
THE IMPACT OF DYNAMIC CHANNELS ON

FUNCTIONAL TOPOLOGY SKELETONS

J. BERTHOLD AND R. LOOGEN

Fachbereich Mathematik und Informatik, Philipps-Universität Marburg

Hans-Meerwein-Straße, D-35032 Marburg, Germany

{berthold,loogen}@informatik.uni-marburg.de

ABSTRACT
Parallel functional programs with implicit communication often generate purely hier-
archical communication topologies during execution: communication only happens be-
tween parent and child processes. Messages between siblings must be passed via the
parent. This causes inefficiencies that can be avoided by enabling direct communication
between arbitrary processes. The Eden parallel functional language provides dynamic

channels to implement arbitrary communication topologies. This paper analyses the
impact of dynamic channels on Eden’s topology skeletons, i.e. skeletons which define
process topologies such as rings, toroids, or hypercubes. We compare topology skele-
tons with and without dynamic channels with respect to the number of messages. Our
case studies confirm that dynamic channels decrease the number of messages by up to
50% and substantially reduce runtime. Detailed analyses of Eden TV (trace viewer)
execution profiles reveal a bottleneck in the root process when only hierarchical channel
connections are used and a better overlap of communications with dynamic channels.

1. Introduction

Skeletons [3] provide commonly used patterns of parallel evaluation and simplify
the development of parallel programs, because they can be used as complete build-
ing blocks in a given application context. Skeletons are often provided as special
language constructs or templates, and the creation of new skeletons is considered
as a system programming task or as a compiler construction task [5,10]. Therefore,
many systems offer a closed collection of skeletons which the application program-
mer can use, but without the possibility of creating new ones, so that adding a new
skeleton usually implies a considerable effort.

In a functional language like Haskell or ML, a skeleton can be specified as a
polymorphic higher-order function. It can even be implemented in such a language,
provided that appropriate constructs for expressing parallelism are available. De-
scribing both the functional specification and the parallel implementation of a skele-
ton in the same language context has several advantages. Firstly, it constitutes a
good basis for formal reasoning and correctness proofs. Secondly, it provides much
flexibility, as skeleton implementations can easily be adapted to special cases, and
the programmer can introduce new skeletons if necessary.

In this paper, we consider the functional specification and implementation of
topology skeletons and show how to improve their implementation substantially by
using dynamically established communication connections which we call dynamic
channels for short. Topology skeletons define parallel evaluation schemes with an
underlying communication topology like a ring, a torus or a hypercube. Many
parallel algorithms [16] rely on such underlying communication topologies. As any
skeleton, topology skeletons can easily be expressed in a functional language. A

Third Workshop on High-Level Parallel Programming and Applications

ring

...

Figure 1: Hierarchical Ring Skeleton

simple ring can e.g. be defined in Haskell as follows:

ring :: ((i,[r]) -> (o,[r])) -- ring process mapping

-> [i] -> [o] -- input-output mapping

ring f inputs = outputs

where (outputs, ringOuts) = unzip [f inp | inp <- nodeInputs]

nodeInputs = mzip inputs ringIns

ringIns = rightRotate ringOuts

rightRotate xs = last xs : init xs

The function ring takes a node function f and a list inputs whose length determines
the size of the ring. The node function f is applied to each element of the list inputs
and a list of values which is received from its left ring neighbour. It yields an element
of the list outputs which is the overall result and a list of values passed to its right
ring neighbour. Note that the ring is closed by defining ringIns = rightRotate

ringOuts; the ring outputs, rotated by one position, are reused as ring inputs. The
Haskell function zip converts a pair of lists element by element into a list of pairs
and unzip does the reverse. The mzip function corresponds to the zip function
except that a lazy pattern is used to match the second argument. This is necessary,
because the second argument of mzip is the recursively defined ring inputa.

A parallel ring can be obtained by evaluating each application of the node func-
tion f in parallel. Implicit and semi-explicit lazy parallel functional languages like
GpH (Glasgow parallel Haskell) [20], Concurrent Clean [15], or Eden [9] use primi-
tives to spawn subexpressions for parallel evaluation by a separate thread or process.
Necessary arguments and the results are automatically communicated by the par-
allel runtime system underlying the implementation of such languages.

