
Eden: Parallel Processes, Patterns
and Skeletons

Jost Berthold
berthold@diku.dk

Chalmers University of Technology, April 2014

Contents

1 The Language Eden (in a nutshell)

2 Skeleton-Based Programming

3 Small-Scale Skeletons: Map and Reduce

4 Process Topologies as Skeletons

5 Algorithm-Oriented Skeletons

Learning Goals:
Writing programs in the parallel Haskell dialect Eden;
Reasoning about the behaviour of Eden programs;
Applying the idea of skeleton-based programming;
Applying and implementing parallel skeletons in Eden.

Slide 2/43 — J.Berthold — Eden — Chalmers, 04/2014

Contents

1 The Language Eden (in a nutshell)

2 Skeleton-Based Programming

3 Small-Scale Skeletons: Map and Reduce

4 Process Topologies as Skeletons

5 Algorithm-Oriented Skeletons

Learning Goals:
Writing programs in the parallel Haskell dialect Eden;
Reasoning about the behaviour of Eden programs;
Applying the idea of skeleton-based programming;
Applying and implementing parallel skeletons in Eden.

Slide 2/43 — J.Berthold — Eden — Chalmers, 04/2014

Parallel Dialects of Haskell
Data-Parallel Haskell‡ (pure)
Type-driven parallel operations (on parallel arrays),
sophisticated compilation (vectorisation, fusion, . . .)
Glasgow Parallel Haskell‡∗ (pure)
par, seq annotations for evaluation control, Evaluation Strategies

Eden∗ (“pragmatically impure”)
explicit process notion (mostly functional semantics),
Distributed Memory (per process), implicit/explicit message
passing
Concurrent Haskell‡, Eden implementation∗ (monadic)
explicit thread control and communication, full programmer
control and responsibility
Par Monad‡, Cloud Haskell∗ (monadic)
newer explicit variants, similar to Eden implementation

‡: shared memory, ∗: distributed memory

Slide 3/43 — J.Berthold — Eden — Chalmers, 04/2014

Parallel Dialects of Haskell
Data-Parallel Haskell‡ (pure)
Type-driven parallel operations (on parallel arrays),
sophisticated compilation (vectorisation, fusion, . . .)
Glasgow Parallel Haskell‡∗ (pure)
par, seq annotations for evaluation control, Evaluation Strategies
Eden∗ (“pragmatically impure”)
explicit process notion (mostly functional semantics),
Distributed Memory (per process), implicit/explicit message
passing

Concurrent Haskell‡, Eden implementation∗ (monadic)
explicit thread control and communication, full programmer
control and responsibility
Par Monad‡, Cloud Haskell∗ (monadic)
newer explicit variants, similar to Eden implementation

‡: shared memory, ∗: distributed memory

Slide 3/43 — J.Berthold — Eden — Chalmers, 04/2014

Parallel Dialects of Haskell
Data-Parallel Haskell‡ (pure)
Type-driven parallel operations (on parallel arrays),
sophisticated compilation (vectorisation, fusion, . . .)
Glasgow Parallel Haskell‡∗ (pure)
par, seq annotations for evaluation control, Evaluation Strategies
Eden∗ (“pragmatically impure”)
explicit process notion (mostly functional semantics),
Distributed Memory (per process), implicit/explicit message
passing
Concurrent Haskell‡, Eden implementation∗ (monadic)
explicit thread control and communication, full programmer
control and responsibility
Par Monad‡, Cloud Haskell∗ (monadic)
newer explicit variants, similar to Eden implementation

‡: shared memory, ∗: distributed memory

Slide 3/43 — J.Berthold — Eden — Chalmers, 04/2014

Eden Constructs in a Nutshell
Developed since 1996 in Marburg and Madrid
Haskell, extended by communicating processes for coordination

Eden constructs for Process abstraction and instantiation
process ::(Trans a, Trans b)=> (a -> b) -> Process a b
(#) :: (Trans a, Trans b) => (Process a b) -> a -> b
spawn :: (Trans a, Trans b) => [Process a b] -> [a] -> [b]

Distributed Memory (Processes do not share data)
Data sent through (hidden) 1:1 channels
Type class Trans: stream communication for lists

concurrent evaluation of tuple components
Full evaluation of process output (if any result demanded)
Non-functional features: explicit communication, n : 1 channels

Slide 4/43 — J.Berthold — Eden — Chalmers, 04/2014

Eden Constructs in a Nutshell
Developed since 1996 in Marburg and Madrid
Haskell, extended by communicating processes for coordination

Eden constructs for Process abstraction and instantiation
process ::(Trans a, Trans b)=> (a -> b) -> Process a b
(#) :: (Trans a, Trans b) => (Process a b) -> a -> b
spawn :: (Trans a, Trans b) => [Process a b] -> [a] -> [b]

Distributed Memory (Processes do not share data)
Data sent through (hidden) 1:1 channels
Type class Trans: stream communication for lists

concurrent evaluation of tuple components
Full evaluation of process output (if any result demanded)
Non-functional features: explicit communication, n : 1 channels

Slide 4/43 — J.Berthold — Eden — Chalmers, 04/2014

Quick Sidestep: WHNF, NFData and Evaluation
Weak Head Normal Form (WHNF):
Evaluation up to the top level constructor

Normal Form (NF):
Full evaluation (recursively in sub-structures)

From Control.DeepSeq
class NFData a where

rnf :: a -> () -- This was a _Strategy_ in 1998
rnf a = a ‘seq‘ () -- returning unit ()

instance NFData Int
instance NFData Double
...
instance (NFData a) => NFData [a] where

rnf [] = ()
rnf (x:xs) = rnf x ‘seq‘ rnf xs

...
instance (NFData a, NFData b) => NFData (a,b) where

rnf (a,b) = rnf a ‘seq‘ rnf b

Slide 5/43 — J.Berthold — Eden — Chalmers, 04/2014

Quick Sidestep: WHNF, NFData and Evaluation
Weak Head Normal Form (WHNF):
Evaluation up to the top level constructor

Normal Form (NF):
Full evaluation (recursively in sub-structures)

From Control.DeepSeq
class NFData a where

rnf :: a -> () -- This was a _Strategy_ in 1998
rnf a = a ‘seq‘ () -- returning unit ()

instance NFData Int
instance NFData Double
...
instance (NFData a) => NFData [a] where

rnf [] = ()
rnf (x:xs) = rnf x ‘seq‘ rnf xs

...
instance (NFData a, NFData b) => NFData (a,b) where

rnf (a,b) = rnf a ‘seq‘ rnf b

Slide 5/43 — J.Berthold — Eden — Chalmers, 04/2014

Essential Eden: Process Abstraction/Instantiation
Process Abstraction: process ::... (a -> b) -> Process a b

multproc = process (\x -> [x*k | k <- [1,2..]])

Process Instantiation: (#) ::... Process a b -> a -> b

multiple5 = multproc # 5
parent multproc

5

[5,10,15,20, ...]

Full evaluation of argument (concurrent) and result (parallel)
Stream communication for lists

Spawning many processes: spawn ::... [Process a b] -> [a] -> [b]

multiples = spawn (replicate 10 multproc) [1..10]

parent

multproc

[1,2,3..]

multproc multproc multproc

[2,4,6..] [9,18,27..]
[10,20,30..]

