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where Y is itself a Lévy process. Furthermore, an error estimate for Blumenthal-Getoor
indices larger than one is included together with results of numerical experiments.

Keywords. Multilevel Monte Carlo, numerical integration, quadrature, Lévy-driven stochas-
tic differential equation.

2000 Mathematics Subject Classification. Primary 60G51, Secondary 60H10, 60J75

1



1 Introduction

In this article, we analyze numerical schemes for the evaluation of

S(f) := E[f(Y )],

where Y = (Yt)t∈[0,1] is a solution to a multivariate stochastic differential equation driven by a
multidimensional Lévy process, and f : D[0, 1] → R is a Borel measurable mapping from the
Skorokhod space D[0, 1] of RdY -valued functions over the time interval [0, 1] that is Lipschitz
continuous with respect to supremum norm.

This is a classical problem which appears for instance in finance, where Y models the risk
neutral stock price and f denotes the payoff of a (possibly path dependent) option, and in the
past several concepts have been employed for dealing with it. We refer in particular to [PT97],
[Rub03], and [JKMP05] for an analysis of the Euler scheme for Lévy-driven SDEs.

Recently, Giles [Gil08b] introduced the so called multilevel Monte Carlo method in the context
of stochastic differential equations, and this turned out to be very efficient when Y is a continuous
diffusion. Indeed, it can be shown that it is optimal on the Lipschitz class [CDMGR08], see also
[Gil08a, Avi09] for further recent results and [MGR09] for a survey and further references.

In this article, we analyze multilevel Monte Carlo algorithms for the computation of S(f) with
a focus on path dependent f ’s that are Lipschitz functions on the space D[0, 1] with supremum
norm. In order to gain approximative solutions we decompose the Lévy process in a purely
discontinuous Lévy martingale with discontinuities of size smaller than a threshold parameter
and a Lévy process with discontinuities larger than the former parameter. The latter process
can be efficiently simulated on an arbitrary finite time set and we apply an Euler approximation
to get approximative solutions for the stochastic differential equation (see for instance [Rub03]
for an analysis of such approximations).

The article is structured as follows. In the next subsection 1.1, the main notation as well
as the assumptions for the SDE are stated. Furthermore, basic facts concerning the Lévy-Ito-
decomposition of a Lévy process are given as a reminder. The actual algorithm, and in particular
the coupled Euler schemes, are described in detail in section 2, while the main result and the
right choice of the parameters of the algorithm are postponed to section 3. Both depend on

g(h) ≥
∫ |x|2

h2
∧ 1 ν(dx) on (0,∞) and on whether the driving Lévy process has a Brownian

component.
Let us explain our main findings in terms of the Blumenthal-Getoor index (BG-index) β of

the driving Lévy process which is an index in [0, 2]. It measures the frequency of small jumps,
see (12), where a large index corresponds to a process which has small jumps at high frequencies.
If the Blumenthal-Getoor index is smaller than one, appropriately adjusted algorithms achieve
the same error bounds as those obtained in Giles [Gil08b] for continuous diffusions i.e., the
error is of the order n−1/2(log n)3/2 in terms of the computation time n (in the case where f
depends on the whole trajectory and is Lipschitz w.r.t. supremum norm). If the driving Lévy
process does not include a Wiener process one even obtains error estimtates of order n−1/2.
Unfortunately the error rates become significantly worse for larger Blumenthal-Getoor indices. In
this case, a remedy would be to incorporate a Gaussian term as compensation for the disregarded
discontinuous Lévy martingale (see for instance [AR01]).

Derivations of convergence rates for multilevel schemes are typically based on a weak and
a strong error estimate for the approximative solutions. In this article, the main technical tool
is an error estimate in the strong sense. We shall use as weak error estimate the one that is
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induced by the strong estimate. As is well known this approach is suboptimal when the payoff
f(Y ) actually does not depend on the whole trajectory of the process Y but on the value of Y at
a particular deterministic time instance. In that case, an analysis based on the weak estimates
of [JKMP05] or [TKH09] seems to be favorable.

Unfortunately, in the case where f is path dependent, one does not have better error estimates
at hand. To gain better results for large BG-indices it is preferable to incorporate a Gaussian
correction. In the case where f(Y ) depends only on the value of the process at a given time
instance, one can combine the strong estimate of this article with weak estimates of [JKMP05]
to improve the error estimates. However, to do so one has to impose significantly stronger
assumptions on f and the Lévy process. The case where f is path dependent is analyzed in a
forthcoming article [Der10]. Here the strong estimate of this article is combined with a new weak
estimate for the approximative solutions with Gaussian correction.

1.1 Assumptions and Basic Facts

Let us now introduce the main notation. We denote by | · | the Euclidean norm for vectors as well
as the Frobenius norm for matrices. For h > 0, we put Bh = {x ∈ RdX : |x| < h}. Moreover, we
let D[0, 1] denote the space of càdlàg functions from [0, 1] to RdY , where RdY is the state space of
Y to be defined below. The spaceD[0, 1] is endowed with the σ-field induced by the projections on
the marginals (or, equivalently, the Borel-σ-field for the Skorokhod topology). Often, we consider
supremum norm on D[0, 1] and we denote ‖f‖ = supt∈[0,1] |f(t)| for f ∈ D[0, 1]. Furthermore,
the set of Borel measurable functions f : D[0, 1] → R, that are Lipschitz continuous with
Lipschitz constant one with respect to the supremum norm is denoted by Lip(1). In general,
we write f ∼ g iff lim f/g = 1, while f . g stands for lim sup f/g ≤ 1. Finally, f ≈ g means
0 < lim inf f/g ≤ lim sup f/g <∞, and f - g means lim sup f/g <∞.

Let X = (Xt)t≥0 denote a dX -dimensional L2-Lévy process with Lévy measure ν, drift
parameter b and Gaussian covariance matrix ΣΣ∗, that is a process with independent and
stationary increments satisfying

E[ei〈θ,Xt〉] = etψ(θ), θ ∈ RdX

for

ψ(θ) = −1

2
|Σ∗θ|2 + i〈b, θ〉+

∫
RdX

(
ei〈θ,x〉 − 1− i〈θ, x〉

)
ν(dx).

Briefly, we call X a (ν,ΣΣ∗, b)-Lévy process. Note that we do not need to work with a trunca-
tion function since the marginals of the process are in L2(P) by assumption. We consider the
stochastic integral equation

Yt = y0 +

∫ t

0
a(Ys−) dXs (1)

with deterministic initial value y0 ∈ RdY and we impose a standard Lipschitz assumption on the
function a, which implies, in particular, existence and strong uniqueness of the solution. More
precisely, we require the following

Assumption A: For a fixed K <∞, the function a : RdY → RdY ×dX satisfies

|a(y)− a(y′)| ≤ K|y − y′|
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for all y, y′ ∈ RdY . Furthermore, we have

|a(y0)| ≤ K, 0 <

∫
|x|2 ν(dx) ≤ K2, |Σ| ≤ K and |b| ≤ K.