Unfortunately, the one-by-one pattern of parallel thread or process creation
induces a purely hierarchical communication topology. Figure 1 shows the ring
topology resulting from the above definition, if the node function applications are
spawned for parallel evaluation. The solid arrows show the connections between the
node processes and the parent process ring via which the inputs and outputs are
passed. The dashed lines show ring connections that are also established between
the nodes and the parent, which forwards the ring data as indicated. This unnec-

aLaziness is essential in this example - a corresponding definition is not possible in an eager
language.

The Impact of Dynamic Channels on Functional Topology Skeletons

essarily increases the number of messages and causes a bottleneck in the parent
process.

The parallel functional language Eden [9] offers means to create arbitrary chan-
nels between processes to achieve better performance by eliminating such commu-
nication bottlenecks. The expressiveness of Eden for the definition of arbitrary
process topologies has been emphasised by [6], but in a purely conceptual manner,
without addressing any performance issues. The use of dynamic channels has been
investigated in [13], explaining how non-hierarchical process topologies can system-
atically be developed using dynamic reply channels. In the current paper, we focus
on a detailed analysis of topology skeletons in Eden using trace information col-
lected during parallel program executions. We compare topology skeletons defined
with and without dynamic channels and analyse the benefits and overhead induced
by the use of dynamic channels. Our case studies show that dynamic channels lead
to substantial runtime improvements due to a reduction of message traffic and the
avoidance of communication bottlenecks. A new trace viewer tool [18] is used to
visualise the interaction of all machines, processes and threads, and allows us to
spot inefficiencies in programs in a post-mortem analysis.

2. Dynamic Channels in Eden

Eden [9], a parallel extension of the functional language Haskell, embeds functions
into process abstractions with the special function process and explicitly instanti-
ates (i.e. runs) them on remote processors using the operator (#). Processes are
distinguished from functions by their operational property to be executed remotely,
while their denotational meaning remains unchanged as compared to the underlying
function.

process :: (Trans a, Trans b) => (a -> b) -> Process a b

(#) :: (Trans a, Trans b) => Process a b -> a -> b

For a given function f and some argument expression e, evaluation of the expression
process f # e leads to the creation of a new (remote) process which evaluates the
function application f e. The argument e is evaluated locally by the creator or
parent process, i.e. the process evaluating the process instantiation. The value of e
is transmitted from the parent to the child and the child output f e is transmitted
from the child to the parent via implicit communication channels installed during
process creation. The type classb Trans provides implicitly used functions for these
transmissions. Tuples are transmitted component-wise by independent concurrent
threads, and lists are transmitted as streams, element by element.

Example 1 Ring (with static connections)
In the following, we slightly refine the ring specification of the introduction and
discuss two definitions of a process ring skeleton in Eden (see Figure 2): The number
of ring processes is no longer deduced from the length of the input list, but given as
a parameter. Input split and output combine functions convert between arbitrary
input/output types i/o and the inputs ri / outputs ro of the ring processes.

bIn Haskell, type classes provide a structured way to define overloaded functions.

Third Workshop on High-Level Parallel Programming and Applications

ring, ringDC :: (Trans ri,Trans ro,Trans r) =>

Int -- ring size

-> (Int -> i -> [ri]) -- input split function

-> ([ro] -> o) -- output combine function

-> ((ri,[r]) -> (ro,[r])) -- ring process mapping

-> i -> o -- input-output mapping

ring n split combine f input = combine toParent

where

(toParent,ringOuts) = unzip [process f # inp | inp <- nodeInputs]

...