1 2 9 10

Slide 6/43 — J.Berthold — Eden — Chalmers, 04/2014

Essential Eden: Process Abstraction/Instantiation
Process Abstraction: process ::... (a -> b) -> Process a b

multproc = process (\x -> [x*k | k <- [1,2..]])

Process Instantiation: (#) ::... Process a b -> a -> b

multiple5 = multproc # 5
parent multproc

5

[5,10,15,20, ...]

Full evaluation of argument (concurrent) and result (parallel)
Stream communication for lists

Spawning many processes: spawn ::... [Process a b] -> [a] -> [b]

multiples = spawn (replicate 10 multproc) [1..10]

parent

multproc

[1,2,3..]

multproc multproc multproc

[2,4,6..] [9,18,27..]
[10,20,30..]

1 2 9 10

Slide 6/43 — J.Berthold — Eden — Chalmers, 04/2014

Essential Eden: Process Abstraction/Instantiation
Process Abstraction: process ::... (a -> b) -> Process a b

multproc = process (\x -> [x*k | k <- [1,2..]])

Process Instantiation: (#) ::... Process a b -> a -> b

multiple5 = multproc # 5
parent multproc

5

[5,10,15,20, ...]

Full evaluation of argument (concurrent) and result (parallel)
Stream communication for lists

Spawning many processes: spawn ::... [Process a b] -> [a] -> [b]

multiples = spawn (replicate 10 multproc) [1..10]

parent

multproc

[1,2,3..]

multproc multproc multproc

[2,4,6..] [9,18,27..]
[10,20,30..]

1 2 9 10

Slide 6/43 — J.Berthold — Eden — Chalmers, 04/2014

A Small Eden Example1

Subexpressions evaluated in parallel
. . . in different processes with separate heaps

simpleeden.hs
main = do args <- getArgs

let first_stuff = (process f_expensive) # (args!!0)
other_stuff = g_expensive $# (args!!1) -- syntax variant

putStrLn (show first_stuff ++ ’\n’:show other_stuff)

. . . which will not produce any speedup!

simpleeden2.hs
main = do args <- getArgs

let [first_stuff,other_stuff]
= spawnF [f_expensive, g_expensive] args

putStrLn (show first_stuff ++ ’\n’:show other_stuff)

Processes are created when there is demand for the result!
Spawn both processes at the same time using special function.

1(compiled with option -parcp or -parmpi)
Slide 7/43 — J.Berthold — Eden — Chalmers, 04/2014

A Small Eden Example1

Subexpressions evaluated in parallel
. . . in different processes with separate heaps

simpleeden.hs
main = do args <- getArgs

let first_stuff = (process f_expensive) # (args!!0)
other_stuff = g_expensive $# (args!!1) -- syntax variant

putStrLn (show first_stuff ++ ’\n’:show other_stuff)

. . . which will not produce any speedup!

simpleeden2.hs
main = do args <- getArgs

let [first_stuff,other_stuff]
= spawnF [f_expensive, g_expensive] args

putStrLn (show first_stuff ++ ’\n’:show other_stuff)

Processes are created when there is demand for the result!
Spawn both processes at the same time using special function.

1(compiled with option -parcp or -parmpi)
Slide 7/43 — J.Berthold — Eden — Chalmers, 04/2014

A Small Eden Example1

Subexpressions evaluated in parallel
. . . in different processes with separate heaps

simpleeden.hs
main = do args <- getArgs

let first_stuff = (process f_expensive) # (args!!0)
other_stuff = g_expensive $# (args!!1) -- syntax variant

putStrLn (show first_stuff ++ ’\n’:show other_stuff)

. . . which will not produce any speedup!

simpleeden2.hs
main = do args <- getArgs

let [first_stuff,other_stuff]
= spawnF [f_expensive, g_expensive] args

putStrLn (show first_stuff ++ ’\n’:show other_stuff)

Processes are created when there is demand for the result!
Spawn both processes at the same time using special function.

1(compiled with option -parcp or -parmpi)
Slide 7/43 — J.Berthold — Eden — Chalmers, 04/2014

Basic Eden Exercise: Hamming Numbers
The Hamming Numbers are defined as the
ascending sequence of numbers:{

2i · 3j · 5k | i , j , k ∈ N
}

Dijkstra:
The first Hamming number is 1. Each following
Hamming number H can be written as H = 2K ,
H = 3K , or H = 5K ; where K is a Hamming smaller
than H.

Write an Eden program that produces
Hamming numbers using parallel processes.
The program should take one argument n
and produce the first n Hamming numbers.
Observe the parallel behaviour of your
program using EdenTV.

Slide 8/43 — J.Berthold — Eden — Chalmers, 04/2014

Basic Eden Exercise: Hamming Numbers
The Hamming Numbers are defined as the
ascending sequence of numbers:{

2i · 3j · 5k | i , j , k ∈ N
}

Dijkstra:
The first Hamming number is 1. Each following
Hamming number H can be written as H = 2K ,
H = 3K , or H = 5K ; where K is a Hamming smaller
than H.

Write an Eden program that produces
Hamming numbers using parallel processes.
The program should take one argument n
and produce the first n Hamming numbers.
Observe the parallel behaviour of your
program using EdenTV.

Slide 8/43 — J.Berthold — Eden — Chalmers, 04/2014

Basic Eden Exercise: Hamming Numbers
The Hamming Numbers are defined as the
ascending sequence of numbers:{

2i · 3j · 5k | i , j , k ∈ N
}

Dijkstra:
The first Hamming number is 1. Each following
Hamming number H can be written as H = 2K ,
H = 3K , or H = 5K ; where K is a Hamming smaller
than H.

Write an Eden program that produces
Hamming numbers using parallel processes.
The program should take one argument n
and produce the first n Hamming numbers.
Observe the parallel behaviour of your
program using EdenTV.

Slide 8/43 — J.Berthold — Eden — Chalmers, 04/2014

Non-Functional Eden Constructs for Optimisation
Location-Awareness:
noPe, selfPe :: Int
spawnAt :: (Trans a, Trans b) => [Int] -> [Process a b] -> [a] -> [b]
instantiateAt :: (Trans a, Trans b) =>

Int -> Process a b -> a -> IO b

Explicit communication using primitive operations (monadic)

data ChanName = Comm (Channel a -> a -> IO ())
createC :: IO (Channel a , a)

class NFData a => Trans a where
write :: a -> IO ()
write x = rdeepseq x ‘pseq‘ sendData Data x
createComm :: IO (ChanName a, a)
createComm = do (cx,x) <- createC

return (Comm (sendVia cx) , x)

Nondeterminism! merge :: [[a]] -> [a]

Hidden inside a Haskell module, only for the library implementation.

