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Abstract. We present a low-level coordination language for Haskell
which can be used as an implementation language for parallel Haskell
extensions. It has been developed in the context of the latest Eden im-
plementation (based on the Glasgow-Haskell-Compiler, GHC, version 6)
and it is thus referred to as the “EDen Implementation language”, EDI.
EDI provides a small set of directly implemented primitive operations
for basic thread control, system information, and communication. We ex-
plore the expressiveness and performance of both Eden and its low-level
implementation language EDI in comparison. It turns out that hardly
any differences in performance can be observed. The main advantage of
EDI in comparison to Eden is more accurate control of parallel execution.
Our long-term goals are maintenance and structured implementation of
Eden and a solid low-level implementation language, which can be used
for other parallel Haskells as well.

1 Introduction

The area of parallel functional programming exhibits a variety of approaches, the
common bases of which are referential transparency of functional programs and
the ability to independently evaluate subexpressions. While some approaches
pursue the target of (semi-)automatic parallelisation for special data structures
(i.e. data parallelism), other dialects are more explicit in parallel coordination
and allow what we call general-purpose parallelism, able to capture task-oriented
parallelism. It is generally accepted [2, 17] that functional languages allow a
clean distinction between a computation (or “base”) language and independent
coordination constructs for parallelism control.

The parallel functional language Eden [7] adds constructs for the dynamic cre-
ation of processes and communication channels to the non-strict functional
computation language Haskell. The Eden programming model is semi-explicit
general-purpose parallelism: Parallel processes are programmer-controlled, while
communication is system-controlled. Eden has been implemented by layers on
top of the Glasgow Haskell compiler (GHC) [14]. The central part is the Eden
module, which implements the Eden constructs in Haskell using a few primi-
tive operations provided by the parallel extension of the GHC runtime environ-
ment (RTE).
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Any explicit parallel runtime support must express operational properties of
the execution entities and will – in the end – rely on an imperative-style descrip-
tion. Parallelism support in its basic form must be considered as imperative and
thus encapsulated in monads. Yet programmers might wish for a higher level of
abstraction in their parallel programs and, for instance, use algorithmic skele-
tons [13] (higher-order functions for common parallel patterns), because they are
not interested in gory details of implementation. Some parallel languages and
libraries offer a fixed set of predefined skeletons and special, highly optimised im-
plementations. On the other hand, with a more explicit general-purpose parallel
language, a programmer can express new skeletons specific to the application.

Whether to hide or show the imperative basics is a question of language de-
sign. Eden tries to achieve a compromise between extremes in these matters: it
exposes the execution unit of parallel processes to the programmer, but sticks
to a functional model for their use. Eden processes differ from functions by ad-
ditional strictness and remote evaluation. Further Eden language features allow
for reactive systems and arbitrary programmer-controlled communication, which
is (necessarily) opposed to referential transparency.

In this paper, the Eden implementation primitives will be considered as a
language of their own, the EDen Implementation language, EDI for short. In
contrast to Eden, EDI uses explicit communication and the IO monad to encap-
sulate side-effects. We compare expressiveness and performance of Eden and EDI.
While the differences in performance can be neglected, the programming styles
are substantially different. EDI allows an accurate control of parallelism, useful
for system programming, whereas the higher abstraction of Eden is favourable for
application programming, but often obscures what exactly is happening during
parallel execution. The primary goal of this work is a structured Eden implemen-
tation, using a low-level implementation language which can be used for other
parallel Haskells as well.

The paper is organised as follows: Section 2 describes Eden and its imple-
mentation. The primitive operations used in Eden’s implementation constitute
the Eden implementation language EDI. Section 3 discusses skeleton program-
ming in Eden and EDI. Selected Eden skeletons have been re-programmed in
EDI. Moreover, pitfalls of EDI programming are discussed. The paper ends with
a discussion of related work in Section 4 and conclusions in Section 5.

2 Eden Language and Implementation

2.1 Eden Language Constructs

The parallel Haskell extension Eden [7] is an explicit general-purpose language
for parallel programming, which gives programmers control over parallel pro-
cesses. Eden allows to define process abstractions by a constructing function
process and to explicitly instantiate (i.e. run) them on remote processors using
the operator ( # ). Processes are distinguished from functions by their opera-
tional property of remote execution.
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process :: (Trans a, Trans b) => (a -> b) -> Process a b

( # ) :: (Trans a, Trans b) => Process a b -> a -> b

For a given function f, evaluation of the expression (process f) # arg leads
to the creation of a new (remote) process which evaluates the application of
function f to argument arg. The argument is evaluated locally and sent to the
new process.

