
Parallel Processing Letters
fc World Scientific Publishing Company

AUTOMATIC SKELETONS IN TEMPLATE HASKELL

Kevin Hammond∗

School of Computer Science, University of St Andrews, North Haugh, St Andrews, UK

Jost Berthold and Rita Loogen∗

Fachbereich Mathematik und Informatik, Philipps-Universität Marburg, Germany

Received April 2003
Revised July 2003

Communicated by Gaétan Hains and Frédéric Loulergue

ABSTRACT
This paper uses Template Haskell to automatically select appropriate skeleton imple-

mentations in the Eden parallel dialect of Haskell. The approach allows implementation
parameters to be statically tuned according to architectural cost models based on source
analyses. This permits us to target a range of parallel architecture classes from a sin-
gle source specification. A major advantage of the approach is that cost models are
user-definable and can be readily extended to new data or computation structures etc.

1. Introduction

The notion of a skeleton or pattern capturing computational structure has now
become widespread [1]. One common application is to parallel computing, where
such patterns can reduce the cost and complexity of producing parallel code, by
allowing algorithms to be specified as a conjunction of common patterns of paral-
lel computation. In earlier papers, we have shown how algorithmic skeletons can
be written both in the explicitly parallel Eden [2], and in the implicitly parallel
GpH [3], developed new functional skeletons corresponding to branch-and-bound
and heuristic search [4], and introduced implementation skeletons corresponding to
implementation-specific instances of high-level skeletons [5]. Such implementation
skeletons must, however, be selected by the programmer. This paper considers the
problem of selecting appropriate implementations automatically at compile-time us-
ing new Haskell meta-programming constructs driven by static cost models. The
meta-programming approach has the advantage of eliminating dynamic overheads
caused by introducing adaptors to match high-level specifications to specific imple-
mentation skeletons, while still allowing a single source program to be targeted to
multiple platforms and architectures. Moreover, implementation skeleton parame-
ters can be automatically tuned at compile-time to suit a target architecture.

∗This work is generously supported by EPSRC grants GR/R 70545/01, GR/R 91298/01 and
GR/S 15198/01 and by joint travel grants from the British Council/DAAD.

HLPP 2003

2. Meta-Programming using Template Haskell

Template Haskell [6] extends the non-strict functional language Haskell [7] with

features supporting compile-time meta-programming(GHC version 6.0 and later in-

corporate Template Haskell directly). These extensions allow parts of a program to

be automatically generated or manipulated using statically-computed information.

The features of Template Haskell most relevant to our work are splicing, quasi-

quotation and reification. An expression expr that should be evaluated during

compile-time is put into the context of a so-called splice $(expr). The expression

expr must be of type Expr. Usually, this expression will be the application of some

meta-function. Its result replaces the meta-application at compile-time to yield the

non-meta source program. Templates are defined using the quasi-quote notation.

Quasi-quote brackets [|...|] are placed around Haskell syntax fragments which

should not be evaluated during compile-time, but inserted into the expression as

they are. The result of a quasi-quotation is of type Expr. Finally, reification allows

the programmer to query the state of the compiler’s internal (symbol) tables. The

construct reifyType can e.g. be applied to an expression to determine its type which

can then be inspected by meta-functions. The reifyDecl construct is applied to ei-

ther a type or function, and returns a meta-representation of the type or function

declaration. While there is some similarity with the use of automatic partial eval-

uation to identify program fragments that can be evaluated at compile-time, the

meta-programming approach has a number of advantages: firstly, it is possible to

ensure that code is executed at compile-time even where a partial evaluator cannot

positively determine this; secondly, it is possible to generate code based on internal

information such as concrete types; and finally, by using source code generators and

templates, it is possible to write generic programs, such as printf, that could not be

typed directly in Haskell. It is only necessary to ensure that the generator and the

generated code are type-correct.