For a general account on Lévy processes we refer the reader to the books by [Ber98] and
[Sat99]. Moreover, concerning stochastic analysis, we refer the reader to the books by Protter
[Pro05] and Applebaum [App04].

The distribution of the driving Lévy process X is uniquely characterized by the parameters
b ∈ RdX ,Σ ∈ RdX×dX and ν. We sketch a construction of X with a view towards simulation in
the multilevel setting. This construction is based on the L2-approximation of Lévy processes as
it is presented in [Pro05] and [App04].

Consider a stochastic process (N(t, A))t≥0,A∈B(RdX \{0}) on some probability space (Ω,A, P )
with the following properties. For every ω ∈ Ω the mapping [0, t] × A 7→ N(t, A)(ω) induces a
σ-finite counting measure on B(R+ × (RdX\{0})). For every A ∈ B(RdX\{0}) that is bounded
away from zero the process (N(t, A))t≥0 is a Poisson process with intensity ν(A). For pairwise
disjoint sets A1, . . . , Ar ∈ B(RdX\{0}) the stochastic processes (N(t, A1))t≥0, . . . , (N(t, Ar))t≥0

are independent.
ThenN(t, .) P -a.s. defines a finite measure onBc

h with values in N0. The integral
∫
Bch
xN(t,dx)

thus is a random finite sum, which gives rise to a compound Poisson process. More specifically
put λ(h) = ν(Bc

h) < ∞, which satisfies λ(h) > 0 for sufficiently small h > 0. In this case
µ(h) = ν|Bch/λ

(h) defines a probability measure on RdX\{0} such that

∫
Bch

xN(t,dx)
d
=

Nt∑
i=1

ξi, (2)

where
d
= denotes equality in distribution, (Nt)t≥0 is a Poisson process with intensity λ(h) and

(ξi)i∈N is an i.i.d. sequence of random variables with distribution µ(h) and independent of (Nt)t≥0.
Its expectation calculates to E

[∫
Bch
xN(t,dx)

]
= F0(h)t, where we set

F0(h) =

∫
Bch

x ν(dx).

The compensated process L(h) = (L(h)

t )t≥0, given by

L(h)

t =

∫
Bch

xN(t,dx)− tF0(h), (3)

is an L2-martingale, and the same holds true for its L2-limit L = (Lt)t≥0 = limh↓0 L
(h), see, e.g.,

Applebaum [App04].
With W denoting a dX -dimensional Brownian motion independent of L, we define the Lévy

process X by

Xt = ΣWt + Lt + bt. (4)

We add that the Lévy-Itô-decomposition guarantees that every L2-Lévy process has a represen-
tation (4).
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2 The Algorithm

2.1 A Coupled Euler Scheme

The multilevel Monte Carlo algorithm introduced in Section 2.2 is based on a hierarchy of
coupled Euler schemes for the approximation of the solution process Y of the SDE (1). In every
single Euler scheme we approximate the driving process X in the following way. At first we
neglect all the jumps with size smaller than h. The jumps of size at least h induce a random
time discretization, which, because of the Brownian component, is refined so that the step sizes
are at most ε. Finally W as well as the drift component are approximated by piecewise constant
functions with respect to the refined time discretization. In this way, we get an approximation
X̂(h,ε) of X. The multilevel approach requires simulation of the joint distribution of X̂(h,ε) and
X̂(h′,ε′) for different values of h′ > h > 0 and ε′ > ε > 0. More precisely, we proceed as follows.

For any càdlàg process L we denote by ∆Lt = Lt − lims↗t Ls the jump-discontinuity at
time t. The jump times of L(h) are then given by T (h)

0 = 0 and

T (h)

k = inf{t > T (h)

k−1 : ∆L(h)

t 6= 0}

for k ≥ 1. The time differences T (h)

k − T (h)

k−1 form an i.i.d. sequence of random variables that
are exponentially distributed with parameter λ(h). Furthermore, this sequence is independent of
the sequence of jump heights ∆L(h)

T
(h)
k

, which is i.i.d. with distribution µ(h), and on every interval

[T (h)

k , T (h)

k+1) the process L(h) is linear with slope −F0(h). See (2) and (3).

The processes ∆L(h′) and ∆(L(h) − L(h′)) are independent with values in {0} ∪ Bc
h′ and

{0} ∪ Bc
h\Bc

h′ , respectively, and therefore the jumps of the process L(h′) can be obtained from
those of L(h) by

∆L(h′)
t = ∆L(h)

t · 1{|∆L(h)
t |>h′}

.

We conclude that the simulation of the joint distribution of (L(h), L(h′)) only requires samples
from the jump times and jump heights T (h)

k and ∆L(h)

T
(h)
k

, respectively, which amounts to sampling

from µ(h) and from an exponential distribution.
Because of the Brownian component we refine the time discretization by T (h,ε)

0 = 0 and

T (h,ε)

j = inf{T (h)

k > T (h,ε)

j−1 : k ∈ N} ∧ (T (h,ε)

j−1 + ε) (5)

for j ≥ 1. Summarizing, X is approximated at the discretization times Tj = T (h,ε)

j by X̂(h,ε)

0 = 0
and

X̂(h,ε)

Tj
= X̂(h,ε)

Tj−1
+ Σ(WTj −WTj−1) + ∆L(h)

Tj
+ (b− F0(h))(Tj − Tj−1)

for j ≥ 1. Observe that
X̂(h,ε)

Tj
= ΣWTj + L(h)

Tj
+ bTj .

To simulate the Brownian components of the coupled processes (X̂(h,ε), X̂(h′,ε′)), we refine

the sequence of jump times T (h)

k to get (T (h,ε)

j )j∈N0 and (T (h′,ε′)
j )j∈N0 , respectively. Since W and

L are independent, the process W is easily simulated at all times (T (h,ε)

j )j∈N0 and (T (h′,ε′)
j )j∈N0

that are in [0, 1] by sampling from a normal distribution.
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For the SDE (1) the Euler scheme with the driving process (ΣWt + L(h)

t + bt)t≥0 and the
random time discretization (Tj)j∈N0 = (T (h,ε)

j )j∈N0 is defined by Ŷ (h,ε)

0 = y0 and

Ŷ (h,ε)

Tj
= Ŷ (h,ε)

Tj−1
+ a(Ŷ (h,ε)

Tj−1
)(X̂(h,ε)

Tj
− X̂(h,ε)

Tj−1
) (6)

for j ≥ 1. Furthermore Ŷ (h,ε)

t = Ŷ (h,ε)

Tj
for t ∈ [Tj , Tj+1). In the multilevel approach the solution

process Y of the SDE (1) is approximated via coupled Euler schemes (Ŷ (h,ε), Ŷ (h′,ε′)), which are
obtained by applying the Euler scheme (6) to the coupled driving processes X̂(h,ε) and X̂(h′,ε′)

with their random discretization times T (h,ε)

j and T (h′,ε′)
j , respectively.

