global Structure

The following picture depicts the global structure of GranSim

TYPE
WHEN TSO
PE

Statistics Buffer

Global Event Queue
Spark Pool Thread Pool

S O G

Proc 1 Proc 2 D Proc n

GranSim performs an event driven simulation with a centralised event queue. FEach of the
simulated processors has its own spark queue and thread queue as well as its own clock. The
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synchronisation of the clocks is performed via accessing the event queue which is sorted by the time

stamps of the events.

10.2 Accuracy

GranSim is built on top and therefore makes use of a state-of-the-art compiler for Haskell
including a huge variety of possible optimisations that can be performed. The instruction count
function, which determines the number of instructions that are executed for a given piece of abstract
C code, has been carefully tuned by analysing the assembler code generated by GHC and the results
have been compared with the number of instructions executed in real Haskell programs. These
comparisons have shown that the instruction count of the simulation lies within 10% for arithmetic
operations, within 2% for load, store operations, within 20% for branch instructions and within
14% for floating point instructions of the real values.

To allow the modelling of different kinds of architectures the instructions have been split into
five classes, with different weights: arithmetic operations, floating point operations (1 cycle each),
load, store operations (4 cycles each) and branch instructions (2 cycles). These weights model a
SPARC processor and have been verified with Haskell programs in the nofib suite. The weights are
tunable in order to simulate other kinds of processors.

10.3 Flexibility

GranSim has a big number of tunable parameters (see (undefined) [RTS Options], page (unde-
fined)). One set of parameters allows to model a broad variety of processors. To achieve a similar
accuracy as for SPARC processors the same kind of measurements can be performed. Another set
of parameters allows to tune the costs for communication latency, message pack time etc. Finally,
the overhead imposed by the runtime-system can be captured by adjusting the parameters for task
creation time, context switch time etc. This allows us to model architectures ranging from shared
memory to distributed memory machines. And we can quite easily simulate the effect of some small

changes in the runtime system on the overall behaviour.

Additionally, the GranSim-Light setup allows to study the parallelism inherent in a program
rather than choosing a fixed architecture to run the program on. Our experiences with parallelising
rather big programs show that this is an important additional feature for tuning the performance
of a parallel program.
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10.4 Visualisation

Especially for analysing the granularity of the created tasks, we need visualisation tools. We
have developed a set of tools for that purpose and used it on a quite wide range of example programs
to analyse their performance (see Chapter 9 [Parallel NoFib Suite], page 59). With these tools we
were able to show a very high correlation between execution time and the amount of allocated heap
space. Apart from these tools showing the granularity of the resulting tasks, we have also developed
a set of tools for showing the activity of the simulated machine as a whole, of all processors and of all
tasks in the system. These tools have proven indispensable in the parallelisation and optimisation
of a linear system solver. Based on the experience from this implementation, such tools are essential
when working with a lazy language, in which the order of evaluation is not at all obvious from the
program source. See Chapter 7 [Visualisation Tools], page 39 for a more detailed discussion of these

tools.

10.5 Efficiency

The high accuracy in the simulation also implies a rather high overhead for the simulation as
more bookkeeping has to be done. This is mainly due to the exact modelling of communication.
Therefore, programs that perform a lot of communication will impose a higher overhead on the
simulation. Early measurements of some example programs on GranSim showed a factor between
14 and more than 100 between a GranSim simulation and an optimised sequential execution. In
the meantime we have spent some effort in improving the efficiency of the simulator. The most
recent measurements show factors between 10 and 15. Regarding the amount of information we
generate out of a simulation we think that is an acceptable factor. Especially a comparison with
another simulator for annotated Haskell programs, HBCPP, is of interest. Using a set of small
example programs GranSim was between 1.5 and 2 times slower than HBCPP. In some cases the
GranSim-Light setup was about as fast the HBCPP version.

We observed one potential problem of the GranSim-Light setup, though. If the parallel program
creates a huge number of parallel threads (several thousand) the bookkeeping of all these running
threads slows down the simulation significantly. This might make the GranSim-Light setup slower
than the plain GranSim setup, which has a limited number of running threads. In such a setup it

is advisable to increase the time slice for each thread in the simulation (-bwN option).
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10.6 Integration into GHC

GranSim is part of the overall GHC system. Therefore, it is possible to use all the features
of a compilation via GHC for GranSim, too. Especially, the ccall mechanism can be used to
call C functions in a parallel program (indeed, we have experimented with the use of a computer
algebra library in implementing a parallel resultant algorithm). Also the interaction between cer-
tain optimisations like deforestation and the parallel execution of a program should be of interest
(deforestation might eliminate intermediate lists that are crucial for the parallel execution of the
program).