3. The Skeleton Framework

To illustrate automatic cost-based skeletonization we show how a standard map

function could be parallelized using Eden [8]. Eden extends Haskell with syntac-

tic constructs for explicitly defining processes, providing direct control over pro-

cess granularity, data distribution and communication topology [5,8]. Its two main

parallel constructs are process abstraction and instantiation. process::(Trans a,

Trans b)=> (a -> b) -> Process a b embeds functions of type a->b into process

abstractions of type Process a b where the context (Trans a, Trans b) states that

both a and b are overloaded values belonging to the Trans class of transmissible

values. A process abstraction process (\x -> e) defines the behavior of a process

with parameter x as input and expression e as output. A process instantiation

uses the predefined infix operator (#)::(Trans a,Trans b)=> Process a b -> (a

-> b) to provide a process abstraction with actual input parameters. The evalu-

Automatic Skeletons in Template Haskell

ation of (process (\ x -> e1)) # e2 dynamically creates a process together with

its interconnecting communication channels. The instantiating or parent process

is responsible for evaluating and sending e2, while the new child process evaluates

the expression (eagerly) e1[x->e2] and sends the result to the parent. The (de-

notational) meaning of the expression is that of the ordinary function application

((\ x -> e1) e2). Lists are communicated as streams, i.e. each element is evalu-

ated eagerly by the producer process and then sent automatically to the consumer

process. Eden processes are thus encapsulated units of computation: there is no

sharing of (lazily evaluated) values between parent and child processes, and conse-

quently, there are no “stray costs” to be accounted for in the parallel cost model [9].

3.1. Farm of processes

In this section we introduce four different Eden skeletons for parallel map imple-

mentations [2]. The straightforward implementation which creates one process per

application of some worker function f can be defined as

map_par :: (Trans a,Trans b) => (a->b) -> [a] -> [b]

map_par f = map ((#) (process f))

In general, this will create a large number of processes which may be excessively

fine-grained. We can improve this by creating a fixed number of processes, and

allocating more-or-less evenly sized sub-maps to each process. The farm skeleton

implements this scheme, using a static, but configurable, distribution. The main

process of the farm implementation creates as many processes as there are available

processors, distributes the tasks evenly amongst the processes, and collects the

results. Each child process applies the worker function to each data item it receives,

and returns the results to the parent process. The farm is parameterized on the

number of processors nPEs, and the distribution and collection functions unshuffle

and shuffle. The map par skeleton creates the required number of processes.

map_farm :: (Trans a,Trans b) => (a->b) -> [a] -> [b]

map_farm = farm nPEs unshuffle shuffle

farm :: (Trans a, Trans b) =>

Int -> (Int->[a]->[[a]]) -> ([[b]]->[b]) -> (a->b) -> [a] -> [b]

farm nPEs unshuffle shuffle f tasks

= shuffle (map_par (map f) (unshuffle nPEs tasks))

Different strategies to split the work into the different processes can be used provided

that, for every list xs, (shuffle . unshuffle n) xs == xs holds. A round-robin

scheme is considered to give reasonable results in most cases.

3.2. Saving communication cost: self service farm

Using the above farm implies that the parent process must supply the input to all

child processes in a piecemeal fashion. When the input is already locally available

HLPP 2003

when each child process is instantiated, then this can instead be supplied as part of

the process abstraction itself. In this new skeleton, the process abstraction is con-

structed dynamically from the input list as a parameter. While this duplicates work,

it reduces communication substantially, reducing the input to just one message for

process creation.

ssf :: Trans b => Int -> (Int->[a]->[[a]]) -> ([[b]]->[b])

-> (a->b) -> [a] -> [b]

ssf nPEs shuffle unshuffle f tasks

= shuffle [(worker f ts) # () | ts <- unshuffle nPEs tasks]

where worker f tasks = process (\() -> map f tasks)

3.3. Feedback loop for dynamic load balancing

Our final variant of the basic parallel map involves distributing data dynamically

(in the terminology of [10], this is the only true farm skeleton). This skeleton, which

we call workpool, requires as much communication as the first farm, but is a much

better solution for problems where the complexity of the list elements is irregular.