Slide 9/43 — J.Berthold — Eden — Chalmers, 04/2014

Non-Functional Eden Constructs for Optimisation
Location-Awareness:
noPe, selfPe :: Int
spawnAt :: (Trans a, Trans b) => [Int] -> [Process a b] -> [a] -> [b]
instantiateAt :: (Trans a, Trans b) =>

Int -> Process a b -> a -> IO b

Explicit communication using primitive operations (monadic)

data ChanName = Comm (Channel a -> a -> IO ())
createC :: IO (Channel a , a)

class NFData a => Trans a where
write :: a -> IO ()
write x = rdeepseq x ‘pseq‘ sendData Data x
createComm :: IO (ChanName a, a)
createComm = do (cx,x) <- createC

return (Comm (sendVia cx) , x)

Nondeterminism! merge :: [[a]] -> [a]

Hidden inside a Haskell module, only for the library implementation.
Slide 9/43 — J.Berthold — Eden — Chalmers, 04/2014

Outline

1 The Language Eden (in a nutshell)

2 Skeleton-Based Programming

3 Small-Scale Skeletons: Map and Reduce

4 Process Topologies as Skeletons

5 Algorithm-Oriented Skeletons

Slide 10/43 — J.Berthold — Eden — Chalmers, 04/2014

The Idea of Skeleton-Basked Parallelism

You have already seen one example in the homework:
Divide and Conquer, as a higher-order function
divConq :: (prob -> Bool) -- is the problem indivisible?

-> (prob -> [prob]) -- split
-> ([sol] -> sol) -- join
-> (prob -> sol) -- solve a sub-problem
-> (prob -> sol)

divConq indiv divide combine basecase = ...

(this is just one version, more later. . .)
Parallel structure (rose tree) exploited for parallelism
Abstracted from concrete problem

And another one, much simpler, much more common:
parMap :: (a->b) -> [a] ->

Slide 11/43 — J.Berthold — Eden — Chalmers, 04/2014

The Idea of Skeleton-Basked Parallelism

You have already seen one example in the homework:
Divide and Conquer, as a higher-order function
divConq :: (prob -> Bool) -- is the problem indivisible?

-> (prob -> [prob]) -- split
-> ([sol] -> sol) -- join
-> (prob -> sol) -- solve a sub-problem
-> (prob -> sol)

divConq indiv divide combine basecase = ...

(this is just one version, more later. . .)
Parallel structure (rose tree) exploited for parallelism
Abstracted from concrete problem

And another one, much simpler, much more common:
parMap :: (a->b) -> [a] -> b

Slide 11/43 — J.Berthold — Eden — Chalmers, 04/2014

The Idea of Skeleton-Basked Parallelism

You have already seen one example in the homework:
Divide and Conquer, as a higher-order function
divConq :: (prob -> Bool) -- is the problem indivisible?

-> (prob -> [prob]) -- split
-> ([sol] -> sol) -- join
-> (prob -> sol) -- solve a sub-problem
-> (prob -> sol)

divConq indiv divide combine basecase = ...

(this is just one version, more later. . .)
Parallel structure (rose tree) exploited for parallelism
Abstracted from concrete problem

And another one, much simpler, much more common:
parMap :: (a->b) -> [a] -> Par?[b]

Slide 11/43 — J.Berthold — Eden — Chalmers, 04/2014

The Idea of Skeleton-Basked Parallelism

You have already seen one example in the homework:
Divide and Conquer, as a higher-order function
divConq :: (prob -> Bool) -- is the problem indivisible?

-> (prob -> [prob]) -- split
-> ([sol] -> sol) -- join
-> (prob -> sol) -- solve a sub-problem
-> (prob -> sol)

divConq indiv divide combine basecase = ...

(this is just one version, more later. . .)
Parallel structure (rose tree) exploited for parallelism
Abstracted from concrete problem

And another one, much simpler, much more common:
parMap :: (a->b) -> [a] -> Eval?[b]

Slide 11/43 — J.Berthold — Eden — Chalmers, 04/2014

Algorithmic Skeletons for Parallel Programming

Iteration:
input output

coordinate

W W WW

decideEnd

(state)

divide& conquer (fixed degree):

Algorithmic Skeletons [Cole 1989]: Boxes and lines – executable!

Abstraction of algorithmic structure as a higher-order function

Embedded “worker” functions (by application programmer)
Hidden parallel library implementation (by system programmer)
Different kinds of skeletons: topological, small-scale, algorithmic

Explicit parallelism control and functional paradigm are a good
setting to implement and use skeletons for parallel programming.

Slide 12/43 — J.Berthold — Eden — Chalmers, 04/2014

Algorithmic Skeletons for Parallel Programming

Iteration:
input output

coordinate

W W WW

decideEnd

(state)

divide& conquer (fixed degree):

Algorithmic Skeletons [Cole 1989]: Boxes and lines – executable!

Abstraction of algorithmic structure as a higher-order function
Embedded “worker” functions (by application programmer)
Hidden parallel library implementation (by system programmer)

Different kinds of skeletons: topological, small-scale, algorithmic

Explicit parallelism control and functional paradigm are a good
setting to implement and use skeletons for parallel programming.

Slide 12/43 — J.Berthold — Eden — Chalmers, 04/2014

Algorithmic Skeletons for Parallel Programming

Master-Worker:

...

 m:1

workerworker

master

[task]

[result]

[task]

[task] [result]

[result]

Google Map-Reduce:

mapF

input data
reduceF k(1)

reduceF k(2)

reduceF k(j)

reduceF k(n)

output data
intermediate
data groups

Algorithmic Skeletons [Cole 1989]: Boxes and lines – executable!

Abstraction of algorithmic structure as a higher-order function
Embedded “worker” functions (by application programmer)
Hidden parallel library implementation (by system programmer)
Different kinds of skeletons: topological, small-scale, algorithmic

Explicit parallelism control and functional paradigm are a good
setting to implement and use skeletons for parallel programming.

Slide 12/43 — J.Berthold — Eden — Chalmers, 04/2014

Algorithmic Skeletons for Parallel Programming

Iteration:
input output

coordinate

W W WW

decideEnd

(state)

divide& conquer (fixed degree):

Algorithmic Skeletons [Cole 1989]: Boxes and lines – executable!

Abstraction of algorithmic structure as a higher-order function
Embedded “worker” functions (by application programmer)
Hidden parallel library implementation (by system programmer)
Different kinds of skeletons: topological, small-scale, algorithmic

Explicit parallelism control and functional paradigm are a good
setting to implement and use skeletons for parallel programming.

Slide 12/43 — J.Berthold — Eden — Chalmers, 04/2014

Types of Skeletons

Common Small-scale Skeletons

encapsulate common parallelisable operations or patterns
parallel behaviour (concrete parallelisation) hidden

Structure-oriented: Topology Skeletons

describe interaction between execution units
explicitly model parallelism

Proper Algorithmic Skeletons

capture a more complex algorithm-specific structure
sometimes domain-specific

Slide 13/43 — J.Berthold — Eden — Chalmers, 04/2014

Outline

1 The Language Eden (in a nutshell)

2 Skeleton-Based Programming

3 Small-Scale Skeletons: Map and Reduce

4 Process Topologies as Skeletons

5 Algorithm-Oriented Skeletons

Slide 14/43 — J.Berthold — Eden — Chalmers, 04/2014

Basic Skeletons: Higher-Order Functions
Parallel transformation: Map

map :: (a -> b) -> [a] -> [b]

independent elementwise transformation
. . . probably the most common example of parallel functional
programming (called "embarrassingly parallel")

Parallel Reduction: Fold
fold :: (a -> a -> a) -> a -> [a] -> a

with commutative and associative operation.
Parallel (left) Scan:

parScanL :: (a -> a -> a) -> [a] -> [a]

reduction keeping the intermediate results.
Parallel Map-Reduce:

combining transformation and reduction.