Finally, in parallelising the LOLITA natural language processing system it was crucial to have
an profiler for the sequential version of the program available. This allowed us to determine the
important parts of the computation early on in the parallelisation process.
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11 GranSim vs GUM

[MAINLY A PLACEHOLDER FOR A REAL COMPARISON]

In a nutshell: The GUM runtime-system is very close to GranSim. To a fairly large degree the
same code is used by both versions. The main source of inaccuracy is the modelling of stealing
sparks and threads. GUM uses a fishing mechanism: a fish message is sent from processor to
processor, looking for sparks. In GranSim we use the global knowledge of the system and weigh the
costs for stealing a spark with the inverse of the probability of hitting a processor with available
sparks. Furthermore, there is no counterpart of GUM’s FETCHME closures as pointers to remote

data in GranSim.

On the other hand, GranSim is also significantly more powerful than GUM. It supports thread
migration, offers different strategies for packing a graph (based on the number of thunks), and it
allows to choose between different fetching strategies, when deciding what to do while one thread
fetches remote data. These features mainly deal with the aspect of data locality in the program.

Another important aspect for the performance of the granularity of the parallel program. This
can be tuned by choosing among three basic methods for granularity control (see Section 5.6

[Granularity Control Mechanisms], page 23).



Chapter 12: Future Extensions

12 Future Extensions

This version of GranSim should be fairly stable. It has been stress tested on a number of non-
trivial programs (including a program of more than 100,000 lines of Haskell and wee bit of C). It

contains most of the features I want to have in it.

One future extension of GranSim might be the implementation of a more accurate modelling of
the spark/thread stealing mechanism (based on GUM’s fishing model).
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13 Bug Reports

Send all bug reports, including the source of the failing program, the compile and RTS options

and the error message to

hwloidl@edcs.gla.ac.uk
Be sure to add "GranSim Bug" in the subject line.

Earlier versions of GranSim sometimes had problems when using the generational garbage col-
lector (default). If you meet problems with GranSim you can try the following:

e Use the option -Sstderr to get garbage collection messages. This will tell you whether there

is any garbage collection going on.

e Increase the heap size. This should give you a hint whether the problem is related to garbage

collection at all.

e Try to use the runtime-system options -F2s to force two-space garbage collection. This garbage
collector uses more heap than the generational one. Whenever | had problems with a test
program before it just went away with this garbage collector.

e Perhaps also use -Z (this omits update frame squeezing; you don’t have to worry about what

that means, though).

In any case, please report it as a bug to the above address.
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Appendix A Example Program: Determinant
Computation

The example program in this chapter is a parallel determinant computation. It uses the data

type SqMatrix a to represent a matrix as a list of list together with its bounds.

For getting a parallel version of the program strategies (see Section 6.5 [A Class of Strategies],
page 35) are used. Thus, much of the parallelism comes from applying the parList strategy. In
order to demonstrate the use of strategies in a parallel functional program this example contains

parallelism down to a very fine granularity.

determinant :: (NFDatalntegral a) => SqMatrix a -> a

determinant (SqMatrixC ((ilo,jLo),(iHi,jHi)) mat)
| jHi-jLo+1l == 1 = let
[[mat_1_1]] = mat
in
mat_1_1
let
[[mat_1_1,mat_1_2],
[mat_2_1,mat_2_2] ] = mat
a =mat_1_1 * mat_2_2
b =mat_1_2 * mat_2_1
strategy r = a ‘par‘ b ‘par‘ ()
in
a - b ‘using‘ strategy

| jHi-jLo+1 == 2

| otherwise =
sum (l_par ‘using‘ parList rnf)

where
newLine _ [] = []

newline j line = pre ++ post ‘using‘ strategylN

where
pre = [ line !'! (k-1) | k <= [jlo..j-1] ]
post = [ line !'! (k-1) | k <= [j+1..jHi] ]

strategyN r = pre ‘par‘ post ‘par‘ ()
determinel j = (if pivot > O then
sign*pivot*det’ ‘using‘ strategyD1
else
0) ‘using‘ sPar sign
where
sign = if (even (j-jLo)) then 1 else -1
pivot = (head mat) !! (j-1)
mat’ = SqMatrixC ((ilo,jLo),(iHi-1,jHi-1))
(map (newLine j) (tail mat))
det’ = determinant mat’
strategyDl r =
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< <

parSqMatrix (parList rwhnf) mat’ ‘seq
det’ ‘par‘ Q)
1l_par = map determinel [jLo..jHi]
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