Processes are encapsulated units of computation which communicate their
inputs and results via channels. All values are reduced to normal form prior to
sending, which implies additional strictness for processes. If input or output of
a process is a tuple, each component will be evaluated and communicated by an
own concurrent thread. Lists will be communicated element by element, values
of other types will be communicated in single messages.

Communication between processes is automatically managed by the system
and hidden from the programmer, but additional language constructs allow to
explicitly create and access communication channels and to create arbitrary
process networks. In the next subsection, we are showing how this feature is
used to handle the hidden communication explicitly in the lower levels of the
Eden system.
The task of parallel programming is simplified by a library of predefined skele-
tons [6]. Skeletons are higher-order functions defining parallel interaction pat-
terns shared in many parallel applications. The programmer may use such known
schemes from the library to achieve an instant parallelisation of a program.

2.2 Layers of the Eden Implementation

The implementation of Eden extends the runtime environment (RTE) of the
Glasgow-Haskell-Compiler (GHC) [14] by a small set of primitive operations for
process creation and communication between processes. These primitives merely
provide very simple basic actions for process creation, data transmission between
the machines’ heaps, and system information. More complex operations are en-
coded in a functional module, called the Eden module. This module relies on

Eden Program

Sequential Haskell
Libraries

Sequential RTE

Skeleton Library

Eden Module

Primitive Ops

Parallel RTE

Fig. 1. Layered Eden implementation

the side-effecting primitive
operations to encode Eden’s
process creation and com-
munication semantics. The
code on module level ab-
stracts from many adminis-
trative issues, profiting from
Haskell’s support in gener-
icity and code reuse. More-
over, it will protect the basic primitives from being misused. This leads to an
organisation of the Eden system in layers (see Fig. 1): program level – skeleton
library – Eden module – primitive operations – parallel runtime environment.
This will greatly improve the maintainability of the highly complex system.

The basic layer implementing the primitive operations is the GHC run-
time environment, extended for parallel execution on clusters using MPI [9] or



c©2007 Springer-Verlag

PVM [12] as a middleware. The runtime system manages communication chan-
nels and thread termination; this will not be discussed further in this paper.

Primitive Operations. The current implementation of Eden is based on six
primitives for system information, communication, and thread creation. The
lowest level of the Eden module (shown in Fig. 2) consists of embedding the
primitives in the IO monad to encapsulate the side-effects, and adds Haskell
data types for communication mode and channels.

noPe :: IO Int number of processor elements
selfPe :: IO Int ID of own processor element
createC :: IO ( ChanName’ a, a ) channel name creation
connectToPort :: ChanName’ a -> IO () channel installation
sendData :: Mode -> a -> IO () send data on implicitly given channel
fork :: IO () -> IO () new thread in same process

data ChanName’ = Chan Int# Int# Int# a single channel: IDs from RTE
data Mode = Stream | Data data modes: Stream or Single data

| Connect | Instantiate Int special modes: Connection, Instantiation

Fig. 2. Primitive operations to implement Eden

The first two primitives provide system information like the total number
of processor elements (noPe) or the number of the processor element running a
thread (selfPe).

For communication between processes, createC creates a new channel on
the receiver side. It returns a channel name, containing three RTE-internal IDs:
(PE, processID, portID) and (a handle for) the channel contents. Primitives
connectToPort and sendData are executed on the sender side to connect a
thread to a channel and to asynchronously send data. The send modes specify
how the receiver sends data: either as an element of a stream (mode Stream),
or in a single message (mode Data), or (optionally) just opening the connection
(mode Connect). The purpose of the Connect mode is to provide information
about future communication between processes to the runtime system. If every
communication starts by a Connect message, the runtime system on the receiver
side can terminate threads on the sender side evaluating unnecessary data.

For thread management, there is only the primitive fork, which creates a new
thread (in the same process). Spawning a new process is implemented as sending
data with the send mode Instantiate. The Int argument allows to explicitly
place the new process on a certain processor. If it is zero, the RTE automatically
places new processes in round-robin manner.

