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Abstract

Eden extends the non-strict functional language Haskell with constructs to control parallel
evaluation of processes. Although processes are defined explicitly, communication and syn-
chronisation issues are handled in a way transparent to the programmer. In order to offer
effective support for parallel evaluation, Eden’s coordination constructs override the in-
herently sequential demand-driven (lazy) evaluation strategy of its computation language
Haskell. Eden is a general-purpose parallel functional language suitable for developing
sophisticated skeletons—which simplify parallel programming immensely—as well as for
exploiting more irregular parallelism that cannot easily be captured by a predefined skele-
ton. The paper gives a comprehensive description of Eden, its semantics, its skeleton-based
programming methodology—which is applied in three case studies—, its implementation
and performance. Furthermore it points at many additional results that have been achieved
in the context of the Eden project.
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1 Introduction

The exploitation of parallelism is a long pursued —and not yet convincingly met—

goal in programming. There is a trade-off between the efficient exploitation of par-

allelism and the simplicity of the corresponding programs: the more control a lan-

guage has on process management, and on communication and synchronisation

aspects, the more complex and longer —and the less amenable for reasoning— are

the resulting programs. Imperative parallel programming is a good example of this

assertion.

Functional programming means expressing algorithms at a high level of abstrac-

tion, thereby substantially simplifying the task of programming and increasing the

programmer’s productivity. Abstraction, expressiveness, referential transparency,

and a clear semantic model lead to concise programs which can be developed in a

short time as well as analysed or optimised with powerful formal methods.

Research in parallel functional programming tries to provide these advantages in

the context of parallel program development as well. Following the idea of declar-

ative programming, the main task of a parallel programmer should be to specify

what has to be evaluated in parallel and not how the parallel evaluation has to

be organised. Consequently, programmers should not deal with low level details of

process management such as process creation and placement, communication and

synchronisation, but instead concentrate on the decomposition of their problems

into parallel tasks.

During the last decades many parallel functional languages have been designed

and investigated, see e.g. the overviews given in Hammond and Michaelson (1999)

and by Trinder, Loidl, and Pointon (2002). Most languages extend a pure func-

tional computation language like Haskell or ML by a high-level coordination lan-

guage. The coordination extensions range from purely implicit approaches where

the exploitation of parallelism is transparent to the programmer and managed by

a sophisticated compiler and runtime system, to completely explicit approaches
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where the programmer has to explicitly define the parallel behaviour, i.e. thread

creation and/or communication and synchronisation. Moreover, parallel functional

languages may differ in the supported paradigm: data parallelism or task paral-

lelism.

In this paper we describe Eden, an extension of the non-strict functional language

Haskell, covering its design, semantics, programming methodology, and implemen-

tation. Parallel programming at a high level of abstraction is achieved in Eden by

defining processes explicitly, but at the same time keeping communication actions

implicit. The programmer only specifies which data a process depends on. Sending

and receiving data is performed automatically by the underlying Eden parallel run-

time system. Thus, Eden can be classified as a semi-explicit approach to parallel

functional programming. Task and data parallelism paradigms can be modelled in

Eden, and high-level parallelism abstractions like skeletons can be defined. They

simplify the task of parallel programming substantially.

Eden does not try to compete in performance with the combination of an imper-

ative language like C or C++ and a parallel library such as OpenMp (Chandra,

2000), PVM (1993) or MPI (1997). These approaches achieve high performance at

the price of investing a rather high effort in programming. Eden’s intended users

are in the first place functional programmers, which are willing to trade some per-

formance for easier and shorter programming. In fact, one of the aims of Eden is

to facilitate the conversion of Haskell sequential programs into parallel ones, thus

compensating the poorer performance of functional languages in relation to im-

perative ones. As a consequence, the comparisons we provide in the related work

section (see Section 6) are between Eden and other parallel functional languages.

Another question that may be raised is why have we chosen a lazy language such

as Haskell as the host language for a parallel extension. At first sight, eagerness

appears to be more suitable than laziness for parallelism. In fact, the lazy option

is a more challenging one. The main reason has been that we wanted to preserve

all the advantages that lazy languages, and Haskell in particular, offer to program-

mers: non-strict functions, demand-driven evaluation, infinite objects, and monads,

especially the state transformer monad and the IO monad which allow mutable ar-

rays and purely functional IO, respectively. As an added value, we can use infinite

lazy streams to model process communication. Circular topologies of processes con-

nected by streams can be easily expressed as a set of mutually recursive equations,

which do not deadlock as it would be the case in a strict language. We will show

some examples of circular topologies in Section 3.

The paper is meant as a wrap-up of the Eden project. It sums up the main design

and implementation decisions, provides examples of skeletal parallel programming

in Eden as well as Eden’s programming methodology, and points at papers describ-

ing further achievements of the Eden project. Most of the information has been

previously published in several workshop and conference papers. However, a com-

prehensive journal publication on Eden is overdue. The paper is intended to be

self-contained, but a look into the rest of the given references will provide a deeper

insight into details.
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Eden’s syntax, design decisions and the kernel part of its operational semantics

are described in the next section. The subsequent section presents the skeleton-

based programming methodology recommended for Eden programmers and shows

skeleton definitions in Eden. In Section 4, an overview of Eden’s implementation

is given. Section 5 discusses three case studies where the skeleton methodology

is applied to parallelise three functional programs. Runtime measurements show

the speedups achieved by the Eden system for these example programs. The next

section gives pointers to additional achievements of the Eden project. Moreover,

Eden is compared with other parallel functional languages. Finally, conclusions are

drawn.