2.2 The Multilevel Monte Carlo Algorithm

We fix two positive and decreasing sequences (εk)k∈N and (hk)k∈N, and we put Y (k)

t = Ŷ
(hk,εk)

t .
For technical reasons we define Y (k)

t for all t ≥ 0, although we are typically only interested in
Y (k) := (Y (k)

t )t∈[0,1]. For m ∈ N and a given measurable function f : D[0, 1] → R with f(Y (k))
being integrable for k = 1, . . . ,m, we write E[f(Y (m))] as telescoping sum

E[f(Y (m))] = E[f(Y (1))] +

m∑
k=2

E[f(Y (k))− f(Y (k−1))].

In the multilevel approach each expectation on the right-hand side is approximated separately
by means of independent classical Monte Carlo approximations. For k = 2, . . . ,m we denote by
nk the number of replications for the approximation of E[f(Y (k)) − f(Y (k−1))] and by n1 the
number of replications for the approximation of E[f(Y (1))]. For (Z(k)

j,1 , Z
(k)

j,2)j=1,...,nk being i.i.d.

copies of the coupled Euler scheme (Y (k−1), Y (k)) for k = 2, . . . ,m and (Z(1)

j )j=1,...,n1 being i.i.d.
copies of Y (1), the corresponding multilevel Monte Carlo algorithm is given by

Ŝ(f) =
1

n1

n1∑
j=1

f(Z(1)

j ) +

m∑
k=2

1

nk

nk∑
j=1

[
f(Z(k)

j,2)− f(Z(k)

j,1)
]
.

The algorithm Ŝ is uniquely described by the parameters m and (nk, hk, εk)k=1,...,m so that we

formally identify the algorithm Ŝ with these parameters.

The error of the algorithm

For measurable functions f : D[0, 1] → R with f(Y ), f(Y (1)), . . . , f(Y (m)) being square inte-
grable, the mean squared error of Ŝ(f) calculates to

E[|S(f)− Ŝ(f)|2] = |E[f(Y )− f(Y (m))]|2 + var(Ŝ(f)).

If f is in Lip(1), then

E[|S(f)− Ŝ(f)|2] ≤ E‖Y − Y (m)‖2 +

m∑
k=2

1

nk
E‖Y (k) − Y (k−1)‖2 +

1

n1
E‖Y (1) − y0‖2. (7)

In particular, the upper bound does not depend on the choice of f . Hence (7) remains valid for
the worst case error

e2(Ŝ) = sup
f∈Lip(1)

E[|S(f)− Ŝ(f)|2]. (8)
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The cost of the algorithm

We work in the real number model of computation, which means that we assume that arithmetic
operations with real numbers and comparisons can be done in one time unit. We suppose that

• one can sample from the distribution ν|Bch/ν(Bc
h) for sufficiently small h > 0 and the

uniform distribution on [0, 1] in constant time,

• one can evaluate a at any point y ∈ RdY in constant time, and

• f can be evaluated for piecewise constant functions in time less than a constant multiple
of its breakpoints plus one.

For a piecewise constant RdY -valued function y = (yt)t∈[0,1], we denote by Υ(y) its number

of breakpoints. Then the cost of the algorithm Ŝ is defined by the function

cost(Ŝ) =

m∑
k=1

nk E[Υ(Y (k))]. (9)

Under the above assumptions, the average runtime to evaluate Ŝ(f) is indeed less than a constant
multiple of cost(Ŝ).

3 Results and Examples

We consider algorithms Ŝ as described in the previous section with cost function defined by (9)
and with respect to the worst case error criterion (8). Our results depend on the frequency of
small jumps of the driving process X. To quantify this property and to use it for the choice
of the parameters of the multilevel algorithm we take a a decreasing and invertible function
g : (0,∞)→ (0,∞) such that∫

|x|2

h2
∧ 1 ν(dx) ≤ g(h) for all h > 0.

The explicit choices for the parameters m and (nk, εk, hk)k=1,...,m in the corresponding algorithms
are given after the statement of the main results.

Theorem 1.

(i) If the driving process X has no Brownian component, i.e., Σ = 0, and if there exists γ > 0
such that

g(h) -
1

h(log 1/h)1+γ
(10)

as h ↓ 0, then there exists a sequence of multilevel algorithms Ŝn such that cost(Ŝn) ≤ n
and

e(Ŝn) -
1√
n
.
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(ii) If there exists γ ≥ 1/2 such that

g(h) -
(log 1/h)γ

h
,

as h ↓ 0, then there exists a sequence of multilevel algorithms Ŝn such that cost(Ŝn) ≤ n
and

e(Ŝn) -
1√
n

(log n)γ+1.

(iii) If there exists γ > 1 such that for all sufficiently small h > 0

g(
γ

2
h) ≥ 2g(h), (11)

then there exists a sequence of multilevel algorithms Ŝn such that cost(Ŝn) ≤ n and

e(Ŝn) -
√
n g−1(n).

In terms of the Blumenthal-Getoor index

β := inf
{
p > 0 :

∫
B1

|x|p ν(dx) <∞
}
∈ [0, 2] (12)

we get the following corollary.

Corollary 1. There exists a sequence of multilevel algorithms (Ŝn) with cost(Ŝn) ≤ n such that

sup{γ ≥ 0 : e(Ŝn) - n−γ} ≥
( 1

β
− 1

2

)
∧ 1

2
.

Remark 1. Parts (ii) and (iii) of Theorem 1 deal with stochastic differential equations that
include a Brownian component in the driving process X, i.e. Σ 6= 0, see Section 1.1. Essentially
these two results cover the case Σ 6= 0. When γ = 1/2 in (ii), the asymptotics are the same as in
the classical diffusion setting analyzed in [Gil08b]. Similarly, as in our proof one can also treat
different terms of lower order instead of log. Certainly, it also makes sense to consider γ < 1/2,
when Σ = 0. The computations are similar and therefore omitted. Part (iii) covers, in particular,
all cases where g is regularly varying at 0 with exponent strictly smaller than −1.

As the following remark shows the results of parts (i) and (ii) of Theorem 1 are close to
optimal. In particular, these parts cover the case of a Blumenthal-Getoor index β ≤ 1.

Remark 2. To provide a lower bound we adopt a very broad notion of algorithm that was
introduced and analyzed in [CDMGR08]. Roughly it can be described as follows. An algorithm Ŝ
is allowed to carry out real number computations and evaluations of the functional f for arbitrary
paths from D[0, 1]. The algorithm is required to end in finite time with a possibly random output
Ŝ(f). For fixed f , the mean number of f -evaluations is referred to as cost of the algorithm when
applied to f . Its maximal value over the class Lip(1) is considered as cost of the algorithm Ŝ,
that is

cost(Ŝ) = sup
f∈Lip(1)

E[# of f -evaluations used in the computation of Ŝ(f)].
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For n ∈ N, we consider the optimal worst case error

en := inf
Ŝ

sup
f∈Lip(1)

E[(S(f)− Ŝ(f))2]1/2,

where the infimum is taken over all algorithms Ŝ with cost(Ŝ) ≤ n. Note that any reasonable
implementation of such an algorithm will have a runtime that dominates the cost assigned in
our considerations. Hence, the lower bound provided below prevails in more realistic models.