Eden Module: Overloaded Communication. The primitives for commu-
nication are used inside the Eden Module to implement Eden’s specific data
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newtype ChanName a = Comm (a -> IO())

class NFData a => Trans a where

-- overloading for channel creation:

createComm :: IO (ChanName a, a)

createComm = do (c,v) <- createC

return (Comm (sendVia c), v)

-- overloading for streams:

write :: a -> IO()

write x = rnf x ‘seq‘ sendData Data x

sendVia ch d = do connectToPort ch

write d

Fig. 3. Type class Trans of transmissible data

-- list instance (stream communication)

instance Trans a => Trans [a]

where write l@[] = sendData Data l

write (x:xs) = do (rnf x ‘seq‘ sendData Stream x)

write xs

-- tuple instances (concurrency by component)

instance (Trans a, Trans b) => Trans (a,b)

where createComm = do (c1,v1) <-createC

(c2,v2) <-createC

return (Comm (send2Via c1 c2), (v1,v2))

send2Via :: ChanName’ a -> ChanName’ b -> (a,b) -> IO ()

send2Via c1 c2 (v1,v2) = do fork (sendVia c1 v1)

sendVia c2 v2

Fig. 4. Eden Module: Overloading for communication

transmission semantics. The module defines type class Trans of transmissible
data, which contains overloaded functions, namely createComm to create a high-
level channel (type ChanName), and write to send data over channels.

As shown in Fig.3, the high-level channel ChanName is a data communicator, a
function which performs the required send operation. It is composed by supply-
ing the created primitive channel as a first argument to the auxiliary function
sendVia. The latter, evaluated on sender side, first connects to the channel, and
then calls function write to evaluate its second argument to normal form1 and
send it to the receiver in Data mode.

1 The NFData class provides an evaluation strategy [15] rnf to force normal-form
evaluation of any data type.
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The two functions in Trans are overloaded as follows: write is overloaded
for streams, which are communicated elementwise, and createComm is overloaded
for tuples, which are evaluated concurrently by one thread for each component.
Fig. 4 shows the instance declarations for lists and pairs. write communicates
lists elementwise in Stream mode, and createComm for pairs creates two primitive
channels, using the auxiliary function sendVia for forking threads.

Eden Module: Process Abstraction and Instantiation. The Eden con-
structs process and ( # ) render installation of communication channels between
parent and child process, as well as communication, completely implicit, whereas
the module internally uses explicit communication channels provided by Trans

and the primitive operations.

data Process a b = Proc (ChanName b -> ChanName’ (ChanName a) -> IO())

process :: (Trans a, Trans b) => (a -> b) -> Process a b

process f = Proc f_remote

where f_remote (Comm sendResult) inCC

= do (sendInput, input) <- createComm -- input communicator

connectToPort inCC -- sent back...

sendData Data sendInput -- ...to parent

sendResult (f input) -- sending result

( # ) :: (Trans a, Trans b) => Process a b -> a -> b

p # x = unsafePerformIO (instantiateAt 0 p x)

instantiateAt :: (Trans a, Trans b) =>

Int -> Process a b -> a -> IO b

instantiateAt pe (Proc f_remote) procInput

= do (sendResult, r ) <- createComm -- result communicator

(inCC, Comm sendInput) <- createC -- input comm. (reply)

sendData (Instantiate pe) -- spawn process

(f_remote sendResult inCC)

fork (sendInput procInput) -- send input concurrently

return r -- return placeholder

-- variant of ( # ) which immediately delivers a whnf

data Lift a = Lift a

deLift (Lift x) = x

createProcess :: (Trans a, Trans b) => Process a b -> a -> Lift b

createProcess p i

= unsafePerformIO (instantiateAt 0 p i >>= \x ->

return (Lift x))

Fig. 5. Eden Module: Process abstraction and instantiation
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Fig. 5 shows the definition of process abstractions and instantiations in the
Eden module. Process abstractions embed a function f remote that is executed by
a newly created remote process. This function takes a communicator sendResult

to return the results of the process to the parent process, and a primitive channel
inCC to send a communicator function (of type ChanName a) for its input channels
to the parent process. The remote process first creates input channels, i.e. the
corresponding communicator functions and the handle to access the received
input. It connects to the channel inCC and sends the input communicator with
mode Data on it. Afterwards, the process will evaluate the expression (f input)

and send the result to the parent process, using the communicator function
sendResult.

The instantiation operator ( # ) relies on the function instantiateAt, which
defines the parent side actions for the instantiation of a new child process. The
embedded function f remote is applied to a previously created result communi-
cator and a primitive channel for receiving the input, and the resulting IO action
is sent to the designated processor unevaluated. A new thread is forked to send
the input to the new process. As its name suggests, instantiateAt may place the
new process on the PE specified by the parameter pe; or else uses the automatic
round-robin placement if the parameter is 0.