Slide 15/43 — J.Berthold — Eden — Chalmers, 04/2014

Basic Skeletons: Higher-Order Functions
Parallel transformation: Map

map :: (a -> b) -> [a] -> [b]

independent elementwise transformation
. . . probably the most common example of parallel functional
programming (called "embarrassingly parallel")
Parallel Reduction: Fold

fold :: (a -> a -> a) -> a -> [a] -> a

with commutative and associative operation.
Parallel (left) Scan:

parScanL :: (a -> a -> a) -> [a] -> [a]

reduction keeping the intermediate results.
Parallel Map-Reduce:

combining transformation and reduction.
Slide 15/43 — J.Berthold — Eden — Chalmers, 04/2014

Embarrassingly Parallel: map

map: apply transformation to all elements of a list

Straight-forward element-wise parallelisation
parmap :: (Trans a, Trans b) => (a -> b) -> [a] -> [b]
parmap = spawn . repeat . process

-- parmap f xs = spawn (repeat (process f)) xs

Much too fine-grained!

Group-wise processing: Farm of processes
farm :: (Trans a, Trans b) => (a -> b) -> [a] -> [b]
farm f xs = join results

where results = spawn (repeat (process (map f))) parts
parts = distrib noPe xs -- noPe, so use all nodes
join :: [[a]] -> [a]
join = ...
distrib :: Int -> [a] -> [[a]]
distrib n = ... -- join . distrib n == id

Slide 16/43 — J.Berthold — Eden — Chalmers, 04/2014

Embarrassingly Parallel: map

map: apply transformation to all elements of a list

Straight-forward element-wise parallelisation
parmap :: (Trans a, Trans b) => (a -> b) -> [a] -> [b]
parmap = spawn . repeat . process

-- parmap f xs = spawn (repeat (process f)) xs

Much too fine-grained!

Group-wise processing: Farm of processes
farm :: (Trans a, Trans b) => (a -> b) -> [a] -> [b]
farm f xs = join results

where results = spawn (repeat (process (map f))) parts
parts = distrib noPe xs -- noPe, so use all nodes
join :: [[a]] -> [a]
join = ...
distrib :: Int -> [a] -> [[a]]
distrib n = ... -- join . distrib n == id

Slide 16/43 — J.Berthold — Eden — Chalmers, 04/2014

Embarrassingly Parallel: map

map: apply transformation to all elements of a list

Straight-forward element-wise parallelisation
parmap :: (Trans a, Trans b) => (a -> b) -> [a] -> [b]
parmap = spawn . repeat . process

-- parmap f xs = spawn (repeat (process f)) xs

Much too fine-grained!

Group-wise processing: Farm of processes
farm :: (Trans a, Trans b) => (a -> b) -> [a] -> [b]
farm f xs = join results

where results = spawn (repeat (process (map f))) parts
parts = distrib noPe xs -- noPe, so use all nodes
join :: [[a]] -> [a]
join = ...
distrib :: Int -> [a] -> [[a]]
distrib n = ... -- join . distrib n == id

Slide 16/43 — J.Berthold — Eden — Chalmers, 04/2014

Example application
Mandelbrot set visualisation zn+1 = z2n + c for c ∈ C

Mandelbrot (Pseudocode)
pic :: ..picture-parameters.. -> PPMAscii
pic threshold ul lr dimx np s = ppmheader ++ concat (parMap computeRow rows)

where rows = ...dimx..ul..lr..
parMap = ...np..s.. -- different options to distribute rows

Fractal properties (self-similarity)
Colours indicate speed of
divergence

Far out: diverges rapidly
Near 0: converges, or bounded

Different rows expose different
complexity

Slide 17/43 — J.Berthold — Eden — Chalmers, 04/2014

Example application
Mandelbrot set visualisation zn+1 = z2n + c for c ∈ C

Mandelbrot (Pseudocode)
pic :: ..picture-parameters.. -> PPMAscii
pic threshold ul lr dimx np s = ppmheader ++ concat (parMap computeRow rows)

where rows = ...dimx..ul..lr..
parMap = ...np..s.. -- different options to distribute rows

Fractal properties (self-similarity)
Colours indicate speed of
divergence

Far out: diverges rapidly
Near 0: converges, or bounded

Different rows expose different
complexity

Slide 17/43 — J.Berthold — Eden — Chalmers, 04/2014

Example application
Mandelbrot set visualisation zn+1 = z2n + c for c ∈ C

Mandelbrot (Pseudocode)
pic :: ..picture-parameters.. -> PPMAscii
pic threshold ul lr dimx np s = ppmheader ++ concat (parMap computeRow rows)

where rows = ...dimx..ul..lr..
parMap = ...np..s.. -- different options to distribute rows

Fractal properties (self-similarity)
Colours indicate speed of
divergence

Far out: diverges rapidly
Near 0: converges, or bounded

Different rows expose different
complexity

Slide 17/43 — J.Berthold — Eden — Chalmers, 04/2014

Example Application: Chunked Tasks
Mandelbrot set visualisation zn+1 = z2n + c for c ∈ C

Mandelbrot (Pseudocode)
pic :: ..picture-parameters.. -> PPMAscii
pic threshold ul lr dimx np s = ppmheader ++ concat (parMap computeRow rows)

where rows = ...dimx..ul..lr..
parMap = ..using chunks..

Simple chunking leads to load imbalance (task complexities differ)

Slide 18/43 — J.Berthold — Eden — Chalmers, 04/2014

Example Application: Chunked Tasks
Mandelbrot set visualisation zn+1 = z2n + c for c ∈ C

Mandelbrot (Pseudocode)
pic :: ..picture-parameters.. -> PPMAscii
pic threshold ul lr dimx np s = ppmheader ++ concat (parMap computeRow rows)

where rows = ...dimx..ul..lr..
parMap = ..using chunks..

Simple chunking leads to load imbalance (task complexities differ)
Slide 18/43 — J.Berthold — Eden — Chalmers, 04/2014

Example Application: Round-robin Tasks
Mandelbrot set visualisation zn+1 = z2n + c for c ∈ C

Mandelbrot (Pseudocode)
pic :: ..picture-parameters.. -> PPMAscii
pic threshold ul lr dimx np s = ppmheader ++ concat (parMap computeRow rows)

where rows = ...dimx..ul..lr..
parMap = ..distributing round-robin..

Better: round-robin distribution, but still not well-balanced.
Slide 19/43 — J.Berthold — Eden — Chalmers, 04/2014

Dynamic load-balancing: Master-Worker Skeleton
Worker nodes transform elementwise:
worker :: task -> result

Master node manages task pool

mw :: Int -> Int ->
(a -> b) -> [a] -> [b]

mw np prefetch f tasks = ...

Parameters: no. of workers, prefetch

...

 m:1

workerworker

master

[task]

[result]

[task]

[task] [result]

[result]

Master sends a new task each time a result is returned
(needs many-to-one communication)
Initial workload of prefetch tasks for each worker:
Higher prefetch ⇒ more and more static task distribution
Lower prefetch ⇒ dynamic load balance

Result order needs to be reestablished!

Slide 20/43 — J.Berthold — Eden — Chalmers, 04/2014

Dynamic load-balancing: Master-Worker Skeleton
Worker nodes transform elementwise:
worker :: task -> result

Master node manages task pool

mw :: Int -> Int ->
(a -> b) -> [a] -> [b]

mw np prefetch f tasks = ...

