Hilfssatz 1: Erinnern wir uns an die Eulersche Polyederformel aus der letzten Stunde:

Sei G ein zusammenhängender planarer Graph mit e Knoten, k Kanten und f Flächen. Dann gilt:

$$e - k + f = 2$$
.

<u>Hilfssatz 2:</u> Sei G ein zusammenhängender einfacher planarer Graph mit $e \ge 3$ Knoten und k Kanten. Dann gilt: $k \le 3e - 6$.

Beweis (durch trickreiche Abzählungen):

- o Für eine Fläche L eines planaren Graphen sei:
 - (a) g = die Anzahl der Kanten dieser Fläche
 - (b) f = die Anzahl der Flächen.
 - (c) Σ g sei die Summe der Kanten aller Flächen:
 - (1) Weil jede Fläche mindestens drei Kanten hat,

gilt: Σ **g** \geq 3f.

(2) Jede Kante grenzen an höchstens zwei Flächen an: Σ **g** (Summe aller Flächenkanten) $\leq 2k$. (jede Kante wird maximal zweimal gezählt)

Zusammen folgt: $2k \ge \Sigma$ **g** $\ge 3f$, d.h. $f \le 2k/3$.

Einsetzen in die Eulersche Polyederformel liefert:

$$e - k + 2k/3 \ge e - k + f = 2$$
, also $k \le 3e - 6$.

Hilfssatz 3: Jeder einfache, planare Graph enthält eine Ecke, deren Grad höchstens fünf ist.

Widerspruchsbeweis:

Annahme: Der Graph ist planar, zusammenhängend und enthält mindestens drei Knoten

Hätte nun jeder Knoten mindestens den Grad sechs, so gilt:

- (a) Jede Kante grenzt an höchstens zwei Flächen an: $\Sigma \mathbf{g} \leq 2\mathbf{k}$.
- (b) Die Summe aller Kanten ist größer gleich der sechsfachen Anzahl der

Ecken: $\Sigma \mathbf{g} \ge 6\mathbf{e}$.

 $6e \le \Sigma g \le 2k \text{ (also } 3e \le k)$

Nach Hilfssatz 2 gilt: $3e \le k \le 3e - 6$ Widerspruch!