Additionally the Eden module provides a variant createProcess of the in-
stantiation, which differs in the type of the result value, lifted to immediately
deliver a value in weak head normal form (whnf). This is e.g. necessary to create
a series of processes without waiting for process results (see the parMap skeleton
explained in the next section).

Eden coordination constructs have a purely functional interface, as opposed
to the primitive operations encapsulated in the IO monad. Instantiation and
process behaviour are described as a sequence of IO actions based on the primi-
tives but, finally, the functional type of the instantiation operator ( # ) will be
obtained by unsafePerformIO, the back door out of the IO monad.

3 Imperative Coordination in a Declarative Setting

Eden provides a purely declarative interface, but aims to give the programmer
explicit control of parallelism in the program. Eden programs can be read two-
fold, from a computational and from a coordinational perspective:

– Instantiation of a previously defined process abstraction denotationally dif-
fers from function application by the additional strictness due to Eden’s
eager communication policy, but yields the same result as application of a
strict function.

– Process abstraction and instantiation will hide any process communication,
but expose the degree of parallelism of an algorithm directly by the number
of instantiations.

However, the additional strictness introduced by eager communication is a cru-
cial point for tuning parallel programs. On the one hand, it is required to start
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subcomputations at an early stage and in parallel. On the other hand, adding
too much artificial strictness to a program can easily lead to deadlock situations.
A complex Eden program normally uses a suitable skeleton library, optimised
for the common case and circumventing common pitfalls of parallelism. Eden
can also describe new specialised skeletons, and programming these is a different
matter. Efficiently programming skeletons in Eden requires intimate knowledge
of Eden specifics and a clear concept of the evaluation order in a demand-driven
evaluation. Concentrating on the coordination view of Eden, programming skele-
tons can profit from a more explicit approach, as offered by Eden’s implementa-
tion language EDI. EDI can be considered – necessarily at a lower level – as a
fully-fledged alternative Eden-type language, which renders communication and
side-effects explicit and will force to use the IO monad for parallel execution.

3.1 Low-Level Parallel Programming in EDI

Evaluation and Communication decoupled. In contrast to Eden’s com-
munication semantics, EDI communication is completely independent of the un-
derlying computation. If a communicated value is not needed by the sender for
a local computation, it will be left unevaluated by sending. This, of course, is
not intended for parallel processes supposed to compute subresults. Programs in
EDI therefore use evaluation strategies [15] to explicitly initiate the computation
of a value to be sent. Although EDI does not encode coordination by strategies,
using the class NFData and its normal form evaluation strategy rnf is a neces-
sary part of EDI programming. We present and evaluate some parallel skeletons
programmed in EDI and compare them with Eden skeletons.

Parallel Map. The higher-order function map applies a given function to all
elements of a list. In a straightforward parallelisation, a process is created for
each element of the resulting list. This can be expressed easily in Eden using
process abstraction and instantiation, or programmed explicitly in EDI.

-- Eden’s parallel map

parMap :: (Trans a, Trans b) => (a -> b) -> [a] -> [b]

parMap f xs = map deLift ([ createProcess (process f) x | x <- xs ]

‘using‘ whnfspine)

-- auxiliary function for demand control

whnfspine :: Strategy [a]

whnfspine [] = ()

whnfspine (x:xs) = x ‘seq‘ whnfspine xs

The Eden version shown here uses the instantiation operator createProcess,
which encodes all necessary communication and concurrency. Additional de-
mand by ‘using‘ whnfspine is necessary to force the immediate creation of all
processes. Please note the use of createProcess instead of ( # ), which is neces-
sary because the strategy whnfspine would otherwise wait for the whnf of each
process’ result prior to forcing the creation of the next process.
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-- monadic Edi parmap using primitive operations only:

parMapIO :: NFData b => (a -> b) -> [a] -> IO [b]

parMapIO f xs = do cs <- createCs (length xs)

sequence_ [ sendData (Instantiate 0) (doF ch x)

| (x,ch) <- zip xs (fst cs) ]

return (snd cs)

where doF c x = do connectToPort c

let fx = f x

(rnf fx ‘seq‘ sendData Data fx)

createCs :: NFData a => Int -> IO ([ChanName’ a],[a])

createCs n = do cList <- sequence (replicate n createC)

let lists@(cs, vs) = unzip cList

(rnf cs ‘seq‘ return lists)