We exploit stream communication in Eden by constructing a feedback loop from

each output to some following task.

workpool :: (Trans a,Trans b) => Int -> Int -> (a -> b) -> [a] -> [b]

workpool nPEs prefetch f tasks = sortMerge outsChildren

where outsChildren = [(worker f i) # inputs |

(i,inputs) <- zip [0..nPEs-1]

(distribute .. tasks .. requests)]

The dynamic data distribution (distribute) requires a nondeterministic merge op-

eration which combines the outputs in the order in which they are produced. This

merged list of outputs is then used to select free processors for each subsequent

task, based on which tasks have completed. The final set of results is sorted by a

deterministic sorting function (sortMerge). While we can expect a much better task

distribution (since a complex task on one processor can be balanced by running a

series of less complex tasks on other processes), the need to sort the results may

introduce considerable overhead.

3.4. Chunking input and output data

To increase granularity all four farm skeletons allow the input and output data

to be processed in chunks of a (configurable) size. Working with coarse-grained

macro-tasks instead of fine-grained tasks reduces the communication overhead sub-

stantially and thus improves the runtime behaviour on high-latency distributed sys-

tems. In subsequent sections, we will show how optimal settings of this parameter

can be determined for each skeleton. The following function embeds implementation

skeletons into ones with increased task granularity.

Automatic Skeletons in Template Haskell

macro :: Int -> (([a]-> [b]) -> [[a]] -> [[b]])

-> (a -> b) -> [a] -> [b]

macro size mapscheme f xs

= concat (mapscheme (map f) (chunk size xs))

where chunk :: Int -> [a] -> [[a]]

Using this macro function, we define chunked versions of the previously explained

farm skeletons which we will use in the rest of the paper.

eden_farm’, eden_ssf’, eden_workpool’ ::

Integer -> Integer -> (a -> b) -> [a] -> [b]

eden_farm’ nPEs chSize = macro chSize (farm nPEs unshuffle shuffle)

eden_ssf’ nPEs chSize = macro chSize (ssf nPEs unshuffle shuffle)

eden_workpool’ nPEs chSize = macro chSize (workpool nPEs 2)

While the number of nodes and the chunk size remain accessible, other skeleton

parameters as the data distribution ([un]shuffle) mode and prefetch length (set to

two) are fixed now, creating a uniform interface for all farm skeletons.

3.5. Cost models

Cost models have been provided for various Eden skeletons [2], including our farm

skeletons, which account for the creation and termination of processes in the critical

path, i.e. from initialisation of the main process until all processors are computing

in parallel, plus activity from the end of the last child process until main process

termination. Two different kinds of parameters are used:

1. problem-dependent parameters : size of input N, sequential function times seqTimes,

size of process input/output sizeIn, sizeOut and the size of chunks chunksize

farmCost :: ProblemParams -> SystemParams -> Double

farmCost (Problem N seqTimes sizeIn sizeOut chunkSize)

(System nPEs latency commStartup commPerWord

timeCreateProcess timeStartProcess)

= timeInit + timeFinal + timeWorker

where

timeInit = nPEs * (timeCreateProcess + time(sizeIn) + timeUnshuffle1)

+ latency

timeFinal = latency + time(sizeOut) + timeShuffle1

timeWorker = timeStartProcess + (N ‘div‘ (P*chunksize)) *

(time(sizeIn) + chunksize * timeF + time(sizeOut))

-- costs of sequential functions

(timeF:timeUnshuffle1:timeShuffle1:_) = seqTimes

-- local CPU costs for sending/receiving

time :: Int -> Double; time n = commStartup + n * chunkSize * commPerWord

Figure 1: Cost Model Function for eden farm’

HLPP 2003

2. system-dependent parameters : number of processors nPEs, network latency,

cost to initiate a message commStartup and per-word communication cost

commPerWord, time to create a process on the parent side timeCreateProcess

and time to start a process on the child side timeStartProcess.

Figure 1 shows a Haskell version of the cost model function for eden farm’ which

corresponds to the definition in [2] except that we have incorporated chunking

effects. The cost models for the other skeletons are similar.