Figure 2: Type of Eden ring skeletons and definition of static ring

The static ring skeleton has been obtained by replacing the function application
(f inp) with the process instantiation ((process f) # inp). It uses only hierarchi-
cal interprocess connections and produces the topology shown in Figure 1 with the
problems explained in the introduction. The non-hierarchical skeleton ringDC will
be defined in Example 2 using dynamic channels. /

Eden provides the dynamic creation of reply channels, dynamic channels for
short, to establish direct connections between arbitrary processesc. A unary type
constructor ChanName is used to represent the name of a dynamic channel, which can
be created and passed to another process to receive data from it. Dynamic channels
are installed using the following two operators:

new :: Trans a => (ChanName a -> a -> b) -> b

parfill :: Trans a => ChanName a -> a -> b -> b

Evaluating an expression new (\ ch_name ch_vals -> e) has the effect that a new
channel name ch name is declared as reference to the new input channel via which
the values ch vals will eventually be received in the future. The scope of both
is the body expression e, which is the result of the whole expression. The chan-
nel name must be sent to another process to establish the direct communication.
A process can reply through a channel name ch name by evaluating an expression
parfill ch_name e1 e2. Before e2 is evaluated, a new concurrent thread for the
evaluation of e1 is generated, whose normal form result is transmitted via the dy-
namic channel. The result of the overall expression is e2. The generation of the
new thread is a side effect. Its execution continues independently from the eval-
uation of e2. This is essential, because e1 could yield a (possibly infinite) stream
which would be communicated element by element. Or, e1 could even (directly or
indirectly) depend on the evaluation of e2.

Example 2 Ring (with dynamic channels)
In the version of Figure 3, the static ring connections are replaced by dynamic
channels which have to be sent in the other direction to achieve the same infor-
mation interchange. Therefore the above definition of ring is only modified in two

cThe only difference between static and dynamic channels is that the former are generated during
process creation while the latter are dynamically installed.

The Impact of Dynamic Channels on Functional Topology Skeletons

-- ring process using dynamic channels

plink :: (Trans i,Trans o,Trans r) =>

((i,[r]) -> (o,[r])) -> Process (i,ChanName [r]) (o,ChanName [r])

plink f = process fun_link

where fun_link (fromParent,nextChan) = new (\ prevChan prev ->

let (toParent,next) = f (fromParent,prev)

in parfill nextChan next (toParent,prevChan))

ringDC

...

Figure 3: Ring Skeleton Using Dynamic Channels

places to define ringDC: The reply channels are rotated in the opposite direction —
rightRotate is replaced by an appropriately defined leftRotate. More importantly,
the process abstraction process f is replaced by a call to the function plink f (de-
fined in Figure 3) which establishes the dynamic channel connections.
The function plink embeds the node function f into a process which creates a new
input channel prevChan that is passed to the neighbour ring process via the parent.
It receives a channel name nextChan to which the ring output next is sent, while
the ring input prev is received via its newly created input channel. The mapping of
the ring process remains as before, but the ring input/output is received and sent
on dynamic channel connections instead of via the parent process. The obvious
reduction in the amount of communications will be quantified in the following. /

3. Topology Skeletons

Topology skeletons define process systems with an underlying communication topol-
ogy. In this section, we consider rings, toroids, and hypercubes. The concept of Eden
dynamic channels allows to specify such topology skeletons exactly in the intended
way, using direct connections between siblings. The following analysis quantifies
the impact of dynamic channels in a theoretical manner. In the next section we will
justify these considerations by measurements for chosen applications.

3.1. Analysis of the Ring Skeleton

The number of messages between all processes is compared for the ring skeletons
of Section 2 with and without dynamic channels. In general, a process instantia-
tion needs one system message from the parent for process creation. Tuple inputs
and outputs of a process are evaluated componentwise by independent concurrent
threads.

Communicating input channels (destination of input data ri from the parent)
needs tsize(ri) + 1(closing message) administrative messages from the child, where

Third Workshop on High-Level Parallel Programming and Applications

tsize(a) is the number of top level tuple components for a tuple type a, and 1
otherwise. For simplicity, we only compute the amount of messages in the case
where data items fit into single messagesd.

