Prof. Dr. R. Loogen, M. Dieterle, M. Grebe Fachbereich Mathematik und Informatik Hans-Meerwein-Straße D-35032 Marburg



# Übungen zu "Parallele und Verteilte Algorithmen", Winter 2011/12

### Nr. 4, Abgabe der Aufgaben: 16. November 2011 vor der Vorlesung

## Aufgaben

#### 4.1 Hypercube-Reduktion

3 Punkte

In der Vorlesung wurde ein Verfahren zur Reduktion im Hypercube vorgestellt, nach dessen Ablauf das Ergebnis in Prozessor 0 vorliegt. Modifizieren Sie das Verfahren so, dass ohne nachgeschaltete Broadcast-Phase das Ergebnis am Ende in allen Prozessoren vorliegt.

### 4.2 Broadcast im Hypercube

6 Punkte

(a) Wieviele Kanten gibt es insgesamt in einem Hypercube? / 1,5
Wieviele dieser Verbindungsleitungen werden bei dem Standard-Broadcast-Verfahren benutzt?

Im folgenden soll angenommen werden, dass jeder Knoten in einem Schritt gleichzeitig auf verschiedenen Verbindungsleitungen kommunizieren kann.

- (b) Wieviele Schritte werden benötigt, wenn m Werte vom Prozessor 0 verteilt werden / 1,5 sollen und die Werte fließbandartig verschickt werden?
- (c) Ist es möglich, die Anzahl der Schritte durch Ausnutzen aller Verbindungsleitungen weiter zu reduzieren? Wenn ja, wie genau kann man vorgehen und wieviele Schritte werden dabei benötigt?

#### 4.3 Untere Schranken für paralleles Sortieren

3 Punkte

/ 3

Begründen Sie die Korrektheit der im folgenden angegebenen unteren Schranken für das Sortieren von n Elementen auf verschiedenen Netzwerken mit jeweils n Knoten. Vor und nach dem Sortiervorgang sollen die zu sortierenden Elemente gleichmäßig verteilt sein, d.h. ein Element pro Prozessor.

- (a)  $\Omega(n)$  auf einem eindimensionalen Gitter
- (b)  $\Omega(\sqrt{n})$  auf einem zweidimensionalen Toroid
- (c)  $\Omega(\log n)$  auf einem Shuffle-Exchange-Netzwerk