Parameters: no. of workers, prefetch

...

 m:1

workerworker

master

[task]

[result]

[task]

[task] [result]

[result]

Master sends a new task each time a result is returned
(needs many-to-one communication)
Initial workload of prefetch tasks for each worker:
Higher prefetch ⇒ more and more static task distribution
Lower prefetch ⇒ dynamic load balance
Result order needs to be reestablished!

Slide 20/43 — J.Berthold — Eden — Chalmers, 04/2014

Master-Worker: An Implementation

Master-Worker Skeleton Code
mw np prefetch f tasks = results
where
fromWorkers = spawn workerProcs toWorkers
workerProcs = [process (zip [n,n..] . map f) | n<-[1..np]]
toWorkers = distribute tasks requests

(newReqs, results) = (unzip . merge) fromWorkers
requests = initialReqs ++ newReqs
initialReqs = concat (replicate prefetch [1..np])

distribute :: [t] -> [Int] -> [[t]]
distribute tasks reqs = [taskList reqs tasks n | n<-[1..np]]

where taskList (r:rs) (t:ts) pe | pe == r = t:(taskList rs ts pe)
| otherwise = taskList rs ts pe

taskList _ _ _ = []

Workers tag results with their ID (between 1 and np).

Result streams are non-deterministically merged into one stream
The distribute function supplies new tasks according to requests.

Slide 21/43 — J.Berthold — Eden — Chalmers, 04/2014

Master-Worker: An Implementation

Master-Worker Skeleton Code
mw np prefetch f tasks = results
where
fromWorkers = spawn workerProcs toWorkers
workerProcs = [process (zip [n,n..] . map f) | n<-[1..np]]
toWorkers = distribute tasks requests

(newReqs, results) = (unzip . merge) fromWorkers
requests = initialReqs ++ newReqs
initialReqs = concat (replicate prefetch [1..np])

distribute :: [t] -> [Int] -> [[t]]
distribute tasks reqs = [taskList reqs tasks n | n<-[1..np]]

where taskList (r:rs) (t:ts) pe | pe == r = t:(taskList rs ts pe)
| otherwise = taskList rs ts pe

taskList _ _ _ = []

Workers tag results with their ID (between 1 and np).
Result streams are non-deterministically merged into one stream

The distribute function supplies new tasks according to requests.

Slide 21/43 — J.Berthold — Eden — Chalmers, 04/2014

Master-Worker: An Implementation

Master-Worker Skeleton Code
mw np prefetch f tasks = results
where
fromWorkers = spawn workerProcs toWorkers
workerProcs = [process (zip [n,n..] . map f) | n<-[1..np]]
toWorkers = distribute tasks requests

(newReqs, results) = (unzip . merge) fromWorkers
requests = initialReqs ++ newReqs
initialReqs = concat (replicate prefetch [1..np])

distribute :: [t] -> [Int] -> [[t]]
distribute tasks reqs = [taskList reqs tasks n | n<-[1..np]]

where taskList (r:rs) (t:ts) pe | pe == r = t:(taskList rs ts pe)
| otherwise = taskList rs ts pe

taskList _ _ _ = []

Workers tag results with their ID (between 1 and np).
Result streams are non-deterministically merged into one stream
The distribute function supplies new tasks according to requests.

Slide 21/43 — J.Berthold — Eden — Chalmers, 04/2014

Parallel Reduction, Map-Reduce
Reduction (fold) usually has a direction

foldl :: (b -> a -> b) -> b -> [a] -> b
foldr :: (a -> b -> b) -> b -> [a] -> b

Starting from left or right, implying different reduction function.
To parallelise: break into sublists and pre-reduce in parallel.
⇒ needs to drop direction and narrow type
Better options if order does not matter.

Example:
∑n

k=1 ϕ(k) =
∑n

k=1 |{j < k | gcd(k, j) = 1}| (Euler Phi)

sumEuler
result = foldl (+) 0 (map phi [1..n])
phi k = length (filter (\ n -> gcd n k == 1) [1..(k-1)])

Slide 22/43 — J.Berthold — Eden — Chalmers, 04/2014

Parallel Reduction, Map-Reduce
Reduction (fold) usually has a direction

foldl :: (b -> a -> b) -> b -> [a] -> b
foldr :: (a -> b -> b) -> b -> [a] -> b

Starting from left or right, implying different reduction function.
To parallelise: break into sublists and pre-reduce in parallel.
⇒ needs to drop direction and narrow type
Better options if order does not matter.

Example:
∑n

k=1 ϕ(k) =
∑n

k=1 |{j < k | gcd(k, j) = 1}| (Euler Phi)

sumEuler
result = foldl (+) 0 (map phi [1..n])
phi k = length (filter (\ n -> gcd n k == 1) [1..(k-1)])

Slide 22/43 — J.Berthold — Eden — Chalmers, 04/2014

Parallel Map-Reduce: Restrictions

Map-Reduce skeleton
parmapReduce :: Int ->

(a -> b) -> (b -> b -> b) -> b ->
[a] -> b

parmapReduce np mapF redF neutral list = foldl redF neutral subRs
where sublists = distrib np list

subFold = process (foldl’ redF neutral . (map mapF))
subRs = spawn (replicate np subFold) sublists

need to narrow type of the reduce parameter function!
Associativity and neutral element (essential).

commutativity (desired, more liberal distribution)
distrib function may distribute in any order if redF commutative
⇒ input consumed incrementally as a stream.
Otherwise: need to know list length ahead of time (inefficient).

Slide 23/43 — J.Berthold — Eden — Chalmers, 04/2014

Parallel Map-Reduce: Restrictions

Map-Reduce skeleton
parmapReduce :: Int ->

(a -> b) -> (b -> b -> b) -> b ->
[a] -> b

parmapReduce np mapF redF neutral list = foldl redF neutral subRs
where sublists = distrib np list

subFold = process (foldl’ redF neutral . (map mapF))
subRs = spawn (replicate np subFold) sublists

need to narrow type of the reduce parameter function!
Associativity and neutral element (essential).
commutativity (desired, more liberal distribution)

distrib function may distribute in any order if redF commutative
⇒ input consumed incrementally as a stream.
Otherwise: need to know list length ahead of time (inefficient).

Slide 23/43 — J.Berthold — Eden — Chalmers, 04/2014

Google Map-Reduce: Grouping Before Reduction

gMapRed :: (k1 -> v1 -> [(k2,v2)]) -- mapF
-> (k2 -> [v2] -> Maybe v3) -- reduceF
-> Map k1 v1 -> Map k2 v3 -- input / output

mapF

input data
reduceF k(1)

reduceF k(2)

reduceF k(j)

reduceF k(n)

output data
intermediate
data groups

1 Input: key-value pairs (k1,v1), many or no outputs (k2,v2)
2 Intermediate grouping by key k2
3 Reduction per (intermediate) key k2 (maybe without result)
4 Input and output: Finite mappings

Slide 24/43 — J.Berthold — Eden — Chalmers, 04/2014

Google Map-Reduce: Grouping Before Reduction

gMapRed :: (k1 -> v1 -> [(k2,v2)]) -- mapF
-> (k2 -> [v2] -> Maybe v3) -- reduceF
-> Map k1 v1 -> Map k2 v3 -- input / output

mapF

input data
reduceF k(1)

reduceF k(2)

reduceF k(j)

reduceF k(n)

output data
intermediate
data groups

(uRL,document) ==> [(word,1)] ==> (word :-> count)

Word Occurrence
mapF :: URL -> String -> [(String,Int)]
mapF _ content = [(word,1) | word <- words content]
reduceF :: String -> [Int] -> Maybe Int
reduceF word counts = Just (sum counts)

Slide 25/43 — J.Berthold — Eden — Chalmers, 04/2014

Google Map-Reduce (parallel)

mapF
 1

reduceF k(1)

reduceF k(2)

reduceF k(j)

reduceF k(n)

distributed
output data

k1
k2

kj

kn

mapF
 2

k1
k2

kj

kn

mapF
m-2

k1
k2

kj

kn

mapF
m-1

k1
k2

kj

kn

mapF
 m

k1
k2

kj

kn

input
data

partitioned
input
data

m Mapper
Processes

n Reducer
Processes

...
...