Let n denote the ring size, ik and ok be the number of input and output items for
process k, and rk the amount of data items which process k passes to its neighbour in
the ring. Input data for the ring process is a pair and thus needs 3 = tsize(ri, [r])+1
administrative messages from each ring process. In case of the ring without dynamic
channels, the total number of messages is:

TotalnoDC =

sent by parent
︷ ︸︸ ︷

n∑

k=1

(1 + ik + rk) +

n∑

k=1

sent by child k
︷ ︸︸ ︷

(3 + ok + rk)

As seen in the introduction, ring data is communicated twice, via the parent. Thus
the parent either sends or receives every message counted here!

Using dynamic channels, each ring process communicates one channel name via
the parent (needs 2 messages) and communicates directly afterwards:

TotalDC =

sent by parent
︷ ︸︸ ︷

n∑

k=1

(1 + ik + 2) +

n∑

k=1

sent by child k
︷ ︸︸ ︷

(3 + ok + 2 + rk)

It follows that using dynamic channels saves (
∑n

k=1
rk) − 4n messages, and we

avoid the communication bottleneck in the parent process.

3.2. Toroid

As many algorithms in classical parallel computing are based on grid and toroid
topologies, we extend our definition to the second dimension: a toroid is nothing
more than a two-dimensional ring. In principle, the skeletons for those topologies
work exactly the same way as the presented ring. In Figure 4, we only show the
definition of the version which does not use dynamic channels. The version with
dynamic channels can be derived as has been shown for the ring skeleton. It can also
be found in [13]. The auxiliary functions mzipWith3, mzip3 and unzip3 are straight-
forward generalisations of the Haskell prelude functions zipWith, zip and unzip for
triples. The prefix m marks versions with lazy argument patterns. Considering again
the amount of messages, we get the following:

Let n denote the torus size (identical in the two dimensions), ik,l and ok,l be the
number of input and output items for torus process (k, l). The amount of data
items it passes through the torus connections shall be denoted vk,l and hk,l (vertical,
horizontal). The input of a torus process is a triple and thus needs 4 administra-
tive messages. If the skeleton does not use dynamic channels, the total number of
messages is

TotalnoDC =

sent by parent
︷ ︸︸ ︷

n∑

k=1

n∑

l=1

(1 + ik,l + vk,l + hk,l) +

n∑

k=1

n∑

l=1

sent by child (k,l)
︷ ︸︸ ︷

(4 + ok,l + vk,l + hk,l)

dWhen a data item does not fit into a single message due to the limited message size, it is split
into several packages that are sent in separate partial messages.

The Impact of Dynamic Channels on Functional Topology Skeletons

toroid :: (Trans a, Trans b, Trans v, Trans h) =>

Int -> Int -- torus size (2 sizes)

-> ((a,[h],[v])->(b,[h],[v])) -- node processes mapping

-> [[a]] -> [[b]] -- input-output mapping

toroid nf nc f toChildren = outssToParent

where

(outssToParent,outssH,outssV) = unzip3 (map unzip3 outss)

outss = [[(process f) # outHV | outHV <- outs’] | outs’ <- outss’]

outss’ = mzipWith3 mzip3 toChildren outssH’ outssV’

outssH’ = mzipWith (:) nf (map last outssH) (map init outssH)

outssV’ = last outssV:init outssV

Figure 4: Static definition of toroid skeleton

Again, the parent process is involved in every message counted here.
Using dynamic channels, torus processes exchange two channels via the parent

(4 messages) and communicate directly afterwards; giving:

TotalDC =

sent by parent
︷ ︸︸ ︷

n∑

k=1

n∑

l=1

(1 + ik,l + 4) +

n∑

k=1

n∑

l=1

sent by child (k,l)
︷ ︸︸ ︷

(4 + ok,l + 4 + vk,l + hk,l)

It follows that we save (
∑n

k=1

∑n

l=1
(vk,l + hk,l)) − 8n2 messages.

3.3. Hypercube

The presented skeletons can be generalised even more to create 3-, 4-, and n-dimen-
sional communication structures in a hyper-grid of processes. The ring skeleton
is the one-dimensional instance of such a multi-dimension skeleton, and the well-
known classical hypercube reduces to simply restricting the size to 2. We present
a non-recursive hypercube definition where all processes are created by the parent
process.

