Komplexe und harmonische Analysis

- Blatt 5 -

Abgabe Donnerstag, 27.5.2010, 10 Uhr s.t.

Aufgabe 17. (4 Punkte)

Beweise, dass die Heisenberg-Gruppe $\mathbb{C} \times \mathbb{T}$ genau das Zentrum $\{0\} \times \mathbb{T}$ besitzt, d.h. ein Element $(a, \sigma) \in \mathbb{C} \times \mathbb{T}$ kommutiert genau dann mit allen Elementen $(b, \tau) \in \mathbb{C} \times \mathbb{T}$, wenn a = 0.

Aufgabe 18. (4 Punkte)

Die (3-dimensionale) Heisenberg-Gruppe $\mathbb{H}_3 = \mathbb{C} \times \mathbb{T}$ kann zu einer 4-dimensionalen Lie-Gruppe G erweitert werden, indem man für $b \in \mathbb{C}$, $\sigma \in \mathbb{T}$ und $s \in \mathbb{T}$ setzt:

$$(\pi(s,b,\sigma)\psi)(z) = \sigma\psi(sz+b) e^{-sz\bar{b}-b\bar{b}/2}.$$

- (i) Bestimme die Verkettung $\pi(s, a, \sigma) \pi(t, b, \tau)$ für $s, t, \sigma, \tau \in \mathbb{T}$ und $a, b \in \mathbb{C}$.
- (ii) Zeige, dass die Transformationen (*) auf $H^2(\mathbb{C})$ unitär sind.

Aufgabe 19. (4 Punkte)

Sei $C \subset \overline{\mathbb{C}} = \mathbb{S}^2$ ein Großkreis, dargestellt in der Form

$$C = C_A := \left\{ z \in \overline{\mathbb{C}} \mid (z, 1) A \begin{pmatrix} \overline{z} \\ 1 \end{pmatrix} = 0 \right\}$$

für eine geeignete 2×2 -Matrix A.

(i) Bestimme die bi-holomorphen Automorphismen $G=\mathrm{Hol}(D)\subset\mathrm{SL}(2,\mathbb{C})$ des Gebietes

$$D := \text{"Inneres" von } C_A.$$

(ii) Beschreibe (i) D_i = obere Halbebene, (ii) D_{-1} = linke Halbebene, sowie D_{∞} = Äußeres des Einheitskreises mit Hilfe geeigneter Großkreise C_i , C_{-1} , C_{∞} und beschreibe die zugehörigen Gruppen G_i , G_{-1} , G_{∞} in $\mathrm{SL}(2,\mathbb{C})$.

Aufgabe 20. (4 Punkte)

Die 3 Großkreise $\mathbb{R} \cup \infty$, $i\mathbb{R} \cup \infty$, \mathbb{T} in $\overline{\mathbb{C}}$ bestimmen jeweils 2 "Halbkugeln", mit 8 "Viertelkugeln" als Durchschnitt.

- (i) Beschreibe die Halbkugeln durch jeweils eine Ungleichung.
- (ii) Beschreibe die Viertelkugeln durch jeweils zwei Ungleichungen.
- (iii) Finde eine endliche Untergruppe $\Gamma \subset SL(2,\mathbb{C})$ von "Cayley-Transformationen", welche die Halbkugeln permutiert und so dass es zu je zwei Halbkugeln ein Element der Untergruppe gibt, das die beiden Halbkugeln vertauscht.
- (iv) Versuche eine ähnliche Konstruktion für die Viertelkugeln (vermutlich muß die (nicht-holomorphe) komplexe Konjugation einbezogen werden). Schreibe die entstehende Gruppe als halbdirektes Produkt $\Gamma \times \mathbb{Z}_2$.