Suppose that Y = X. Furthermore assume that X includes a Wiener process in which case

we set β = 3
2 or that

∫ |x|2
h2
∧ 1 ν(dx) % h−α for some α ∈ (0, 2) in which case we set β = 1 + 1

α .
Then

lim sup
n→∞

√
n(log n)β en > 0.

The statement follows by combining the lower bound on so called quantization numbers of
Theorem 1.5 of [AD09] with Theorem 3 of [CDMGR08].

The choice for the parameters

The algorithm Ŝ is completely determined by the parameters m and (nk, εk, hk)k=1,...,m and we
now give the parameters which achieve the error estimates provided in Theorem 1. Recall that
Theorem 1 depends on an invertible and decreasing function g : (0,∞)→ (0,∞) satisfying∫

|x|2

h2
∧ 1 ν(dx) ≤ g(h) for all h > 0,

and we set, for k ∈ N,
εk = 2−k and hk = g−1(2k).

We choose the remaining parameters by

m = inf{k ∈ N : C hk < 1} − 1 and nk = bC hk−1c for k = 1, . . . ,m, (13)

where
(i) C = n, (ii) C =

n

(log n)γ+1
, and (iii) C = 1/g−1(n)

in the respective cases. Here we need to assume additionally that g is such that h−2/3 - g(h)
in case (i) and h−1

√
log 1/h - g(h) in case (ii). These assumptions do not result in a loss of

generality. The parameters optimize (up to constant multiples) the error estimate induced by
equation (7) together with Theorem 2 below.

Numerical results

In this section, we provide numerical examples for the new algorithms and compare our approach
with the classical Monte-Carlo approach. We denote by X a symmetric truncated α-stable Lévy
process, that is a (ν, 0, 0)-Lévy process with

dν

dx
(x) = 1l(0,u](x)

c

|x|1+α
+ 1l[−u,0)(x)

c

|x|1+α
, x ∈ R\{0},
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where α ∈ (0, 2), c > 0 and u > 0 denotes the truncation threshold. Note that∫
|x|2

h2
∧ 1 ν(dx) ≤ 2c

2α− α2
h−α = g(h).

so that our theoretical findings (Theorem 1) imply that there exists a sequence of algorithms
(Ŝn) each satisfying the cost constraint cost(Ŝn) ≤ n such that

e(Ŝn) -


n−

1
2 , α < 1

2

n−1/2(log n)3/2, α = 1

n−( 1
α
− 1

2
), α > 1

In the case where α = 1, the rates can be improved to e(Ŝn) - n−
1
2 log n along a similar proof

since the process X does not include a Gaussian term.
In the numerical study we consider a lookback option with strike 1, that is

f(Y ) = ( sup
t∈[0,1]

Yt − 1)+.

We treat the stochastic differential equation

Yt = y0 +

∫ t

0
a(Ys−) dXs

with y0 = 1 and X being a symmetric α-stable Lévy process with parameters u = 1, c = 0.1,
and α ∈ {0.5, 0.8, 1.2}.

In the aproach that is to be presented next, we allow the user to specify a desired precision δ
measured in the root mean squared error. The highest level in the simulation and the iteration
numbers (nk)k=1,...,m are then derived from simulations of the coarse levels. The remaining

parameters are chosen as εk = 2−k and hk =
(

2kα
2c + u−α

)−1/α
which is the uniqe value with

ν(Bc
hk

) = 2k.

To obtain mean squared error at most δ2, we want to choose the highest level m and the
iteration numbers n1, . . . , nm such that

|bias(Ŝδ(f))|2 := |E[f(Y )− f(Ŷ (m))]|2 ≤ δ2

2
(14)

and

var(Ŝδ(f)) ≤ δ2

2
. (15)

A direct estimate for bias(Ŝδ(f)) is not available, and therefore we proceed as follows. Put
biask(f) := E[f(Ŷ (k))−f(Ŷ (k−1))] for k ≥ 2, to obtain bias(Ŝδ(f)) =

∑∞
k=m+1 biask(f), and note

that biask(f) can be estimated for small levels k at a small computational cost. This suggests
to use extrapolation to large levels k. In particular, if there is an exponential decay

|biask(f)| . γ · ρk, (16)
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Figure 1: Estimates of biask(f) and vark(f) with corresponding regression lines.

with γ > 0 and ρ ∈]0, 1[, we have |bias(Ŝδ(f))| . γ/(1− ρ) · ρm+1 and thus (14) holds for

m =

⌈
log((1− ρ)δ)− log(

√
2 · γ)

log(ρ)
− 1

⌉
.

To check the validity of assumption (16), we estimate biask(f) for small levels k (here k ≤ 4 or
k ≤ 5) by the empirical mean of 1000 simulations. It turns out that the estimates for biask(f)
fit very well to the assumption (16), see Figure 1.

For the variance of Ŝδ(f) we proceed in the same way. Put vark(f) := var(f(Ŷ (k))−f(Ŷ (k−1)))
for k ≥ 2 and var1(f) = var(f(Ŷ (1))) to obtain var(Ŝδ(f)) =

∑m
k=1 vark(f)/nk. Estimates of

vark(f) for small levels fit very well to an exponential decay, see Figure 1, and we use ex-
trapolation to large levels again. Finally the replication numbers n1, . . . , nm are determined by
minimizing the cost of Ŝδ(f), which is given by

∑m
k=1 nk2

k, up to a constant, subject to the
constraint (15). For several values of δ, the corresponding choice of replication numbers is shown
in Figure 2.

We now study the relation between (E[S(f) − Ŝδ(f)]2)1/2 and cost(Ŝδ(f)) by means of a
simulation experiment. Here, different precisions δ and the respective replication numbers and
maximal levels are chosen according to Figure 2. We use 1000 Monte Carlo simulations of Ŝδ(f)
to estimate the root mean-squared error and the cost, where the unknown value of S(f) is
replaced by the output of a master computation. The results are presented in a log-log plot in
Figure 3. In this experiment, the empirical orders of convergence, i.e. the slopes of the regression
lines, are close to the asymptotic results from Theorem 1. For α = 0.5 and α = 0.8, the empirical
orders are 0.47 and 0.46, where in both cases the asymptotic result is 1/2. For stability index
α = 1.2, the orders are 0.38 empirically and 1/3 according to Theorem 1.

Let us compare the multilevel algorithm Ŝδ with the classical Monte Carlo scheme. In the
latter case, we do not have a heuristic control of the bias and so we use the strong approximation
error of Theorem 2 as an upper bound. All unknown constants appearing in the error estimate
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as well as the unknown variance are assumed to be 1. Then we determine the parameters h, ε
and the replication number n in order to reach precision δ > 0 for the root mean squared error
to

h =

(
(2− α)

4c
δ2

) 1
2−α

, ε =
1

ν(Bc
h)
, and n =

⌈
2

δ2

⌉
.