The nodes of the hypercube communicate with one partner in every dimension,
thus the type of the node function includes this communication as a list of streams
[[r]], each stream sent by an independent concurrent thread. The hypercube skele-
ton creates all hypercube nodes and distributes the returned channels to the respec-
tive communication partners, where the call (invertBit n d) returns the communi-
cation partner of node n in dimension d by inverting bit position d in integer n. The
process abstraction hyperp embeds the node function into a process abstraction,
which expects and returns a list of channels, one for every dimension. Functions
createChans and multifill are obvious generalisations of new and parfill, which
work with lists of channels and values instead of single channels.

In contrast to the previous skeletons ring and toroid, the hypercube skeleton
cannot use tuples with one component for every dimension. Dynamic reply channels
are instead exchanged in form of a list. As an important consequence, a completely
analogous skeleton with static communication channels cannot be defined in Eden

Third Workshop on High-Level Parallel Programming and Applications

hypercube :: (Trans i, Trans o, Trans r) =>

Int -> ((i,[[r]]) -> (o,[[r]])) -- dimension / node function

-> [i] -> [o] -- input/output (to/from all nodes)

hypercube dim nodefct inputs = outs

where (outs,outChans) = unzip [hyperp dim nodefct # proc_in

| proc_in <- proc_ins]

proc_ins = zip inputs inChans

inChans = [[outChans!!(invertBit n d)!!d | d <- [0.. dim-1]]

| n <- [0..2^dim -1]]

hyperp :: (Trans i, Trans o, Trans r) =>

Int -> ((i,[[r]]) -> (o,[[r]])) -- dimension / node function

-> Process (i, [ChanName [r]]) (o, [ChanName [r]])

hyperp dim nodefct =

process (\ (input, toNeighbCs) ->

let (output, toNeighbs) = nodefct (input, fromNeighbs)

(fromNeighbCs, fromNeighbs) = createChans dim

sendOut = multifill toNeighbCs toNeighbs output

in (sendOut, fromNeighbCs))

createChans :: Trans x => Int -> ([ChanName x], [x])

multifill :: Trans x => [ChanName x] -> [x] -> b -> b

Figure 5: Definition of hypercube skeleton with dynamic channels

(unless using Channel Structures [2], which are currently not implemented). By
using dynamic reply channels, communication between neighbours is handled in
separate streams and independent threads. When communicated via the parent,
the list of streams between hypercube neighbours would be communicated as a
stream of lists, sent by only one thread. Thus, a hypercube version with static
connections would be applicable only for algorithms where neighbours interact in
a strictly regular order. In order to compare the dynamic channel version with
a static version, we have defined specialized static versions for hypercubes up to
dimension 4.

4. Case Studies

In this section, we will illustrate the skeleton improvements by runtime trace visu-
alisations of applications which use the previously presented skeletons. We use the
Eden Trace Viewer [18], a new tool for the post-mortem analysis of Eden program
executions, which consists of an instrumented runtime system that produces execu-
tion traces and a stand-alone tool to analyse and visualise trace information. The
execution as well as the communication between units is shown for all machines,
processes and threads in different zoomable views.

4.1. Warshall-Algorithm Using a Ring

A common use of ring structures is to circulate global data in parts between nodes
of a parallel computation. As an example, we analyse a parallel implementation

The Impact of Dynamic Channels on Functional Topology Skeletons

Runtime: 12.33 sec.

Figure 6: Warshall-Algorithm (500 node graph) using static connections in ring

Runtime: 4.56 sec.

Figure 7: Warshall-Algorithm (500 node
graph) using dynamic channels in ring

Common platform:
Beowulf Cluster, Heriot-Watt University,
Edinburgh, 16 machines

of Warshall’s algorithm to compute minimum distances between nodes of a graph
(adapted from [14]). Each process evaluates rows of minimum distances to all other
nodes for a subset of the graph nodes. Starting with the row for the first graph
node, intermediate results are communicated to other processes through the ring.
Each updated row flows through the whole ring for one round. On receiving a row
from the predecessor, a process updates its own rows by checking whether paths via
the respective node are shorter than the known minimum, before eventually passing
its own intermediate result to the ring neighbour. In a second phase, the remaining
rows are received, and local rows are again updated accordingly to yield the final
result.