4. Automatic Skeletons

Automatic skeletons are meta-functions which generate specialized code based on

compile-time environmental information, similar to the parameter sets of the skele-

ton cost models. This information comprises: system-specific information such as

the machine topology, the number of processors and the latency of the interconnec-

tion network; and problem-specific information such as the regularity of the prob-

lem, its granularity, the costs of evaluating parameters to the skeleton etc. Each

automatic skeleton uses a static cost model to drive the choice of a suitable imple-

mentation skeleton. This cost model is a meta-function from the system description

and a proposed implementation (represented by the meta-level description of the

corresponding function declaration) to some cost metric. The cost model is speci-

fied as a Haskell library that may be overridden by the programmer. In template

Haskell, the type of a cost model, CostModel is

type CostModel = Environment -> Decl -> Cost

By using local or global optimization techniques, such as dynamic programming,

over this cost model it is possible to select an optimum implementation for each

automatic skeleton. An automatic skeleton is then a template Haskell function from

the environmental description to a meta-expression defined in terms of some specific

optimization meta-function and cost model. The application programmer can use

automatic skeletons simply by replacing a call to some skeleton by the more flexible

equivalent automatic skeleton. For example, the farm skeleton can be replaced by

the autoFarm version, autoFarm :: Environment -> Expr.

...(myFarm myParams) f xs ... application program

↓
programmer or pre-processor

replacement

...$(autoFarm environment) f xs ... meta program

↓
compiler evaluates

meta-function applications

...(bestFarm bestParams) f xs ... executed program

4.1. Representation of the Farm Library

Automatic Skeletons in Template Haskell

In order to allow implementation skeletons to be generated at compile-time, we

need an appropriate internal representation. In this section, we consider a restricted

skeleton library Skeletons providing the four different parallel farm implementations

introduced in Section 3: the naive parallel map (parmap), the farm with static task

distribution (farm), the self-service farm (ssf) and the farm with dynamic task

distribution (workpool). All four implementation skeletons share a common interface

which extends the type of the underlying map function with two parameters: one

giving the number of processor nodes, and a second (chunk size) controlling how

the input data is to be clustered. Although we have chosen to use a common type

interface here, it is a strength of the Template Haskell approach that we are not

restricted to such a choice: provided the generated program is type-correct, we may

derive differently-typed code to deal with different situations.

module Skeletons where

data FarmName = Parmap | Farm | SSF | Workpool

type FarmType a b = Integer -> -- # nodes

Integer -> -- chunk size

(a -> b) -> [a] -> [b] -- map interface

type Cost = Double -- or any ordered type

type SkCostFunction = ProblemParams -> Environment -> Cost

data FarmSkel a b = FarmSkel FarmName (FarmType a b) SkCostFunction

The FarmSkel constructor captures the name of the skeleton, information about its

type and a skeleton cost function of type SkCostFunction. The module provides the

skeletons of Section 3, defined as

farmSkels = [eden_parmap, eden_farm, eden_ssf, eden_workpool]

eden_parmap = FarmSkel Parmap eden_parmap’ parmapCost

eden_farm = FarmSkel Farm eden_farm’ farmCost

eden_ssf = FarmSkel SSF eden_ssf’ ssfCost

eden_workpool = FarmSkel Workpool eden_wp’ wpCost

parmapCost, farmCost, ssfCost, workpoolCost :: SkCostFunction

In the next section we show how to define automatic skeletons in Template Haskell.

4.2. Specification of the environment

In order to demonstrate the principle of architecture-specific skeleton choice, we

use an elementary architecture description language. In our example, it describes

general and Eden-specific properties of the system which affect the skeleton cost

model. Architectural descriptions can be specialized and refined according to the

cost model requirements. Here, we show how automatic skeletons work in principle.

HLPP 2003

-- elementary architecture description language

data Environment =

System Integer -- no. of processors

Double -- network latency

Double Double -- communication startup time / cost per word

Double Double -- process creation costs (parent/child)

The environmental description includes the number of available processors, network

latency, local startup and per-word time for messages between processors as well as

the Eden-specific time for the creation of a process on parent and child side. Since

the skeleton cost model also uses problem-dependent parameters Problem ..., they

must either be provided by the programmer or inferred by the compiler. Special-

izing a program using programmer-provided information or manual cost models

falls short of our objective of automating the choice of implementation skeleton at

compile-time, requiring significant expertise to implement correctly. We thus focus

on automated approaches incorporating automatic static cost analyses.