...
...

...

distributed
intermediate
data (groups)

R.Lämmel,
Google’s
Map-Reduce
Programming
Model
Revisited.
In: SCP 2008

gMapRed :: Int -> (k2->Int) -> Int -> (v1->Int) -- parameters
(k1 -> v1 -> [(k2,v2)]) -- mapper
-> (k2 -> [v2] -> Maybe v3) -- pre-reducer
-> (k2 -> [v3] -> Maybe v4) -- final reducer
-> Map k1 v1 -> Map k2 v4 -- input / output

Slide 26/43 — J.Berthold — Eden — Chalmers, 04/2014

Examples / Exercise
gMapRed :: Int -> (k2->Int) -> Int -> (v1->Int) -- parameters

(k1 -> v1 -> [(k2,v2)]) -- mapper
-> (k2 -> [v2] -> Maybe v3) -- pre-reducer
-> (k2 -> [v3] -> Maybe v4) -- final reducer
-> Map k1 v1 -> Map k2 v4 -- input / output

Describe how to compute the following in Google Map-Reduce:
Reverse Web-Link Graph:

For a set of web pages, compute a dictionary to look up the pages that link to each page.

Reverse Link
Input are all URLs and page contents of the set. The map function outputs pairs (link
target, source URL) for each link found in the source URL contents. The (pre-)reduce
function joins the source URLs to the pair (target, list(source)) (removing duplicates).

URL Access Frequencies:
Compute access counts for URLs from a set of web server log files.

URL Access Frequency
Input are all log entries, stating the requested URLs. As in word-occurrence: The map
function emits (URL,1) pairs for requested URLs, the reduce functions sum the counts.

Slide 27/43 — J.Berthold — Eden — Chalmers, 04/2014

Examples / Exercise
gMapRed :: Int -> (k2->Int) -> Int -> (v1->Int) -- parameters

(k1 -> v1 -> [(k2,v2)]) -- mapper
-> (k2 -> [v2] -> Maybe v3) -- pre-reducer
-> (k2 -> [v3] -> Maybe v4) -- final reducer
-> Map k1 v1 -> Map k2 v4 -- input / output

Describe how to compute the following in Google Map-Reduce:
Reverse Web-Link Graph:

For a set of web pages, compute a dictionary to look up the pages that link to each page.

Reverse Link
Input are all URLs and page contents of the set. The map function outputs pairs (link
target, source URL) for each link found in the source URL contents. The (pre-)reduce
function joins the source URLs to the pair (target, list(source)) (removing duplicates).

URL Access Frequencies:
Compute access counts for URLs from a set of web server log files.

URL Access Frequency
Input are all log entries, stating the requested URLs. As in word-occurrence: The map
function emits (URL,1) pairs for requested URLs, the reduce functions sum the counts.

Slide 27/43 — J.Berthold — Eden — Chalmers, 04/2014

Outline

1 The Language Eden (in a nutshell)

2 Skeleton-Based Programming

3 Small-Scale Skeletons: Map and Reduce

4 Process Topologies as Skeletons

5 Algorithm-Oriented Skeletons

Slide 28/43 — J.Berthold — Eden — Chalmers, 04/2014

Process Topologies as Skeletons: Explicit Parallelism

describe typical patterns of parallel interaction structure
(where node behaviour is the function argument)
to structure parallel computations

Examples:
Pipeline/Ring: Master/Worker:

...

Hypercube:

⇒ well-suited for functional languages (with explicit parallelism).
Skeletons can be implemented and applied in Eden.

Slide 29/43 — J.Berthold — Eden — Chalmers, 04/2014

Process Topologies as Skeletons: Explicit Parallelism

describe typical patterns of parallel interaction structure
(where node behaviour is the function argument)
to structure parallel computations

Examples:
Pipeline/Ring: Master/Worker:

...

Hypercube:

⇒ well-suited for functional languages (with explicit parallelism).
Skeletons can be implemented and applied in Eden.

Slide 29/43 — J.Berthold — Eden — Chalmers, 04/2014

Process Topologies as Skeletons: Ring

RingSkel

...

i o

r

a b a b a b a b

type RingSkel i o a b r = Int -> (Int -> i -> [a]) -> ([b] -> o) ->
((a,[r]) -> (b,[r])) -> i -> o

ring size makeInput processOutput ringWorker input = ...

Good for exchanging (updated) global data between nodes
Ring processes connect to parent to receive input/send output
Parameters: functions for

decomposing input, combining output, ring worker

Slide 30/43 — J.Berthold — Eden — Chalmers, 04/2014

Process Topologies as Skeletons: Torus

torus ::
-- node behaviour

(c->[a]->[b] -> (d,[a],[b])) ->
-- input (truncated to shortest)

[[c]] -> [[d]] -- result

Initialisation data [[c]]

Ring-shaped neighbour communication in two dimensions

Application: Matrix multiplication

Slide 31/43 — J.Berthold — Eden — Chalmers, 04/2014

Process Topologies as Skeletons: Torus

torus ::
-- node behaviour

(c->[a]->[b] -> (d,[a],[b])) ->
-- input (truncated to shortest)

[[c]] -> [[d]] -- result

Initialisation data [[c]]

Ring-shaped neighbour communication in two dimensions
Application: Matrix multiplication

Slide 31/43 — J.Berthold — Eden — Chalmers, 04/2014

Process Topologies as Skeletons: Torus

torus ::
-- node behaviour

(c->[a]->[b] -> (d,[a],[b])) ->
-- input (truncated to shortest)

[[c]] -> [[d]] -- result

Initialisation data [[c]]

Ring-shaped neighbour communication in two dimensions
Application: Matrix multiplication

Slide 31/43 — J.Berthold — Eden — Chalmers, 04/2014

Process Topologies as Skeletons: Torus

torus ::
-- node behaviour

(c->[a]->[b] -> (d,[a],[b])) ->
-- input (truncated to shortest)

[[c]] -> [[d]] -- result

Initialisation data [[c]]

Ring-shaped neighbour communication in two dimensions
Application: Matrix multiplication

Slide 31/43 — J.Berthold — Eden — Chalmers, 04/2014

Process Topologies as Skeletons: Torus

torus ::
-- node behaviour

(c->[a]->[b] -> (d,[a],[b])) ->
-- input (truncated to shortest)

[[c]] -> [[d]] -- result

Initialisation data [[c]]

Ring-shaped neighbour communication in two dimensions
Application: Matrix multiplication