The trace visualisations of Figure 6 and 7 show the Processes per Machine view
of the Eden Trace Viewer for an execution of the warshall program on 16 processors
of a Beowulf cluster (Intel P4-SMP-Prcessors at 3GHz, 512MB RAM, Fast Eth-
ernet), the input graph consisting of 500 nodes. Each process is represented by a
horizontal bar with colour-coded segments for its actions. We distinguish between
the process states blocked (red – dark grey), runnable (yellow – bright grey) and
running (green – middle grey). As expected from the analysis, the dynamic channel
version uses about 50% of the messages of the static version (8676 instead of 16629)
– network traffic is considerably reduced. Figure 8 shows zooms of the initial second
of both traces, with messages between processes drawn as lines between the hori-

Third Workshop on High-Level Parallel Programming and Applications

Figure 8: Zooms of the initial second with message traffic (black arrows) of the
Warshall traces in Figures 6 and 7
– above using static connections – below using dynamic channels in ring

zontal bars. The static version shows the massive bottleneck in the parent process;
worker processes often block waiting for data. The trace of the dynamic version
nicely shows the intended ring structure and much less blocked phases.

The number of messages drops to about 50% and the runtime even drops to ap-
proximately 37%. The substantial runtime improvement is due to the algorithm’s
inherent data dependency: each process must wait for updated results of its pre-
decessor. This dependency leads to a gap between the two phases passing through
the ring. In the static version, the time each ring process waits for data from the
heavily-loaded parent is accumulated through the whole ring, leading to a succes-
sively increasing wait phase while data flows through the ring. Although a small gap
is also observable in the dynamic version, the directly connected ring processes over-
lap computation and communication and thus show a better workload distribution
with only short blocked or idle phases.

4.2. Matrix multiplication in a torus

The presented toroid structure can be used to implement the parallel matrix mul-
tiplication algorithm by Gentleman [16]. The result matrix is split into a square of

The Impact of Dynamic Channels on Functional Topology Skeletons

Runtime: 10.76 sec.

Figure 9: Matrix multiplication (600 rows), toroid with static connections

Runtime: 5.96 sec.

Figure 10: Matrix multi-
plication (600 rows), toroid
with dynamic channels

Common platform:
Beowulf Cluster,
Heriot-Watt University,
Edinburgh, 17 machines

submatrix blocks which are computed by parallel processes. The data needed to
compute a result block are corresponding rows of the first and columns of the second
matrix. These matrices are split into blocks of the same shape and the blocks passed
through a torus process topology to avoid data duplication. The torus processes
receive suitable input blocks after an initial rotation, and successively pass them
to torus neighbours (in both dimensions). Input blocks do one round through the
torus, so that every process eventually receives every input block it needs. Each
process accumulates a sum of products of the input blocks as the final result. The
analyses in [8] have shown that this program, using dynamic reply channels, deliv-
ers good speedups on up to 36 processors, predictable by a suitable skeleton cost
model.

The traces clearly show that the processes tend to communicate earlier than
they start their computation. This is due to Eden’s eager communication since
every process can give away its block and all blocks it receives from its neighbours
without any evaluation.

For the 4×4 torus used here, the data passed through the torus connections is a
list of 3 matricese, vk,l = hk,l = 4. As the formula in Section 3.2 shows, this exactly

enumber of blocks (=4) per row/column minus local block (=1)

Third Workshop on High-Level Parallel Programming and Applications

Runtime: 65.57 sec.

Figure 11: Parallel Quicksort in hypercube with static connections

Runtime: 8.47 sec.