4.3. Cost model integration

The cost model relies on two basic cost functions: a function to estimate function

evaluation cost; and a function to infer (maximum) data sizes for input and output.

Our example uses a modular design, where the skeletons are provided by a special

library. The sequential cost model is provided in a special cost model module.

module CostModel where

type Cost = Double -- or any ordered type

type CostModel = (Environment -> Decl -> Cost,

Environment -> Type -> (Integer,Integer))

eval_cost :: Environment -> Decl -> Cost

data_size :: Environment -> Type -> (Integer,Integer)

The cost model will normally be used by the automatic skeleton to generate compile-

time cost information based on the characteristics of the application program. The

simple model described here uses two cost functions: the eval cost function provides

granularity information derived from an expression, whilst the data size function

produces information about the size of input and output data structures derived

from the type of the process. These two functions are used to determine problem-

dependent parameters for the skeleton cost model: size of data structures commu-

nicated and complexity of the evaluation. For illustrative purposes, the latter cost

result is given as a simple number here: in general, these would be a more com-

plex cost expression. The cost model would also usually incorporate functions to

determine the regularity of the problem: for simplicity, these are omitted here.

4.4. Specialize using concrete cost estimation

Automatic Skeletons in Template Haskell

The results of the cost analysis are combined with a generic cost model for each

implementation skeleton (defined in the Skeleton module). In Section 3 we showed

the cost model for eden farm’ which produces an estimate of actual execution cost

given the results of the static cost analysis above and a skeleton parameter set. We

now introduce a generic minimizing function for every candidate implementation

skeleton, which determines execution cost for one skeleton using the best dynamic

parameter settings, here: no. of processors and chunk size. Since precise information

will not be available until runtime, some cost assumptions must be made if a purely

static cost model is to be used. In our example, we assume, for example, that the

argument list is long enough to chunk the elements up to some predefined maximum.

minimizeSkel :: ProblemParams -> Environment

-> FarmSkel -> (Cost, (Integer, Integer))

minimizeSkel (Problem _ timeF sizeI sizeO _)

(System nPEs lat cStartup cPerW timeP timeCh)

(FarmSkel name _ skCF)

= findMin (zip3 (repeat name) costs candidates)

where costs = map costFct candidates

candidates= [(pes,chunk) | pes <- [1..nPEs],

chunk <- [1,1+stepC..maxC]]

costFct = \(p,c)->

skCF (Problem (maxC*nPEs) timeF sizeI sizeO c)

(System p lat cStartup cPerW timeP timeCh)

findMin :: Ord b => [(a,b,c)] -> (a,b,c)

The auxiliary function findMin (not shown) finds the parameter set with the least

cost. It is used to select the best implementation skeleton. Selecting the optimal

chunk size for the variable part of the cost model is achieved by a brute force trial-

and-error search. While this may be expensive, the search will be performed only

once at compile time, and the cost should therefore be acceptable. The function

autoFarm can now be defined to evaluate and compare candidates for all skeletons,

select the skeleton with minimum cost and generate code to use this skeleton with

optimal parameters. This choice is based on both the structure of the definition

and on its typea

autoFarm :: Environment -> (a->b) -> Expr

autoFarm system f

= let (name, _, (nn, chs)) = findMin costList

costList = map (minimizeSkel problem system) farmSkels

problem = Problem 0 timeF sizeI sizeO 0

(sizeI,sizeO) = data_size (reifyType f)

timeF = eval_cost (reifyDecl f)

in (genSkel name nn chs)

-- skeleton code generator function

aNote that the implementation of Template Haskell in GHC 6.0 doesn’t allow local variables to
be passed to reify constructs, as with e.g. reifyDecl f above; uses of the reify constructs will
therefore be slightly more complex than suggested here.

HLPP 2003

50 12
5

20
0

27
5

35
0

42
5

50
0

57
5

65
0

72
5

80
0

87
5

95
0

Cost Models on Beowulf cluster
 (with chunk size)

Farm−Model
SSF−Model
WP−Model

Chunk Size

25 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

7

7.5

8

8.5

9

9.5

10

10.5

11

11.5

12

Chunk size measurement
(mandelbrot)

Farm
SSF
Workpool

Chunk Size

R
un

ti
m

e
(s

ec
.)