The empirical orders of convergence in the classical Monte Carlo algorithm, which are
0.45, 0.34 and 0.23 for α = 0.5, 0.8 and 1.2, are always worse than those of the corresponding
multilevel algorithm. Furthermore, the higher the Blumenthal-Getoor index is, i.e. the harder
the problem is itself, the more we benefit from the multilevel idea, since higher levels are needed
to reach a desired precision.

Concluding, the multilevel scheme provides an algorithm Ŝδ(f) which achieves a superior
order of convergence together with a heuristic control of the error, which is an important feature
in applications.

4 Proofs

Proving the main result requires asymptotic error bounds for the strong approximation of Y
by Ŷ (h,ε) for given ε, h > 0. We derive an error estimate in terms of the function

F (h) :=

∫
Bh

|x|2 ν(dx)

for h > 0.

Theorem 2. Under Assumption A, there exists a constant κ depending only on K such that
for any ε ∈ (0, 1] and h > 0 with ν(Bc

h) ≤ 1
ε , one has

E
[

sup
t∈[0,1]

|Yt − Ŷ (h,ε)

t |2
]
≤ κ

(
ε log(e/ε) + F (h)

)
in the general case and

E
[

sup
t∈[0,1]

|Yt − Ŷ (h,ε)

t |2
]
≤ κ

[
F (h) + |b− F0(h)|2ε2

]
in the case without Wiener process, i.e. Σ = 0.

Remark 3. A similar Euler scheme is analyzed in [Rub03]. There it is shown that the appropri-
ately scaled error process (the discrepancy between approximative and real solution) converges
in distribution to a stochastic process. In the cases where this limit theorem is applicable, it is
straight-forward to verify that the estimate provided in Theorem 2 is of the right order.

Remark 4. In the case without Wiener process the term |b − F0(h)|2ε2 is typically of lower
order than F (h), so that we have in most cases that

E
[

sup
t∈[0,1]

|Yt − Ŷ (h,ε)

t |2
]
. κF (h).
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The proof of Theorem 2 is based on the analysis of an auxiliary process (Ȳt): We decompose
the Lévy martingale L into a sum of the Lévy martingale L′ = L(h) constituted by the sum of
compensated jumps of size bigger than h and the remaining part L′′ = (Lt −L′t)t≥0. We denote
X̄ = (ΣWt + L′t + tb)t≥0, and let Ȳ = (Ȳt)t≥0 be the solution to the integral equation

Ȳt = y0 +

∫ t

0
a(Ȳι(s−)) dX̄s, (17)

where ι(t) = sup[0, t]∩T, and T is the set of random times (Tj)j∈Z+ defined by Tj = T (h,ε)

j as in
(5) in Section 2.1.

Proposition 1. Under Assumption A, there exists a constant κ depending only on K such that
for any ε ∈ (0, 1] and h > 0 with ν(Bc

h) ≤ 1/ε we have

E
[

sup
t∈[0,1]

|Yt − Ȳt|2
]
≤ κ

(
ε+ F (h)

)
in the general case and

E
[

sup
t∈[0,1]

|Yt − Ȳt|2
]
≤ κ

[
F (h) + |b− F0(h)|2ε2

]
in the case without Wiener process, i.e. Σ = 0.

The proof of the proposition relies on the following lemma.

Lemma 1. Under Assumption A, we have

E
[

sup
t∈[0,1]

|Yt − y0|2
]
≤ κ,

where κ is a finite constant depending on K only.

The proof of the lemma can be achieved along the standard argument for proving bounds for
second moments. Indeed, the standard combination of Gronwall’s lemma together with Doob’s
inequality yields the result.

Proof of Proposition 1. For t ≥ 0, we consider Zt = Yt− Ȳt and Z ′t = Yt− Ȳι(t). We fix a stopping
time τ and let zτ (t) = E[sups∈[0,t∧τ ] |Zs|2]. To indicate that a process is stopped at time τ we
put τ in its superscript. The main task of the proof is to establish an estimate of the form

zτ (t) ≤ α1

∫ t

0
zτ (s) ds+ α2

with values α1, α2 > 0 that do not depend on the choice of τ . Then by using a localizing sequence
of stopping times (τn) with finite zτn(1), we deduce from Gronwall’s inequality that

E[ sup
s∈[0,1]

|Ys − Ȳs|2] = lim
n→∞

zτn(1) ≤ α2 exp(α1).
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We analyze

Zt =

∫ t

0
(a(Ys−)− a(Ȳι(s−))) d(ΣWs + L′s) +

∫ t

0
a(Ys−) dL′′s︸ ︷︷ ︸

=:Mt

+

∫ t

0
(a(Ys−)− a(Ȳι(s−))) bds

(18)

with M = (Mt)t≥0 being a local L2-martingale. By Doob and Lemma 3, we get

E sup
s∈[0,t∧τ ]

|Ms|2 ≤ 4E
[∫ t∧τ

0
|a(Ys−)− a(Ȳι(s−))|2 d〈ΣW + L′〉s +

∫ t∧τ

0
|a(Ys−)|2 d〈L′′〉s

]
,

where in general for a local L2-martingale A we set 〈A〉t =
∑

j〈A(j)〉t, where 〈A(j)〉 denotes the
predictable compensator of the classical bracket process of the j-th coordinate of A. Note that
d〈ΣW +L′〉t = (|Σ|2 +

∫
Bch
|x|2 ν(dx)) dt ≤ 2K2 dt and similarly d〈L′′〉t = F (h) dt. Consequently,

by Assumption A and Fubini’s theorem, we get

E sup
s∈[0,t∧τ ]

|Ms|2 ≤ 8K4

∫ t

0
E[1l{s≤τ}|Z ′τs−|2] ds+ 4K2F (h)

∫ t

0
E[(|Ys− − y0|+ 1)2] ds.

Conversely, by the Cauchy-Schwarz inequality and Fubini’s theorem, one has for t ∈ [0, 1] that

E
[∣∣∣∫ t∧τ

0
(a(Ys−)− a(Ȳι(s−))) bds

∣∣∣2] ≤ K4

∫ t

0
E[1l{s≤τ}|Z ′τs−|2] ds.

Using that for a, b ∈ R, (a+ b)2 ≤ 2a2 + 2b2, we deduce with (18) that

E sup
s∈[0,t∧τ ]

|Zs|2 ≤ 18K4

∫ t

0
E[1l{s≤τ}|Z ′τs−|2] ds+ 8K2F (h)

∫ t

0
E[(|Ys− − y0|+ 1)2] ds.

Since Z ′t = Zt + Ȳt − Ȳι(t) we conclude that

E sup
s∈[0,t∧τ ]

|Zs|2 ≤ 36K4

∫ t

0

[
E[|Zτs−|2] + E[1l{s≤τ}|Ȳs− − Ȳι(s−)|2]

]
ds+ 8K2F (h)

∫ t

0
E[(|Ys− − y0|+ 1)2] ds.

By Lemma 1, E[sups∈[0,1](|Ys − y0|+ 1)2] is bounded by a constant, and we get, for t ∈ [0, 1],

zτ (t) ≤ κ1

[∫ t

0

[
zτ (s) + E[1l{s≤τ}|Ȳs− − Ȳι(s−)|2]