Slide 31/43 — J.Berthold — Eden — Chalmers, 04/2014

Outline

1 The Language Eden (in a nutshell)

2 Skeleton-Based Programming

3 Small-Scale Skeletons: Map and Reduce

4 Process Topologies as Skeletons

5 Algorithm-Oriented Skeletons

Slide 32/43 — J.Berthold — Eden — Chalmers, 04/2014

Algorithm-oriented Skeletons

Divide and conquer
divCon :: (a -> Bool) -> (a -> b) -- trivial? / then solve

-> (a -> [a]) -> (a -> [b] -> b) -- split / combine
-> a -> b -- input / result

Iteration
iterateUntil :: (inp -> ([ws],[t],ms)) -> -- split/init

(t -> State ws r) -> -- worker
([r] -> State ms (Either out [t])) -- manager
-> inp -> out

Backtracking (Tree search)
backtrack :: (a -> (Maybe b, [a]) -- maybe solve problem, refine problem

-> a -> [b] -- start problem / solutions

Slide 33/43 — J.Berthold — Eden — Chalmers, 04/2014

Divide and Conquer Skeletons
Mary, slide 66 in strategies lecture: binary divide&conquer
divConq indiv split join f prob = undefined
divCon :: (a -> b) -> a -- base case fct., input

-> (a -> Bool) -- parallel threshold
-> (b -> b -> b) -- combine
-> (a -> Maybe (a,a)) -- divide
-> b

Simon Marlow: slide 53, with a more general version
divConq :: (prob -> Bool) -- is the problem indivisible?

-> (prob -> [prob]) -- split
-> ([sol] -> sol) -- join
-> (prob -> sol) -- solve a sub-problem
-> (prob -> sol)

. . . so here is my version:
divCon :: Int -> -- parallel depth

(a -> Bool) -> (a -> b) -- trivial? / then solve
-> (a -> [a]) -> (a -> [b] -> b) -- split / combine
-> a -> b -- input / result

Slide 34/43 — J.Berthold — Eden — Chalmers, 04/2014

Divide and Conquer Skeletons
Mary, slide 66 in strategies lecture: binary divide&conquer
divConq indiv split join f prob = undefined
divCon :: (a -> b) -> a -- base case fct., input

-> (a -> Bool) -- parallel threshold
-> (b -> b -> b) -- combine
-> (a -> Maybe (a,a)) -- divide
-> b

Simon Marlow: slide 53, with a more general version
divConq :: (prob -> Bool) -- is the problem indivisible?

-> (prob -> [prob]) -- split
-> ([sol] -> sol) -- join
-> (prob -> sol) -- solve a sub-problem
-> (prob -> sol)

. . . so here is my version:
divCon :: Int -> -- parallel depth

(a -> Bool) -> (a -> b) -- trivial? / then solve
-> (a -> [a]) -> (a -> [b] -> b) -- split / combine
-> a -> b -- input / result

Slide 34/43 — J.Berthold — Eden — Chalmers, 04/2014

Simple Divide & Conquer

Divide & Conquer Skeleton (simple general version)
dc_c depth trivial solve split combine x

= if depth < 1 then seqDC x
else if trivial x then solve x

else childRs ‘seq‘ -- early demand on children results
combine x (myR : childRs)

where myself = dc_c (depth - 1) trivial solve split combine
seqDC x = if trivial x then solve x

else combine x (map seqDC (split x))
(mine:rest) = split x
myR = myself mine
childRs = parMapEden myself rest

Room for optimisation:
Number of sub-problems often fixed by the algorithm
Processes should be placed evenly on all machines

The Eden skeleton library contains many variants.
http://hackage.haskell.org/package/edenskel/

Slide 35/43 — J.Berthold — Eden — Chalmers, 04/2014

http://hackage.haskell.org/package/edenskel/

Simple Divide & Conquer

Divide & Conquer Skeleton (simple general version)
dc_c depth trivial solve split combine x

= if depth < 1 then seqDC x
else if trivial x then solve x

else childRs ‘seq‘ -- early demand on children results
combine x (myR : childRs)

where myself = dc_c (depth - 1) trivial solve split combine
seqDC x = if trivial x then solve x

else combine x (map seqDC (split x))
(mine:rest) = split x
myR = myself mine
childRs = parMapEden myself rest

Room for optimisation:
Number of sub-problems often fixed by the algorithm
Processes should be placed evenly on all machines

The Eden skeleton library contains many variants.
http://hackage.haskell.org/package/edenskel/

Slide 35/43 — J.Berthold — Eden — Chalmers, 04/2014

http://hackage.haskell.org/package/edenskel/

Parallel iteration (an algorithmic skeleton)

Iterated parallel map on tasks

iterateUntil ::
(inp -> Int -> ([ws],[t],ms)) -> -- split/init
(t -> State ws r) -> -- worker
([r] -> State ms (Either out [t])) -- manager
-> inp -> out

input output
coordinate

W W WW

decideEnd

(state)

Worker: compute result r from task t

using and updating a local state ws

Manager: decide whether to continue,
based on master state ms and worker results [r].
produce tasks [t] for all workers

Applications: N-body, K-means clustering, genetic algorithms. . .

Slide 36/43 — J.Berthold — Eden — Chalmers, 04/2014

Parallel iteration (an algorithmic skeleton)

Iterated parallel map on tasks

iterateUntil ::
(inp -> Int -> ([ws],[t],ms)) -> -- split/init
(t -> State ws r) -> -- worker
([r] -> State ms (Either out [t])) -- manager
-> inp -> out

input output
coordinate

W W WW

decideEnd

(state)

Worker: compute result r from task t

using and updating a local state ws

Manager: decide whether to continue,
based on master state ms and worker results [r].
produce tasks [t] for all workers

Applications: N-body, K-means clustering, genetic algorithms. . .

Slide 36/43 — J.Berthold — Eden — Chalmers, 04/2014

Backtracking: A Dynamically Growing Task Pool

We use the master-worker skeleton with a small modification:
worker :: task -> (Maybe result,[task])

New tasks enqueued in dynamically growing task pool.
Backtracking: Test decision alternatives until reaching a result.

Parallel SAT Solver
Can a given logic formula be satisfied?
Task pool starting with just one task
(no variable assigned).

Stateful master with task counter:
consumes output of all workers
add new tasks to task list
shutdown when counter reaches zero

Slide 37/43 — J.Berthold — Eden — Chalmers, 04/2014

Backtracking: A Dynamically Growing Task Pool

We use the master-worker skeleton with a small modification:
worker :: task -> (Maybe result,[task])

New tasks enqueued in dynamically growing task pool.
Backtracking: Test decision alternatives until reaching a result.

Parallel SAT Solver
Can a given logic formula be satisfied?
Task pool starting with just one task
(no variable assigned).

Stateful master with task counter:
consumes output of all workers
add new tasks to task list
shutdown when counter reaches zero

A
J
J
J
J

False

True

B B
B
B
B

B
B
B

�
�
�

�
�
�C

�
��
B
BB

t C C
�
��

�
��

B
BB

B
BB

Slide 37/43 — J.Berthold — Eden — Chalmers, 04/2014

Backtracking: A Dynamically Growing Task Pool

We use the master-worker skeleton with a small modification:
worker :: task -> (Maybe result,[task])

New tasks enqueued in dynamically growing task pool.
Backtracking: Test decision alternatives until reaching a result.

Parallel SAT Solver
Can a given logic formula be satisfied?
Task pool starting with just one task
(no variable assigned).