Figure 12: Parallel Quicksort in hy-
percube with dynamic channels
Common platform: Beowulf Cluster,
Heriot-Watt University, Edinburgh,
17 machines

outweighs the message reduction. Different numbers of messages result from the
fact that smaller messages (channel names instead of matrices) are exchanged in
the dynamic channel version. The number of messages drops from 1049 messages
in the static torus multiplication of two matrices of size 600 to 761 messages, i.e.
by about 30 %.

The runtimes of the version with dynamic channels (trace shown in Figure 10)
is 44% less than for the version with static connections. Again, the improvement
in runtime does not only result from saved messages, but from eliminating the bot-
tleneck in the parent process. Without the direct torus connections, the algorithm
must communicate the matrix blocks twice with a serious bottleneck in the parent
process. As can be seen in Figures 9 and 10, the pure computation times (final
green/middle grey parts) are about the same (approx. 4 sec.) in both versions, but
in the original version it is preceded by an immense communication phase (almost
7 instead of 2 sec.).

4.3. Sorting in a Hypercube

As explained in Section 3.3, a comparison of the hypercube skeleton with and with-
out dynamic channels is only possible using fixed size static hypercube skeletons.
We show the traces of a recursive parallel quicksort in a hypercube with static

The Impact of Dynamic Channels on Functional Topology Skeletons

connections (for the fixed dimension 4) (Figure 11) and a hypercube with dynamic
channels (Figure 12) which takes the dimension as a parameter. The input list of
5m random integers is locally created by the hypercube nodes (ca. 4 sec.), before
the sorting algorithm starts. The node with the lowest address chooses a pivot
element, which is broadcasted in the entire hypercube. All partners in the highest
dimension exchange sublists, where the higher half keeps elements bigger than the
chosen pivot. Then, the hypercube is split in half, and the algorithm is recursively
repeated in the two subcubes. The version with dynamic channels performs well
and exposes the typical hypercube communication pattern. The runtime for the
static version dramatically increases (factor 7.7) due to the obvious bottleneck.

5. Related Work

Dynamic reply channels are a simple but effective concept to support reactive com-
munication in distributed systems. By allowing completely free communication
structures between parallel processes, for instance in the style of MPI [12], one
gives up much programming comfort and security. The underlying theories which
model communicating processes, namely π-calculus [11] and its predecessors, are
as well liberal in terms of communication partners and usually untyped. Due to
this inherent need for liberty which does not fit well in the functional model and
its general aim of soundness and abstraction, only few parallel functional languages
support arbitrary connections between units of computation at all. The channel
concept of Clean [19] as well as the communication features in Facile [7] or Con-
current ML [17] are more general and powerful, yet on a lower level of abstraction
than the dynamic channel concept of Eden.

Functional languages like NESL [1], OCamlP3l [4], or PMLS [10] where the par-
allelism is introduced by pre-defined data-parallel operations or skeletons have the
advantage to provide optimal parallel implementations of their parallel skeletons,
but suffer from a lack of flexibility, as the programmer has no chance to invent new
problem-specific skeletons or operations.

6. Conclusions

Our evaluation of topology skeletons shows that using dynamic channel connec-
tions substantially decreases the number of messages and eliminates bottlenecks.
Dynamic channels can be usefully applied to speed up parallel computations, as
exemplified by typical case studies for the different topology skeletons discussed
in this paper. As explained for the hypercube skeleton, dynamic channels may
also be used to introduce more concurrency, and therefore offer new possibilities
for skeletons. Using the trace visualisation for Eden, process behaviour at runtime
and inter-process communication can be analysed more thoroughly than by simple
runtime comparisons, which allows further optimisations for Eden skeletons.

Besides skeleton runtime analysis and optimisations, an area for future work
is to investigate the potential performance gain and pragmatics of explicit process
placement (possible in the Eden runtime system, but not exposed to language level
yet) in conjunction with the presented and other topology skeletons.

Third Workshop on High-Level Parallel Programming and Applications

Acknowledgements. We thank Phil Trinder from Heriot-Watt University, Edinburgh

and Hans-Wolfgang Loidl from Ludwig-Maximilians-Universität, Munich, for fruitful dis-

cussions and for the opportunity to work with their Beowulf clusters.