Figure 2: Skeleton cost models and measurements (pixel-wise Mandelbrot)
(8 RedHat 8.0 PCs in a Beowulf Cluster connected by 100MB/s Ethernet)

genSkel :: FarmName -> Integer -> Integer -> Expr

genSkel Farm n s = [| eden_farm’ $(lift n) $(lift s) |]

genSkel SSF n s = [| eden_ssf’ $(lift n) $(lift s) |]

genSkel Workpool n s = [| eden_workpool’ $(lift n) $(lift s) |]

The function genSkel uses quasi-quotation to generate the code for the selected

skeleton together with its optimal parameters, which are lifted into the generated

code. Since both evaluation cost and communication needs are inferred by the

cost model plugin from the definition of the worker function, this function must be

passed to the autoFarm.

$(autoFarm environment expensiveFunction) expensiveFunction longList

The system will then determine the expected cost (and optimal parameter settings)

of evaluating this function for each possible implementation skeleton given the ar-

chitectural description of the target machine. The most efficient implementation

skeleton will then be compiled into the final program.

5. Performance Results using Automatic Skeletons

The impact of different chunk sizes and skeletons as well as the skeleton cost

models we use is illustrated by the runtime of a Mandelbrot set visualization using

three implementation skeletons from Section 4. Runtime has been measured for the

visualization of a heterogeneous 300× 300 pixel area on eight processors of a high-

latency network (Beowulf Cluster). The measurements show significant differences

between different skeletons and an optimal chunk size around 300 pixels. The

included cost model curves give a qualitative idea of their behavior. The cost

model still has to be refined to get more accurate predictions. Measurements of

farm and ssf show extrema for the chunk sizes 75 and 150, which are due to the

problem’s heterogeneity, the selected area and its size, while the poor performance

of the workpool caused by its sorting overhead decreases with big chunk sizes.

Automatic Skeletons in Template Haskell

6. Related Work

As far as we are aware, this work represents the first attempt to use a template-

based approach to skeletal programming in a purely functional language (though

Herrmann has also proposed to use Template Haskell in a revised implementation

of HDC [11]). Template approaches have been used in other language paradigms,

however, most notably C and C++. For example, Ciarpaglini et al’s ANACLETO

compiler for P3L uses implementation templates which record a good strategy for

implementing a given skeleton on a target parallel architecture, supported by a cost

model. In contrast to our approach, these templates are provided by the system

implementor for each target architecture. The applications programmer is thus

unable to modify the templates to deal with new situations. An interesting feature

of the ANACLETO approach is the use of profiling information within the compiler

to supplement the static cost model by providing information about the execution

costs of the sequential parts of the program.

Kuchen’s library for C++ [12] exploits the standard C++ template meta-pro-

gramming system to generate C+MPI implementations from high-level skeletons,

delivering good performance compared with more labor-intensive hand-written pro-

grams. Meta-programming introduces essential features that are required to imple-

ment skeletons effectively: higher-order functions, polymorphism and partial appli-

cations. Unlike the approach presented here, however, no attempt is made to use a

programmable cost model to drive the choice of implementation; rather the imple-

mentation is driven by fixed template instantiation. In Kuchen’s approach, different

target architectures and applications thus require different template specifications,

resulting in either a loss of abstraction or increased implementation effort.

One especially interesting approach is that taken by SkelML [13], which uses

automatic program synthesis to identify specific parallel patterns. These can then

be compiled to yield good parallel implementations. Like most other skeleton ap-

proaches, but unlike the work presented here, the cost information that is used

to drive the choice of skeleton is embedded as part of the compilation system (as

a hybrid static cost analysis/dynamic profiling technique), and is not exposed to

the applications programmer. Our approach thus provides the opportunity for the

applications programmer to affect the compilation process where this is required,

whilst maintaining high-level skeleton abstraction at the source level.

