Komplexe und harmonische Analysis

- Blatt 1 -

Abgabe Dienstag, 27.04.2010, 10 Uhr s.t.

Aufgabe 1. (4 Punkte)

a) Konstruiere eine C^{∞} -Funktion $g: \mathbb{R} \to [0,1]$, für die

$$g(x) = 0$$
 für $x < 0$ und $g(x) = 1$ für $x > 1$

gilt.

Hinweis: Betrachte zunächst die Funktion $f(x) = \exp(-1/x^2)$ für $x \neq 0$, f(0) = 0.

b) Sei $B_r(p) = \{x \in \mathbb{R}^n \mid ||x|| < r\}$. Konstruiere eine C^{∞} -Funktion $h : \mathbb{R}^n \to [0, 1]$, die auf $B_1(0)$ konstant 1 ist und auf $\mathbb{R}^n \setminus B_2(0)$ verschwindet.

Aufgabe 2. (4 Punkte)

Definiere wie in der Vorlesung das Produkt

$$(a_1, b_1)(a_2, b_2) = (a_1a_2, b_1 + a_1b_2)$$

auf der offenen Menge $\Omega=\mathbb{C}^{\times}\times\mathbb{C}\subset\mathbb{C}\times\mathbb{C}\cong\mathbb{R}^{4}$. Wir können C^{∞} -Kurven $\gamma(t)=(a(t),b(t))$ in Ω betrachten, und den zugehörigen Tangentialvektor

$$\dot{\gamma}(0) = (\dot{a}(0), \dot{b}(0)) = \left(\frac{da}{dt}(0), \frac{db}{dt}(0)\right) \in \mathbb{C}^2$$
.

Seien nun zwei Kurven $\gamma_i(t) = (a_i(t), b_i(t))$ (i = 1, 2) gegeben mit $\gamma_i(0) = (1, 0)$ (neutrales Element) und Tangentialvektor $\dot{\gamma}_i(0) = (\alpha_i, \beta_i)$. Berechne die Tangentialvektoren

$$\frac{d}{dt}\Big|_{t=0} \gamma_1(t)\gamma_2(t)$$
 bzw. $\frac{d}{dt}\Big|_{t=0} \frac{d}{ds}\Big|_{s=0} (\gamma_1(t)\gamma_2(s)\gamma_1(t)^{-1}\gamma_2(s)^{-1})$

und drücke sie durch (α_1, β_1) und (α_2, β_2) aus.

Aufgabe 3. (4 Punkte)

Sei $A \subset \mathbb{C}^{\times}$ eine multiplikative Untergruppe und $B \subset \mathbb{C}$ eine additive Untergruppe mit $A \cdot B \subset B$. Definiere

$$\Gamma_{AB} := \{ T_{ab} \mid a \in A, b \in B \}$$
,

wobei $T_{a,b}(z) := az + b$.

- a) Beweise, dass $\Gamma_{A,B}$ eine Gruppe (affiner Transformationen) ist. Wir nennen $\Gamma_{A,B}$ "echt", falls $A \neq \{1\}$ und $B \neq \{0\}$ ist, d.h. $\Gamma_{A,B}$ besteht nicht nur aus Translationen $(A = \{1\})$ bzw. Drehstreckungen $(B = \{0\})$.
- b) Gebe Beispiele an von echten Untergruppen $\Gamma_{A,B}$, mit (reeller) Dimension 0, 1, 2, 3. Dabei bedeutet "Dimension" die Anzahl der unabhängigen reellen Parameter, null-dimensional bedeutet "diskret".
- c) Kann eine echte Untergruppe $\Gamma_{A,B}$ endlich sein?

Aufgabe 4. (4 Punkte)

a) Prüfe, ob die folgenden Abbildungen Gruppenhomomorphismen sind:

$$\alpha: \mathrm{Aff}(\mathbb{C}) \to \mathbb{C}, \ g \mapsto g(0) \ , \quad \beta: \mathrm{Aff}(\mathbb{C}) \to \mathbb{C}^{\times}, \ g \mapsto g'(0) \ .$$

b) Konstruiere eine (möglicherweise endliche) Untergruppe von Aff(\mathbb{C}), die nicht von der Form $\Gamma_{A,B}$ ist (siehe Aufgabe 3).