References

[1] G. Blelloch. Programming Parallel Algorithms. Communications of the ACM,
39(3):85–97, 1996.

[2] S. Breitinger and R. Loogen. Channel Structures in the Parallel Functional Language
Eden. In Glasgow Workshop on Funct. Prg., 1997. Available online.

[3] M. I. Cole. Algorithmic Skeletons: Structured Management of Parallel Computa-
tion. MIT Press, 1989.

[4] M. Danelutto, R. DiCosmo, X. Leroy, and S. Pelagatti. Parallel functional program-
ming with skeletons: the OCamlP3L experiment. In ACM workshop on ML and its
applications, page 31ff, 1998.

[5] J. Darlington, A. J. Field, P. G. Harrison, P. H. J. Kelly, D. W. N. Sharp, Q. Wu, and
R. While. Parallel Programming Using Skeleton Functions. In PARLE’93 — Parallel
Architectures and Languages Europe, LNCS 694, page 146ff. Springer, 1993.

[6] L. A. Galán, C. Pareja, and R. Peña. Functional skeletons generate process topologies
in Eden. In PLILP’96 – Programming Languages: Implementations, Logics, and
Programs, LNCS 1140, page 289ff. Springer, 1996.

[7] A. Giacalone, P. Mishra, and S. Prasad. Facile: a Symmetric Integration of Concurrent
and Functional Programming. In Tapsoft’89 – Int. Joint Conf. on Theory and
Practice of Software Development, LNCS 352, page 181ff. Springer, 1989.

[8] R. Loogen, Y. Ortega-Mallén, R. Peña, S. Priebe, and F. Rubio. Parallelism Abstrac-
tions in Eden. In F. A. Rabhi and S. Gorlatch, editors, Patterns and Skeletons for
Parallel and Distributed Computing. Springer, 2003.

[9] R. Loogen, Y. Ortega-Mallén, and R. Peña-Maŕı. Parallel Functional Programming in
Eden. Journal of Functional Programming, 15(3):431–475, 2005.

[10] G. Michaelson, N. Scaife, P. Bristow, and P. King. Nested Algorithmic Skeletons from
Higher Order Functions. Parallel Algorithms and Appl., 16:181–206, 2001.

[11] R. Milner. Communicating and Mobile Systems: The π Calculus. Cambridge Univ.
Press, 1999.

[12] MPI Forum. MPI 2: Extensions to the Message-Passing Interface. Technical report,
University of Tennessee, Knoxville, 1997.

[13] R. Peña, F. Rubio, and C. Segura. Deriving non-hierarchical process topologies. Trends
in Functional Programming, Vol. 3, page 51ff. Intellect, 2001.

[14] M. Plasmeijer and M. van Eekelen. Functional Programming and Parallel Graph
Rewriting. Addison-Wesley, 1993.

[15] R. Plasmeijer, M. van Eekelen, M. Pil, and P. Serrarens. Parallel and Distributed Pro-
gramming in Concurrent Clean. In K. Hammond and G. Michaelson, editors, Research
Directions in Parallel Functional Programming, page 323ff. Springer, 1999.

[16] M. Quinn. Parallel Computing. McGraw-Hill, 1994.
[17] J. H. Reppy. Concurrent Programming in ML. Cambridge Univ. Press, 1999.
[18] P. Roldán-Gómez. Eden Trace Viewer: A Tool to Visualize Parallel Functional Program

Executions. Master’s thesis, Univ. Complutense de Madrid, Spain, 2004. (in German).
[19] P. R. Serrarens and R. Plasmeijer. Explicit message passing for concurrent clean. In

IFL’98 — Implementation of Functional Languages, LNCS 1595. Springer, 1999.
[20] P. Trinder, K. Hammond, J. Mattson Jr., A. Partridge, and S. Peyton Jones. GUM: A

Portable Parallel Implementation of Haskell. In Proc. PLDI ’96 — Progr. Language
Design and Impl., pages 78–88. ACM, 1996.

