Übungen zur Funktionentheorie I

— Blatt 8 —

Abgabe: Mittwoch, den 13.6.2007, vor der Vorlesung.

(1) (4 Punkte)

Eine 2-fach stetig diffbare Funktion $f:D\to\mathbb{C}$ auf einem Gebiet $D\subset\mathbb{C}$ heißt harmonisch, falls

$$\Delta f := \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$$

auf D gilt.

- (i) Beschreibe Δ durch $\frac{\partial}{\partial z}$ und $\frac{\partial}{\partial \overline{z}}$.
- (ii) Beweise: Jede holomorphe Funktion f ist harmonisch, ebenso \overline{f} , Re f und Im f.
- (ii) Die Funktion $\ell(z) := \log |z|$ ist beliebig oft (reell) diffbar auf \mathbb{C}^{\times} . (Beweis!) Bestimme $\frac{\partial \ell}{\partial z}$, $\frac{\partial \ell}{\partial \overline{z}}$. Ist ℓ holomorph bzw. harmonisch?

(2) (4 Punkte)

Sei $f \in \mathcal{O}(\mathbb{B}, \mathbb{C}), \mathbb{B} = \{z \in \mathbb{C} : |z| < 1\}.$ Es gelte

$$|f(z)|^2 \le 1 - |z|^2 \quad \forall z \in \mathbb{B}.$$

Beweise: f = 0.

Hinweis: Wende das Maximumprinzip für $\{z \in \mathbb{C} : |z| \leq r\}$ an, wobei r < 1 beliebig ist.

(3) (3 Punkte)

Folgere aus dem Identitätssatz: Für jedes Gebiet $D \subset \mathbb{C}$ ist der Ring $\mathcal{O}(D,\mathbb{C})$ der holomorphen Funktionen nullteilerfrei, d.h. ein Integritätsring.

(4) (5 Punkte)

Sei $D := \{z \in \mathbb{C} : |z| < 2\pi\}$. Definiere $f : D \to \mathbb{C}$ durch

$$f(z) = \begin{cases} \frac{z}{e^z - 1} & z \neq 0\\ 1 & z = 0 \end{cases}.$$

- (i) Beweise: f ist holomorph auf D. (Hinweis: Betrachte g(z) = 1/f(z).)
- (ii) Betrachte die zugehörige Potenzreihenentwicklung

$$f(z) = 1 + \sum_{n>1} a_n z^n.$$

Bestimme a_1 und zeige $a_{2m+1} = 0$ für $m \ge 1$.

(*Hinweis*: Zeige nach Berechnung von a_1 , dass $f(z) - a_1 z$ eine gerade Funktion ist.)

(iii) Definiere die Bernoulli-Zahlen

$$B_m := m! \, a_m \qquad (m \ge 0) \; .$$

Beweise die Rekursionsformel

$$\binom{n}{0}B_0 + \binom{n}{1}B_1 + \dots + \binom{n}{n-1}B_{n-1} = 0 \qquad (n \ge 2).$$

unf folgere $B_m \in \mathbb{Q}$ für alle $m \geq 0$. (Hinweis: Betrachte $f(z) \cdot (e^z - 1)$.)