The EDI version is explicitly monadic (but might, of course, escape from the IO
monad by unsafePerformIO at top level). Prior to spawning the child processes,
the caller creates a set of channels (by a simple abstraction createCs over the
single channel creation createC). Each remote computation (defined by function
doF) will receive one of these channels for sending back the result. The second
parameter of doF is the input, potentially unevaluated. Whilst the Eden process
instantiation spawns an own concurrent thread in the calling machine to send
this input in normal form, the EDI version acts as a demand-driven parallel map
(parmap dm), useful to avoid bottlenecks in the caller. The latter can, of course, be
modelled in Eden as well, by adding a dummy argument to the function applied
to the list elements:

parmap_dm:: (Trans a, Trans b) => (a -> b) -> [a] -> IO [b]

parmap_dm f xs = map deLift

([ createProcess (process (\() -> f x)) () | x <- xs ]

‘using‘ whnfspine)

An advantage of the EDI code is that the Lift - deLift trick as well as the
explicit demand control using the strategy whnfspine is no longer necessary to
create a series of processes.

Figure 6 shows runtime and speedup measurements for a small test program
with the two demand-driven parMap versions, also including the previous Eden
implementation (based on GHC 5) for comparisons. The program computes the
sum of Euler Totients,

∑
n

1 ϕ(k) for n = 25000. Of course, the test program does
not spawn an own process for every number ϕ(k) to be computed – the task
granularity would be much too fine. Numbers are distributed evenly among few
processes, one on each available processor. And since the values are summed up
afterwards (map is followed by a parallel fold), each process(or) computes the
partial sum in parallel as well.

The sequential base performance of the previous Eden 5 system apparently
is much worse (44% longer runtime); therefore speedup degrades slightly for the
new implementation. The negligible difference between Eden 6 and EDI shows
that the overhead for the module code is minor, and only the way input data is
transmitted is relevant, depending on the concrete application.
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Fig. 6. Parallel map/fold example, Eden 5, Eden 6 and EDI

Nondeterminism, Concurrency and Parallelism. In the previous example,
tasks have been distributed statically, in advance. When subtasks are of highly
irregular complexity, or when the number of subtasks may vary depending on
the input, dynamic load balancing is one of the most desired properties of a
parallel map skeleton. The purely functional coordination constructs of Eden
are not sufficient to describe dynamic task distribution; therefore Eden offers a
nondeterministic additional construct merge for merging a list of streams into a
single stream. Data is added to the output stream as soon as it is available in
any of the input streams, in nondeterministic order. As shown in Fig. 7, this
can be used for a workpool scheme, i.e. a map skeleton in master/worker scheme,
where a worker process gets a new task every time it returns a result. A prefetch
parameter determines the number of initial tasks assigned to a worker. It should
be used to avoid workers running out of work.

In this simple version, the computation results are returned unsorted, in the
order in which they have been sent back by the workers. In order to indicate
which worker has completed a task, every worker tags its results with its id, a
number between 1 and np. All result streams fromWorkers are merged nondeter-
ministically in the master process. The worker numbers are then separated from
the proper results, and serve as requests for new work. The auxiliary function
distribute takes as arguments the list of requests and the available tasks, and
distributes the tasks to np sublists, as indicated by the requests list. The number
of initial requests is determined by skeleton parameter prefetch. A crucial prop-
erty of the function distribute is that it must be “incremental”, i.e. can deliver
partial result lists without the need to evaluate requests not yet available.

A recent extension to this skeleton may even be nested and applied to com-
putations where the results computed by workers may lead to new additional
tasks [11].
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edenWP :: (Trans t, Trans r) =>

Int -> Int -> (t -> r) -> [t] -> [r]

edenWP np prefetch f tasks = results

where fromWorkers = map deLift

(zipWith createProcess workerProcs toWorkers)

‘using‘ whnfspine

workerProcs = [process (zip [n,n..] . map f) | n<-[1..np]]

toWorkers = distribute tasks requests

(newReqs, results) = (unzip . merge) fromWorkers

requests = initialReqs ++ newReqs

initialReqs = concat (replicate prefetch [1..np])

distribute :: [t] -> [Int] -> [[t]]

distribute tasks reqs = [taskList reqs tasks n | n<-[1..np]]

where taskList (r:rs) (t:ts) pe

| pe == r = t:(taskList rs ts pe)

| otherwise = taskList rs ts pe

taskList _ _ _ = []