]
ds+ F (h)

]
, (19)

where κ1 is a constant that depends only on K.
Next, we provide an appropriate estimate for E[1l{s≤τ}|Ȳt− Ȳι(t)|2]. Since L′ has no jumps on

(ι(t), t) we have

Ȳt − Ȳι(t) = a(Ȳι(t))
[
Σ(Wt −Wι(t)) +

(
b− F0(h)

)
(t− ι(t))

]
so that

E[1l{t≤τ}|Ȳt − Ȳι(t)|2] ≤ 2K2E[(|Ȳ τ
ι(t) − y0|+ 1)2]

[
|Σ|2ε+ |b− F0(h)|2ε2

]
.
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Here we used the independence of the Wiener process and the random times in T. Next, we use
that |Ȳι(t) − y0| ≤ |Yι(t) − y0|+ |Zι(t)| to deduce that

E[1l{t≤τ}|Ȳt − Ȳι(t)|2] ≤ 4K2
[
E[(|Y τ

ι(t) − y0|+ 1)2] + E[|Zτι(t)|
2]
] [
|Σ|2ε+ |b− F0(h)|2ε2

]
.

Recall that E[sups∈[0,1](|Ys− y0|+ 1)2] is uniformly bounded. Moreover, by the Cauchy-Schwarz

inequality, |F0(h)|2 ≤ K2ν(Bc
h) ≤ K2/ε so that the right bracket in the latter equation is

uniformly bounded. Consequently, for t ∈ [0, 1],

E[1l{t≤τ}|Ȳt − Ȳι(t)|2] ≤ κ2

[
|Σ|2ε+ |b− F0(h)|2ε2 + zτ (t)

]
where κ2 is an appropriate constant that depends only on K.

Inserting this estimate into (19) gives

zτ (t) ≤ κ3

[∫ t

0
zτ (s) ds+ |Σ|2ε+ |b− F0(h)|2ε2 + F (h)

]
.

for a constant κ3 that depends only on K. If Σ = 0, then the statement of the proposition follows
from the Gronwall inequality. The general case is an immediate consequence of the estimates

|Σ|2ε ≤ K2ε and |b− F0(h)|2ε2 ≤ 2K2(ε2 + ε) ≤ 4K2ε,

where we used again that |F0(h)|2 ≤ K2/ε.

For the proof of Theorem 2, we need a further lemma.

Lemma 2. Let r ∈ N and (Gj)j=0,1,...,r denote a filtration. Moreover, let, for j = 0, . . . , r − 1,
Uj and Vj denote non-negative random variables such that Uj is Gj-measurable, and Vj is Gj+1-
measurable and independent of Gj. Then one has

E
[

max
j=0,...,r−1

UjVj
]
≤ E

[
max

j=0,...,r−1
Uj
]
· E
[

max
j=0,...,r−1

Vj
]
.

Proof. Without loss of generality we can and will assume that (Uj) is monotonically increasing.
Otherwise, we can prove the result for (Ũj) given by Ũj = maxk≤j Uk instead, and then deduce
the result for the original sequence (Uj).

We proceed by induction. For r = 1 the statement is trivial, since U0 and V0 are independent
random variables. Next, we let r ≥ 1 arbitrary and note that

E[ max
j=0,...,r

UjVj ] = E[ max
j=1,...,r

UjVj ] + E[(U0V0 − max
j=1,...,r

UjVj)
+].

Using the monotonicity of (Uj), we get that

E[(U0V0 − max
j=1,...,r

UjVj)
+|G0] ≤ U0 E[(V0 − max

j=1,...,r
Vj)

+|G0] = U0 E[(V0 − max
j=1,...,r

Vj)
+].

Next, we use the induction hypothesis for E[maxj=1,...,r UjVj ] to deduce that

E[ max
j=0,...,r

UjVj ] ≤ E[Ur]E[ max
j=1,...,r

Vj ] + E[U0]E[(V0 − max
j=1,...,r

Vj)
+]

≤ E[Ur]E[ max
j=0,...,r

Vj ].
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Proof of Theorem 2. By Proposition 1, it remains to find an appropriate upper bound for
E[supt∈[0,1] |Ȳt − Ŷt|2] where we denote Ŷt = Ŷ (h,ε)

t . First note that for all j ∈ N, one has
∆LTj = ∆L′Tj and

L′Tj+1
= L′Tj + ∆L′Tj+1

− (Tj+1 − Tj)F0(h)

so that by definition, the processes (Ȳt) and (Ŷt) coincide almost surely for all times in T (see
(17) and (6)). Hence,

Ȳt − Ŷt = Ȳt − Ȳι(t) = a(Ȳι(t))Σ(Wt −Wι(t))︸ ︷︷ ︸
=:At

+ a(Ȳι(t))
(
b− F0(h)

)
(t− ι(t))︸ ︷︷ ︸

=:Bt

.

Since two neighboring points in T are at most ε units apart we get

E
[

sup
t∈[0,1]

|Bt|2
]
≤ K2 E[(‖Ȳ − y0‖+ 1)2]|b− F0(h)|2ε2. (20)

It remains to analyze

E
[

sup
t∈[0,1]

|At|2
]
≤ K2|Σ|2 E

[
sup
t∈[0,1]

(|Ȳι(t) − y0|+ 1)2|Wt −Wι(t)|2
]
.

We apply Lemma 2 with Uj = 1l{Tj<1}(|ȲTj − y0| + 1)2, Vj = supt∈[Tj ,Tj+1∧1) |Wt −WTj |2 and
Gj = FTj (j = 0, 1, . . . ). For r ∈ N we obtain

E
[

sup
t∈[0,1∧Tr]

|At|2
]
≤ K2|Σ|2 E

[
sup

t∈[0,1∧Tr]
(|Ȳι(t) − y0|+ 1)2

]
E
[

sup
j=0,1,...,r−1

sup
t∈[Tj ,Tj+1∧1)

|Wt −WTj |2
]
.

By Lévy’s modulus of continuity, the term

‖W‖ϕ := sup
0≤s<t≤1

|Wt −Ws|
ϕ(t− s)

is almost surely finite for ϕ : [0, 1] → [0,∞), δ 7→
√
δ log(e/δ) and, by Fernique’s theorem,

E‖W‖2ϕ is finite. Recalling that neighboring points in T are at most ε units apart, we conclude
with the monotonicity of ϕ on [0, 1] that

E
[

sup
j=0,...,r−1

sup
t∈[Tj ,Tj+1∧1)

|Wt −WTj |2
]
≤ E

[
‖W‖2ϕ

]
ϕ(ε)2

Letting r to infinity we arrive at

E
[

sup
t∈[0,1]

|At|2
]
≤ K2|Σ|2 E[‖W‖2ϕ]E

[
sup
t∈[0,1]

(|Ȳι(t)−y0|+ 1)2
]
ϕ(ε)2, (21)

Combining (20) and (21), we get

E[‖Ȳ − Ŷ ‖2] ≤ 2K2 E[(‖Ȳ − y0‖+ 1)2]
(
|Σ|2 E

[
‖W‖2ϕ

]
ϕ(ε)2 + |b− F0(h)|2ε2

)
.