Stateful master with task counter:
consumes output of all workers
add new tasks to task list
shutdown when counter reaches zero

worker worker worker...

(r,[t])

master

[t]
[r][t] [r]

distribute

init

task count
function

Slide 37/43 — J.Berthold — Eden — Chalmers, 04/2014

Summary

Eden: Explicit parallel processes, mostly functional face
Two levels of Eden: Skeleton implementation and skeleton use

Skeletons: High-level specification exposes parallel structure
and enables programmers to think in parallel patterns.

Different skeleton categories (increasing abstraction)
Small-scale skeletons (map, fold, map-reduce, . . .)
Process topology skeletons (ring, torus. . .)
Algorithmic skeletons (divide & conquer, iteration)

More information on Eden:
http://www.mathematik.uni-marburg.de/ eden

http://hackage.haskell.org/package/edenskel/
http://hackage.haskell.org/package/edenmodules/

http://hackage.haskell.org/package/edentv/

Slide 38/43 — J.Berthold — Eden — Chalmers, 04/2014

http://www.mathematik.uni-marburg.de/~eden
http://hackage.haskell.org/package/edenskel/
http://hackage.haskell.org/package/edenmodules/
http://hackage.haskell.org/package/edentv/

Summary

Eden: Explicit parallel processes, mostly functional face
Two levels of Eden: Skeleton implementation and skeleton use

Skeletons: High-level specification exposes parallel structure
and enables programmers to think in parallel patterns.

Different skeleton categories (increasing abstraction)
Small-scale skeletons (map, fold, map-reduce, . . .)
Process topology skeletons (ring, torus. . .)
Algorithmic skeletons (divide & conquer, iteration)

More information on Eden:
http://www.mathematik.uni-marburg.de/ eden

http://hackage.haskell.org/package/edenskel/
http://hackage.haskell.org/package/edenmodules/

http://hackage.haskell.org/package/edentv/

Slide 38/43 — J.Berthold — Eden — Chalmers, 04/2014

http://www.mathematik.uni-marburg.de/~eden
http://hackage.haskell.org/package/edenskel/
http://hackage.haskell.org/package/edenmodules/
http://hackage.haskell.org/package/edentv/

add-on material ahead

Example: All Pairs Shortest Paths (Floyd-Warshall)
Adjacency Matrix Distance Matrix

0 w1,2 w1,3 . . . w1,n
w2,1 0 w2,3 . . . w2,n
w3,1 w3,2 0 . . . w3,n
...

...
...

...
...

wn,1 wn,2 wn,3 . . . 0



⇒


0 d1,2 d1,3 . . . d1,n

d2,1 0 d2,3 . . . d2,n
d3,1 d3,2 0 . . . d3,n
...

...
...

...
...

dn,1 dn,2 dn,3 . . . 0



Floyd-Warshall: Update all rows k in parallel
ring_iterate :: Int -> Int -> Int -> [Int] -> [[Int]] -> ([Int],[[Int]])
ring_iterate size k i rowk rows

| i > size = (rowk, []) -- finished
| i == k = (result, rowk:rest) -- send own row
| otherwise = (result, rowi:rest)
where rowi:xs = rows

(result, rest) = ring_iterate size k (i+1) nextrowk xs
nextrowk | i == k = rowk -- no update for own row

| otherwise = updaterow rowk rowi distki
distki = rowk!!(i-1)

Slide 40/43 — J.Berthold — Eden — Chalmers, 04/2014

Example: All Pairs Shortest Paths (Floyd-Warshall)
Adjacency Matrix Distance Matrix

0 w1,2 w1,3 . . . w1,n
w2,1 0 w2,3 . . . w2,n
w3,1 w3,2 0 . . . w3,n
...

...
...

...
...

wn,1 wn,2 wn,3 . . . 0

 ⇒


0 d1,2 d1,3 . . . d1,n

d2,1 0 d2,3 . . . d2,n
d3,1 d3,2 0 . . . d3,n
...

...
...

...
...

dn,1 dn,2 dn,3 . . . 0



Floyd-Warshall: Update all rows k in parallel
ring_iterate :: Int -> Int -> Int -> [Int] -> [[Int]] -> ([Int],[[Int]])
ring_iterate size k i rowk rows

| i > size = (rowk, []) -- finished
| i == k = (result, rowk:rest) -- send own row
| otherwise = (result, rowi:rest)
where rowi:xs = rows

(result, rest) = ring_iterate size k (i+1) nextrowk xs
nextrowk | i == k = rowk -- no update for own row

| otherwise = updaterow rowk rowi distki
distki = rowk!!(i-1)

Slide 40/43 — J.Berthold — Eden — Chalmers, 04/2014

Trace of Warshall Program
First version:

with additional demand

Slide 41/43 — J.Berthold — Eden — Chalmers, 04/2014

Trace of Warshall Program
First version:

with additional demand

Slide 41/43 — J.Berthold — Eden — Chalmers, 04/2014

Differential Evolution [Price/Storn] with iteration skeleton
Worker: Mutate and select

Randomly choose C as either the best
known (50%) or a random candidate
Add weighted difference of 2 other
candidates: C ′i = C + γ(Cr1 − Cr2)

Using fitness function f : retain Ci if
better (minimising: f (Ci) < f (C ′i)).
State: random gen., local candidates

Manager: Collect/redistribute, identify best
Termination:

when best/all cand. good enough,
or after n iteration steps

State: Iteration counter

Slide 42/43 — J.Berthold — Eden — Chalmers, 04/2014

Differential Evolution [Price/Storn] with iteration skeleton
Worker: Mutate and select

Randomly choose C as either the best
known (50%) or a random candidate
Add weighted difference of 2 other
candidates: C ′i = C + γ(Cr1 − Cr2)

Using fitness function f : retain Ci if
better (minimising: f (Ci) < f (C ′i)).
State: random gen., local candidates

Manager: Collect/redistribute, identify best
Termination:

when best/all cand. good enough,
or after n iteration steps

State: Iteration counter

Slide 42/43 — J.Berthold — Eden — Chalmers, 04/2014

Eden usage example

Compile example, (with tracing -eventlog):
berthold@bwlf01$ COMPILER -parcp -eventlog -O2 -rtsopts --make mandel.hs
[1 of 2] Compiling ParMap (ParMap.hs, ParMap.o)
[2 of 2] Compiling Main (mandel.hs, mandel.o)
Linking mandel ...

Run, second run with tracing:
berthold@bwlf01$./mandel 0 200 1 -out +RTS -qp4 > out.ppm
==== Starting parallel execution on 4 processors ...
berthold@bwlf01$./mandel 0 50 1 +RTS -qp4 -l
==== Starting parallel execution on 4 processors ...
Done (no output)
Trace post-processing...

adding: berthold=mandel#1.eventlog (deflated 65%)
adding: berthold=mandel#2.eventlog (deflated 59%)
adding: berthold=mandel#3.eventlog (deflated 58%)
adding: berthold=mandel#4.eventlog (deflated 58%)

berthold@bwlf01$ edentv berthold\=mandel_0_50_1_+RTS_-qp4_-l.parevents

Slide 43/43 — J.Berthold — Eden — Chalmers, 04/2014

	The Language Eden (in a nutshell)
	Skeleton-Based Programming
	Small-Scale Skeletons: Map and Reduce
	Process Topologies as Skeletons
	Algorithm-Oriented Skeletons