Fig. 7. Eden workpool skeleton using merge

However, the workpool skeleton can also be implemented without the need
for Eden’s merge construct, nor the sophisticated distribute. Instead, we can
use a nondeterministic construct of Concurrent Haskell: a channel which is read
by concurrent sender threads inside the master. A channel (data type Chan) in
Concurrent Haskell models a potentially infinite stream of data which may be
consumed concurrently by different threads. Due to nondeterministic scheduling,
channel operations are in the IO monad, like the EDI coordination constructs.
Figure 8 shows a workpool skeleton which returns its result in the IO monad.

ediWP :: (NFData t, NFData r) =>

Int -> Int -> (t -> r) -> [t] -> IO [r]

ediWP np prefetch f tasks = do

(wInCCs, wInCs) <- createCs np

(wOutCs, wOuts) <- createCs np

sequence_ [ sendData (Instantiate 0) (worker f wOutC wInCC)

| (wOutC,wInCC) <- zip wOutCs wInCCs ]

taskChan <- newChan

fork (writeList2Chan taskChan

((map Just tasks) ++ (replicate np Nothing)))

sequence_ [ fork (inputSender prefetch inC taskChan answers)

| (inC,answers) <- zip wInCs wOuts ]

return (concat wOuts)

Fig. 8. EDI workpool skeleton, using concurrent inputSender threads
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The master needs channels not only to receive the results, but also to initiate
input communication with the workers, thus two sets of np channels are created.
A set of worker processes is instantiated with these channels as parameters. As
shown in Fig.9, each worker creates a channel to receive input, sends it to the
parent, and then connects to the given output channel to send the results as a
stream.

We use a Maybe type in order to indicate termination. The taskChan is created
and (concurrently) filled with the tagged task list (map Just tasks), followed by
np termination signals (Nothing). The task channel is concurrently read by several
input senders, one for every worker process, which will be forked next. Every
input sender consumes the answers of one worker and emits one new task per
answer, after an initial prefetch phase. The master process collects the answers
using concat, the Haskell prelude function to concatenate a list of lists. A slight
variant of this would be to sort the answers list in the order indicated by tags
which are added to tasks to memorise their initial order.

worker :: (NFData t, NFData r) =>

(t -> r) -> ChanName’ [r] -> ChanName’(ChanName’[t]) -> IO ()

worker f outC inCC

= do (inC, inTasks) <- createC -- create channel for input

connectToPort inCC -- send channel to parent

sendData Data inC

connectToPort outC -- send result stream

sendStream ((map f) inTasks)

where sendStream :: NFData r => [r] -> IO ()

sendStream [] = sendData Data []

sendStream (x:xs) = do (rnf x ‘seq‘ sendData Stream x)

sendStream xs

inputSender :: (NFData t) =>

Int -> ChanName’ [t] -> Chan (Maybe t) -> [r] -> IO ()

inputSender prefetch inC concHsC answers

= do connectToPort inC

react ( replicate prefetch dummy ++ answers)

where dummy = undefined

react :: [r] -> IO ()

react [] = return ()

react (_:as) = do

task <- readChan concHsC -- get a task

case task of

(Just t) -> do (rnf t ‘seq‘ sendData Stream t )

react as

Nothing -> sendData Data [] -- and done.

Fig. 9. worker process and inputSender thread for EDI workpool
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It should be noted that the EDI version of the workpool looks slightly more
specialised and seems to use more concurrent threads than the – considerably
shorter – Eden version. Since EDI uses explicit communication, the separate
threads to supply the input become obvious. The Eden version works in quite
the same way, but the concurrent threads are created implicitly by the process
instantiation operation createProcess. Apart from one separate thread filling
the channel with available tasks, both versions have exactly the same degree of
concurrency; it is not surprising that both workpool implementations are similar
in runtime and speedup.

Once the master process uses concurrent threads and the IO monad, it may
easily be extended in different ways. One very useful extension would be to
include a state in the master process, e.g. a “current optimal” solution for a
branch-and-bound algorithm, or a dynamically increasing task pool, or using a
stack instead of a FIFO queue for task management. Depending on the particular
requirements for the master state, its implementation in a purely functional
style may become quite cumbersome (see [8] for a case study). The explicitness
of parallelism, communication and concurrency inflates the EDI code, but is
advantageous when implementing specialised versions of skeletons.