Next, note that by, Proposition 1 and Lemma 1, E[(‖Ȳ − y0‖+ 1)2] is bounded from above by
some constant depending on K only. Consequently, there exists a constant κ with

E[‖Ȳ − Ŷ ‖2] ≤ κ
(
|Σ|2 ϕ(ε)2 + |b− F0(h)|2ε2

)
.

Together with Proposition 1, one immediately obtains the statement for the case without Wiener
process. In order to obtain the statement of the general case, we again use that |

∫
Bch
x ν(dx)|2 ≤

K2/ε due to the Cauchy-Schwarz inequality.
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Proof of part (i) of Theorem 1

We can assume without loss of generality that

1

h2/3
- g(h) -

1

h(log 1/h)1+γ
, (22)

since otherwise, we can modify g in such a way that the new g is larger than the old one and
enjoys the wanted properties. We consider a multilevel Monte Carlo algorithm Ŝ (as introduced
in Section 2.2) with hk = g−1(2k) and εk = 2−k for k ∈ Z+. For technical reasons, we also
define ε0 and h0 although they do not appear in the algorithm. The parameters m ∈ N and
n1, . . . , nm ∈ N are specified below. Note that

ν(Bc
hk

) ≤ g(hk) = 1/εk and εk ≤ 1, (23)

so that by Theorem 2, we have

E[‖Y (k) − Y (k−1)‖2] ≤ 2E[‖Y − Y (k)‖2] + 2E[‖Y − Y (k−1)‖2]

≤ κ1

[
F (hk−1) + |b− F0(hk)|2ε2

k−1

]
.

for some constant κ1 > 0. By Lemma 1 and Theorem 2, E[‖Y (1) − y0‖2] is bounded from above
by some constant depending on K only. Hence, equation (7) together with Theorem 2 imply the
existence of a constant κ2 such that

e2(Ŝ) ≤ κ2

m+1∑
k=1

1

nk

[
F (hk−1) + |b− F0(hk)|2ε2

k−1

]
, (24)

where we set nm+1 = 1. Next, we analyze the terms in (24). Using assumption (10), we have,
for a sufficiently small v ∈ (0, 1) and an appropriate constant κ3,

|F0(hk)| ≤
∫
|x| ν(dx) ≤ 1

v

∫
|x|(v ∨ |x|) ν(dx) ≤ 1

v

∫
Bcv

|x|2 ν(dx) +

∫ v

0
ν(Bc

u) du

≤ 1

v

∫
|x|2 ν(dx) + κ3

∫ v

0

1

u(log 1/u)1+γ
du.

Both integrals are finite. Moreover, we have

F (hk) ≤ g(hk)h
2
k = 2kg−1(2k)2, (25)

and using (22) we get that

1

y3/2
- g−1(y) -

1

y(log y)1+γ
as y →∞. (26)

Hence, we have 2kg−1(2k)2 % 2−2k = ε2
k as k tends to infinity, and there exists a constant κ4

such that

e2(Ŝ) ≤ κ4

m+1∑
k=1

1

nk
2k−1g−1(2k−1)2.
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We shall now fix m and n1, . . . , nm. For a given parameter Z ≥ 1/g−1(1), we choose m =
m(Z) = inf{k ∈ N : Zg−1(2k) < 1} − 1. Moreover, we set nk = nk(Z) = bZg−1(2k−1)c for
k = 1, . . . ,m, and set again nm+1 = 1. Then 1/nk ≤ 2/(Zg−1(2k−1)) for k = 1, . . . ,m + 1, so
that

e2(Ŝ) ≤ κ4

m+1∑
k=1

1

nk
2k−1g−1(2k−1)2 ≤ 2κ4

1

Z

m+1∑
k=1

2k−1g−1(2k−1).

By (26), 2kg−1(2k) - k−(1+γ) and the latter sum is uniformly bounded for all m. Hence,
there exists a constant κ5 depending only on g and K such that

e2(Ŝ) ≤ κ5
1

Z
.

It remains to analyze the cost of the algorithm. The expected number of breakpoints of Y (k)

is less than 1/εk + ν(Bc
hk

) ≤ 2k+1 (see (23)) so that

cost(Ŝ) ≤
m∑
k=1

2k+1nk. (27)

Hence,

cost(Ŝ) ≤ 4Z

m∑
k=1

2k−1g−1(2k−1) ≤ κ6Z,

where κ6 > 0 is an appropriate constant.

Proof of part (ii) of Theorem 1

We proceed similarly as in the proof of part (i). We assume without loss of generality that g
satisfies √

log 1/h

h
- g(h) -

(log 1/h)γ

h
, (28)

since, otherwise, we can enlarge g appropriately. In analogy to the proof of part (i), we choose
hk = g−1(2k) and εk = 2−k for k ∈ Z+, and we note that estimates (23) and (25) remain valid.
Next, we deduce with equation (7) and Theorem 2 that, for some constant κ1,

e2(Ŝ) ≤ κ1

m+1∑
k=1

1

nk

[
F (hk−1)+εk−1 log

e

εk−1

]
≤ κ1

m+1∑
k=1

1

nk

[
2k−1g−1(2k−1)2 +2−(k−1) log(e2k−1)

]
,

where again nm+1 = 1. Note that (28) implies that

√
log y

y
- g−1(y) -

(log y)γ

y
as y →∞, (29)

so that, in particular, 2kg−1(2k)2 % 2−k log(e2k) as k tends to infinity. Hence, we find a constant
κ2 such that

e2(Ŝ) ≤ κ2

m+1∑
k=1

1

nk
2k−1g−1(2k−1)2.
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For a parameter Z ≥ e∨ (1/g−1(1)), we choose m = m(Z) = inf{k ∈ N : Zg−1(2k) < 1}− 1,
and we set nk = nk(Z) = bZg−1(2k−1)c for k = 1, . . . ,m. Then we get with (29) that

e2(Ŝ) ≤ 2κ2
1

Z

m+1∑
k=1

2k−1g−1(2k−1) ≤ κ3
1

Z
mγ+1

for an appropriate constant κ3. By definition, Zg−1(2m) ≥ 1 so that, by equation (28),

m ≤ log g(
1

Z
)/ log 2 - logZ as Z →∞.

Consequently, there exists a constant κ4 such that

e2(Ŝ) ≤ κ4
(logZ)γ+1

Z
.

Similarly, we get for the cost function

cost(Ŝ) ≤
m∑
k=1

2k+1nk ≤ 4Z
m∑
k=1

2k−1g−1(2k−1) ≤ κ5Z(logZ)γ+1.