7. Conclusions and Further Work

We have presented a system for automatically deriving parallel implementation

skeletons from high-level skeleton specifications in a higher-order non-strict lan-

guage. Our approach uses meta-programming constructs from the recently imple-

mented Template Haskell system to automatically transform high-level skeletons

to good parallel implementations on the basis of static cost information. This cost

information is derived from information about the implementation target, the skele-

HLPP 2003

ton structure and the actual source program using meta-programming constructs.

Since the cost model is simply a Template Haskell module whose definitions are

used at compile-time, this cost model can be modified by either the applications

or systems programmer to deal with new problems, architectural information, user-

defined data structures etc. Whilst still at an early stage of development, our results

suggest that this should provide a flexible, and hopefully effective, means to write

efficient parallel programs.

A number of obvious improvements could be made: firstly we need to extend our

work to cover the full range of “standard skeletons”; secondly we should improve the

cost models to include concrete performance results for specific Eden implementa-

tion skeletons as reported by Rubio et al. [14]; thirdly we should consider the use of

hybrid static/dynamic cost models, generating code to obtain required information

at runtime; fourthly, we should investigate the exploitation of profiling information

at compile-time by calling generated programs from within the Template Haskell

meta-program; and finally, we intend to explore compile-time rules for dealing with

nested skeletons, as has been done with e.g. SkelML [13]. We would like to thank

the anonymous referees for their helpful comments on an earlier draft of this paper.

[1] F. A. Rabhi and S. Gorlatch, eds., Patterns and Skeletons for Parallel and Dis-
tributed Computing. Springer, 2002.

[2] R. Loogen, Y. Ortega-Mallén, R. Peña, S. Priebe, and F. Rubio, “Parallelism Abstrac-
tions in Eden,” in [1].

[3] K. Hammond and A. J. Rebon Portillo, “HaskSkel: Algorithmic Skeletons for Haskell,”
in IFL’99, vol. 1868 of LNCS, (Lochem, The Netherlands), Springer, Sept. 1999.
http://www-fp.dcs.st-and.ac.uk/publications/1999/haskskel.ps.gz.

[4] R. Peña Maŕı and K. Hammond, “Complex search using eden skeletons.” In Prepara-
tion, 2003.

[5] U. Klusik, R. Loogen, S. Priebe, and F. Rubio, “Implementation Skeletons in Eden —
Low-Effort Parallel Programming,” in IFL’00, vol. 2011 of LNCS, (Aachen, Germany),
pp. 71–88, Springer, Sept. 2000.

[6] T. Sheard and S. Peyton-Jones, “Template meta-programming for haskell.,” in Proc.
of the workshop on Haskell, pp. 1–16, ACM, 2002.

[7] S. Peyton Jones and J. e. Hughes, “Haskell 98: A Non-strict, Purely Functional Lan-
guage,” 1999. http://www.haskell.org/.

[8] S. Breitinger, R. Loogen, Y. Ortega Mallén, and R. Peña Maŕı, “The Eden Coordination
Model for Distributed Memory Systems,” in HIPS’97 — Workshop on High-level
Parallel Progr. Models, pp. 120–124, IEEE Comp. Science Press, 1997.

[9] U. Klusik, R. Loogen, and S. Priebe, “Controlling Parallelism and Data Distribution
in Eden,” in SFP’00, Trends in Functional Programming, pp. 53–64, Intellect, 2000.

[10] M. Cole, The eSkel Reference Manual, 2003. http://www.dcs.ed.ac.uk/home/mic/
eSkel/eSkelmanual.ps.

[11] C. Herrmann, “Using Haskell as a Meta-Language for Skeleton Programming.”
http://www.fmi.uni-passau.de/cl/staff/herrmann/dagstuhl03131/slides.html.

[12] H. Kuchen, “A Skeleton Library,” LNCS, vol. 2400, p. 620ff, 2002.
[13] G. Michaelson, N. Scaife, P. Bristow, and P. King, “Nested Algorithmic Skeletons from

Higher Order Functions,” Parallel Algs. and Applications, vol. 16, pp. 181–206, 2001.
[14] F. Rubio, Programación Funcional Paralela Eficiente en Eden. PhD thesis, Uni-

versidad Complutense de Madrid (Spain), November 2001. In Spanish.