A Ring Skeleton. The examples given up to now are showing, more or less,
how Eden and EDI are interchangeable and comparable in performance. There
are however situations where Eden’s implicit concurrency and eagerness can lead
to unwanted behaviour, and the source code usually does not clearly indicate
the errors.

ring :: (Trans a, Trans b,

Trans r) =>

Int ->

(Int -> i -> [a]) ->

([b] -> o) ->

((a,[r]) -> (b,[r]))

-> i -> o

RingSkel

...

i o

r
a b a b a b a b

ring size makeInput processOutput ringWorker input = ...

Fig. 10. A ring skeleton in Eden, type and communication structure

A ring of interconnected processes can be defined using Eden channels [1].
Fig. 10 shows the type signature of a highly parameterised ring skeleton, and
depicts its process and communication structure. Parameters are the ring size,
a function makeInput preparing the initial input to all ring processes, a similar
function (processOutput) to construct the final output, and the functionality of
the ring processes. All ring processes are identical and receive two inputs, one
(of type a) from the caller and one (of type [r], a stream) from their predecessor
in the ring.
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Fig. 11. Ring example: Warshall’s algorithm (500 node graph), Eden vs. directly pro-
grammed, specialised ring

This skeleton may also be specified at a lower level in EDI, with the advan-
tage that the communication, explicit anyway, may be optimised for the special
application, e.g. when input is statically determined, or when the ring output
is not relevant. As in the previous examples, there are no big runtime differ-
ences in the general case. Fig. 11 shows measurements for an example program,
Warshall’s algorithm to compute the complex hull of a directed graph.

This skeleton description is coherent at first sight, but some questions may
arise when using it. The given type restricts the ring communication to a stream.
This is a sensible restriction since, with a non-stream type, the ring necessarily
degenerates to a pipeline, or simply deadlocks. Likewise, Eden constructs can
express the case where the initial input (of type a) to the ring processes is static
and thus embeddable into the process abstraction, as shown for parMap.

A more subtle detail can lead to problems when the general ring skeleton
is used in a special context: If the initial ring process input (or output) hap-
pens to be a tuple, the programmer might expect that each component will
be evaluated concurrently, as usual in Eden. However, the ring implementation
adds an additional parameter to the input: Channels to the ring neighbours
must be exchanged prior to computation. The ring process abstraction inter-
nally is of type Process (a,ChanName [r]) (b,ChanName [r]) and, thus, does not

use concurrency for components of their external input and output – the ring will
immediately deadlock if the components of type a expose non-local data depen-
dencies. A different Eden implementation of the ring, specialised to avoid this
problem, is possible, but the difficulty is to find out the reason for the deadlock.
Neither the calling program, nor the skeleton source code will clearly indicate
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the problem; it will remain hidden in the overloaded communication inside the
Eden module.

Downside of Explicitness. As we have shown previously, the explicitness
of EDI can help to optimise skeletons for particular cases and save time in
spotting errors due to Eden’s complex implicit communication semantics. On the
other hand, programming in EDI considerably inflates the code and may have
other pitfalls. Evaluation control prior to communication is the most important
of these, since the implemented sendData primitive does not imply any prior
evaluation. As EDI is purely monadic and deliberately simple, the programmer
has to specify every single action.

Another possible source of errors is the all-purpose character of sendData,
which uses the same primitive for data transmission, communication manage-
ment, and process instantiation, distinguished only by the different send modes.
Sending data by the wrong mode may lead to, e.g., a bogus process without any
effect, as shown here:

badIdea_no1 :: Int -> a -> IO ()

badIdea_no1 pe data = sendData (Instantiate pe) data

If the data sent is, say, a number, its remote evaluation will have no effect at all,
although its type is perfectly correct, due to the liberal typing of the primitive.
In the example above, an auxiliary function for instantiation should force that
the data sent is an action of type IO().

spawnProcessAt :: Int -> IO () -> IO ()

spawnProcessAt pe action = sendData (Instantiate pe) action

Moreover, for data communication, threads are supposed to connect to a
channel prior to communication and might cause obscure runtime errors if the
wrong connections are created. Although the simple channels of EDI are strongly
typed, this two-step communication allows to create erroneous communication
sequences not discovered at compile time. The following (perfectly well-typed)
function expects a wrong channel type and then does not connect prior to sending
in one case, or alternatively uses the wrong send mode.

badIdea_no2 :: ChanName’ Double -> [Double] -- types do not match

-> IO ()

badIdea_no2 c (n:ns)= do sendData Stream n -- not yet connected

badIdea_no2 c ns

badIdea_no2 c [] = do connectToPort c

sendData Stream [] -- wrong send mode

When evaluating this function, a run-time error will occur because the receiver’s
heap becomes corrupted.

