Sei $\pi(x) = \#\{p \le x : p \in \mathbb{P}, x \in \mathbb{R}\}$ die Anzahl der Primzahlen kleiner einer festen reellen Zahl x. Wir betrachten $\log(x)$ den natürlichen Logarithmus und definieren diesen als $\log(x) := \int_{-t}^{x} \frac{1}{t} dt$.

Als Nächstes vergleicht er die Fläche unter dem Graphen von $f(t) = \frac{1}{t}$ mit einer oberen Treppenfunktion.

Für $n \le x \le n+1$, $n \in \mathbb{N}$, gilt $\log(x) \le 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n} \le \sum_{i=1}^{n} m_i$, wobei die Reihe alle $m \in \mathbb{N}$, die nur Primteiler $p_i \le x$ besitzt, aufsummiert.

Da m wie jede natürliche Zahl sich eindeutig als Produkt aus Vielfachen der Primteiler darstellen lässt, ergibt sich $\sum_{k=0}^{\infty} \frac{1}{m} = \prod_{p \leq x, p \in \mathbb{P}} (\sum_{k \geq 0} \frac{1}{p^k})$.

Die innere Summe $\sum_{k\geq 0} \frac{1}{p^k}$ ist eine geometrische Reihe und hat somit den Grenzwert $\frac{1}{1-\frac{1}{p}}$. Daraus ergibt sich die Ungleichung

$$\log x \le \prod_{p \le x, p \in \mathbb{P}} \left(\sum_{k \ge 0} \frac{1}{p^k} \right) = \prod_{p \le x, p \in \mathbb{P}} \left(\frac{1}{1 - \frac{1}{p}} \right) =$$

$$\prod_{p \le x, p \in \mathbb{P}} \frac{p}{p-1} = \prod_{k=1}^{\pi(x)} \frac{p_k}{p_k - 1}$$

Für $p_k \ge k+1$ folgt deshalb

$$\frac{p_k}{p_k - 1} = 1 + \frac{1}{p_k - 1} \le 1 + \frac{1}{k} = \frac{k + 1}{k}.$$

Es ergibt sich

$$\log(x) \le \prod_{k\ge 0}^{\pi(x)} \frac{k+1}{k} = \pi(x) + 1.$$