Next, we choose

Z = Z(n) =
1

2κ5

n

(log n)γ+1

for n ≥ e sufficiently large such that Z ≥ e ∨ (1/g−1(1)). Then

cost(Ŝ) ≤ κ5Z(logZ)γ+1 ∼ 1

2
n,

and we have, for all sufficiently large n, cost(Ŝ) ≤ n. Conversely, we find

e2(Ŝ) ≤ κ4
(logZ)γ+1

Z
≈ (log n)2(γ+1)

n
.

Proof of part (iii) of Theorem 1

First note that property (11) is equivalent to

γ

2
g−1(u) ≤ g−1(2u) (30)

for all sufficiently large u > 0. This implies that there exists a finite constant κ1 depending only
on g such that for all k, l ∈ Z+ with k ≤ l one has

g−1(2k) ≤ κ1

(2

γ

)l−k
g−1(2l). (31)

We proceed similar as in the proof of part (i) and consider Ŝ ∈ A with hk = g−1(2k) and
εk = 2−k for k ∈ Z+. The maximal index m and the number of iterations nk are fixed later in
the discussion. Again estimates (23) and (25) remain valid and we get with Theorem 2

e2(Ŝ) ≤ κ2

m+1∑
k=1

1

nk

[
F (hk−1)+εk−1 log

e

εk−1

]
≤ κ2

m+1∑
k=1

1

nk

[
g−1(2k−1)22k−1 +2−(k−1) log(e2k−1)

]
,
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for a constant κ2 and nm+1 = 1 as before. By (30), we have g−1(2k) % (γ/2)k and recalling that
γ > 1 we conclude that 2−k log(e2k) - g−1(2k)22k as k tends to infinity. Hence, there exists a
constant κ3 with

e2(Ŝ) ≤ κ3

m+1∑
k=1

1

nk
2k−1g−1(2k−1)2.

Conversely, we again estimate the cost by

cost(Ŝ) ≤
m∑
k=1

2k+1nk.

Now we specify m and n1, . . . , nm. For a given parameter Z ≥ 2/g−1(1), we let m = m(Z) =
inf{k ∈ N : Zg−1(2k) < 2} − 1, and set nk = nk(Z) = bZg−1(2k−1)c for k = 1, . . . ,m. Then we
get with (31) that there exists a constant κ4 with

e2(Ŝ) ≤ 2κ3
1

Z

m+1∑
k=1

2k−1g−1(2k−1) ≤ 2κ1κ3
1

Z

m+1∑
k=1

2k−1g−1(2m+1)
(2

γ

)m+1−(k−1)

≤ 2κ1κ3
1

Z
2m+1g−1(2m+1)

m+1∑
k=1

γ−(m+1−(k−1)) ≤ κ4
1

Z
2m+1g−1(2m+1).

Moreover, by (30) one has for sufficiently large m (or, equivalently, for sufficiently large Z) that
Zg−1(2m+1) ≥ γ

2Zg
−1(2m) ≥ γ > 1 so that

e2(Ŝ) ≤ κ42m+1g−1(2m+1)2

Similarly, one obtains
cost(Ŝ) ≤ κ5Z2m+1g−1(2m+1) < 2κ52m+1.

Next, we choose, for given n ≥ 2κ5, Z > 0 such that m = blog2
n

2κ5
c − 1. Then, clearly,

cost(Ŝ) ≤ n and for sufficiently large n we have

e2(Ŝ) ≤ κ4
n

2κ5
g−1
( n

4κ5

)2
- n g−1(n)2 as n→∞.

In the last step, we again used property (30).

Proof of Corollary 1

We assume without loss of generality that β < 2 since otherwise the statement of the corollary
is trivial. We fix β′ ∈ (β, 2] and recall that

C :=

∫
B1

|x|β′ ν(dx)

is finite. We consider ḡ : (0,∞) → (0,∞), h 7→
∫ |x|2

h2
∧ 1 ν(dx), whose integral we split for

h ∈ (0, 1] into three parts:

ḡ(h) =

∫
Bh

|x|2

h2
ν(dx) +

∫
B1\Bh

1 ν(dx) +

∫
Bc1

1 ν(dx) =: I1 + I2 + I3.
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The last term does not depend on h and we estimate the first two terms by

I1 ≤ h−β
′
∫
Bh

|x|β′ ν(dx) ≤ C h−β′ and I2 ≤ h−β
′
∫
B1\Bh

|x|β′ ν(dx) ≤ C h−β′ .

Hence, we can choose β′′ ∈ ((β′ ∨ 1), 2] arbitrarily, and a decreasing and invertible function
g : (0,∞) → (0,∞) that dominates ḡ and satisfies g(h) = h−β

′′
for all sufficiently small h > 0.

Then for γ = 21−1/β′′ , one has g(γ2h) = 2g(h) for all sufficiently small h > 0 and, by part (iii) of

Theorem 1 there exists a sequence of multilevel algorithms Ŝn such that

e(Ŝn) - n
1
2
− 1
β′′ .

The general statement follows via a diagonal argument. In the case where β < 1, one can choose
β′ = 1 and β′′ > 1 arbitrarily close to one and gets the result. Whereas for β ≥ 1, one can choose
for any β′′ > β an appropriate β′ and thus retrieve the statement.

Appendix

We shall use the following consequence of the Itô isometry for Lévy processes.

Lemma 3. Let (At) be a previsible process with state space RdY ×dX , let (Lt) be a square integrable
RdX -valued Lévy martingale and denote by 〈L〉 the process given via

〈L〉t =

dX∑
j=1

〈L(j)〉t,

where 〈L(j)〉 denotes the predictable compensator of the classical bracket process for the j-th
coordinate of L. One has, for any stopping time τ with finite expectation E

∫ τ
0 |As|

2 d〈L〉s, that

(
∫ t∧τ

0 As dLs)t≥0 is a uniformly square integrable martingale which satisfies

E
∣∣∣∫ τ

0
As dLs

∣∣∣2 ≤ E
∫ τ

0
|As|2 d〈L〉s.

In general the estimate can be strengthened by replacing the Frobenius norm by the matrix
norm induced by the Euclidean norm. For the convenience of the reader we provide a proof of
the lemma.

Proof. Let ν denote the Lévy measure of L and ΣΣ∗ the covariance of its Wiener component.
Let Q : RdX → RdX denote the self-adjoint operator given by

Qx = ΣΣ∗x+

∫
〈x, y〉 y ν(dy).

We recall the Itô isometry for Lévy processes. One has for a previsible process (As) with

E
∫ τ

0
|AsQ1/2|2 ds <∞,
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that (
∫ t∧τ

0 As dLs)t≥0 is a uniformly square integrable martingale with

E
∣∣∣∫ τ

0
As dLs

∣∣∣2 = E
∫ τ

0
|AsQ1/2|2 ds.

The statement now follows immediately by noticing that

|AsQ1/2|2 ≤ |As|2 tr(Q) and

∫ τ

0
|As|2 tr(Q) ds =

∫ τ

0
|As|2 d〈L〉s.
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equations. Ann. Probab., 25(1):393–423, 1997.

[Rub03] S. Rubenthaler. Numerical simulation of the solution of a stochastic differential
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