As above, combining connection and send operation by a type-enforcing aux-
iliary function can detect the error. The applied evaluation strategy can as well
be included in such a combined function.
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sendEvalDataOver :: Strategy a -> ChanName’ a -> a -> IO()

sendEvalDataOver eval ch d = do connectToPort c

(eval d ‘seq‘

sendData Data d)

The only disadvantage here is that a separate function for sending lists is needed,
since the send mode becomes hard-coded.

In order to streamline the interface between Haskell and the runtime system,
the primitive sendData has been given the liberal type Mode -> a -> IO (), which
is why erroneous usage of the primitive will not be detected at compile time.
Hence, the solution to these problems consists in typed auxiliary functions which
will restrict the argument types in such a way that the primitives will be used as
intended. Obviously, it is necessary to superimpose a layer of type-checking aux-
iliary functions over the primitive operations to improve error detection during
type checking in EDI.

4 Related Work

EDI considered as a language provides extensions to existing concepts of Con-
current Haskell [5], as implemented in GHC. Thread concurrency is extended by
process parallelism, communication in EDI is handled using channel communica-
tion instead of the shared synchronised heap cells (MVars) of Concurrent Haskell.
As we have already underlined by one of our examples, both approaches can be
sensibly combined. Latest efforts in Haskell implementations aim to extend Con-
current Haskell’s thread concurrency to OS level for multiprocessor support in
the threaded GHC runtime system [3]. Combining this future multicore support
with the distributed-memory-parallelism provided by EDI is one of our long-term
goals.

In the field of parallel functional languages, many language concepts fol-
low more implicit approaches than Eden and, necessarily, its implementation
language. Although intended as a low-level implementation language, EDI can
be used as a language for distributed programming with explicit asynchronous
communication.

Glasgow Distributed Haskell (GdH) [10] is the closest relative to EDI in this
respect and provides comparable language features, especially location-awareness
and dynamically spawning remote IO actions. However, GdH has been designed
with the explicit aim to extend the virtual shared memory model of Glasgow
Parallel Haskell (GpH) [16] by features of explicit concurrency (Concurrent
Haskell [5]). Our implementation primarily aimed at a simple implementation
concept for Eden and thus does not include the shared-memory-related concepts
of GdH. Indeed, we think that GdH can be implemented with minimal extensions
to our implementation.

Port-based distributed Haskell (PdH) [4] is an extension of Haskell for dis-
tributed programming. PdH offers a dynamic, server-oriented port-based com-
munication for first-order values between different Haskell programs. In contrast
to our implementation, its primary aim is to obtain open distributed systems,
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interconnecting different applications – integrating a network library and a stock
Haskell compiler.

5 Conclusions and Future Work

We have presented a new implementation for the parallel functional language
Eden, based on a lean low-level interface (EDI) to a sophisticated parallel Haskell
runtime environment. Although essentially following previous concepts, the new
implementation makes the side-effecting primitive operations explicit and allows
to express parallel coordination in an imperative manner, while the computation
language remains purely functional.

While EDI provides a low-level flexible and powerful approach to controlling
coordination in a functional setting, Eden abstracts from many details, thereby
simplifying the development of parallel programs, but partly losing coordination
control. Runtime comparisons show that programs written in Eden and EDI

will show the same performance as long as their behaviour is equivalent. This is
because Eden is implemented on top of EDI. From the programmer’s point of
view, the Eden level of abstraction would be an asset if everything worked out
fine. On the other hand, getting things right is much more difficult in Eden than
on the EDI level of abstraction.

We have briefly mentioned the spectrum of parallel functional languages ex-
pressible by EDI and using our framework. Our Eden implementation based on
EDI can be used to easily obtain prototype implementations for other parallel
extensions of Haskell, mainly extensions at higher abstraction levels.

One of our research goals is to keep alive and advance a general-purpose
parallel Haskell. The comparison of Eden and EDI undertaken in this paper is a
step towards redesigning Eden and will need further investigation. Several other
areas lend themselves to further research. Combining the concepts we developed
for the runtime with state-of-the-art hardware techniques, such as multicore sup-
port, or modern wide-area network infrastructure (Grid Technology), is the most
important goal. Likewise, by applying these concepts to a different computation
language, the influences of the host language will emerge, and parallelism exten-
sions can be cleanly separated from their sequential base or concrete application.
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