2 The Language

The parallel functional language Eden (Breitinger et al., 1997b) extends the non-

strict functional language Haskell (Peyton Jones & Hughes, 1999) with syntactic

constructs for defining processes.

2.1 Basic Constructs

Processes are defined by using the function

process :: (Trans a, Trans b) => (a -> b) -> Process a b

which embeds a function of type a -> b into a process abstraction of type Process a

b, where Process is a new type constructor. The type class Trans will be explained

below. A process abstraction process (\x -> e) of type Process a b defines the

behaviour of a process having the parameter x with type a as input and the expres-

sion e with type b as output. The main difference between functions and process

abstractions is that the latter, when instantiated, are executed in parallel.

Processes are created by using the infix instantiation operator

( # ) :: (Trans a, Trans b) => Process a b -> a -> b

which provides a process abstraction with actual input parameters. The evaluation

of a process instantiation (process (\x -> e1)) # e2 leads to the dynamic creation

of a process together with its interconnecting communication channels. The in-

stantiating or parent process is responsible for evaluating e2 and for sending the

resulting value v2 via an implicitly generated channel, while the new child process

evaluates the application (\x -> e1) v2 and returns the result via another implicitly

generated channel.

Eden is explicit about processes and their incoming and outgoing data, but it

abstracts from the transfer of these data between processes and the necessary syn-

chronisation. Thus, an Eden program defines a system of processes which exchange

data via unidirectional channels which connect one writer to exactly one reader.

The data transfers are automatically done by the system and need not be managed

by the programmer. Communication channels are modelled by head-strict lazy lists,

as in stream-based I/O. The predefined type class
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class NFData a => Trans a where (...)

provides functions used internally for the transmission of values on communication

channels. In principle, arbitrary values can be communicated. Their types must be

instances of this type class. Corresponding instance declarations will automatically

be derived by the compiler. The type class Trans is a subclass of the class NFData

(Normal Form Data) because all process outputs are evaluated to normal form

before being sent. In particular, communication is not demand-driven. Values are

sent to receiver processes without prior requests until a receiver notifies that it does

not need input values any more. In general terms, the system will push instead of

pull information. Evaluation to normal form and eager communication deviate from

Haskell’s demand-driven evaluation, but are essential to support parallelism (Klusik

et al., 2001a).

Example 1 (mergesort)

The following function creates a parallel sorting network which transforms an input

stream into a sorted output stream by subsequently merging sorted sublists with

increasing length:

mergesort :: (Ord a, Trans a) => [a] -> [a]

mergesort [] = []

mergesort [x] = [x]

mergesort xs = sortmerge (process mergesort # xs1)

(process mergesort # xs2)

where (xs1,xs2) = unshuffle xs

Streams with at least two elements are split into two sub-streams using the function

unshuffle. The sub-streams are sorted by recursive instantiations of mergesort pro-

cesses. The sorted sublists are coalesced into a sorted result list using the function

sortmerge which is an ordinary Haskell function like unshuffle (both functions are

not shown here). The context Ord a ensures that an ordering is defined on type a.

The process system generated when mergesort is applied to a list with more than

two elements is a binary tree. /

If the output of a process is a tuple, an independent thread will be created for each

component of the tuple and the result of its evaluation will be sent on a separate

channel. The connection points of channels to processes are called inports on the

receiver side and outports on the sender side. There is a one-to-one correspondence

between the threads and the outports of a process while data that is received via

the inports is shared by all threads of a process. Only the first level of tuple outputs

will be evaluated concurrently, i.e. (e1, e2, e3) yields three threads while (e1, (e2, e3))

would be evaluated by two threads. Analogously, several threads will be created in

a parent process for tuple inputs of a child process.

Example 2 (several outputs)

The following expression is a simple process abstraction defining a process with two

input streams and two output streams:

process (\ (xs,ys) -> (zipWith (+) xs ys, zipWith max xs ys))
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When instantiated with a pair of lists, the process will deliver two outputs produced

by two independent threads. The first thread computes the element-wise sum of the

input streams while the second thread compares the input streams element-wise and

outputs the maximum values. Both threads share the input streams. /

Process abstraction and instantiation could have been coalesced into a single binary

operator

(#’) :: (Trans a, Trans b) => (a -> b) -> a -> b

f #’ x = let pf = process f in pf # x

which is a parallel version of the Haskell operator ($):: (a -> b) -> a -> b for

function application, and Eden could have been defined with only this operator. We

prefer, however, the clear distinction between process abstractions and functions,

which is also reflected in the new type Process a b. Process instantiations and

abstractions represent two different sides of process creation: the parent and the

child side, respectively. While process instantiation represents process creation on

the parent side, process abstractions represent the definition of a child process,

independently from its creation. In Subsection 2.4, the operational semantics of

Eden is, however, discussed for a core language with the operator #’ only.

2.2 Parallelism vs. Laziness

Laziness has many advantages over eager evaluation, such as demand-driven evalu-

ation, infinite data structures, and the natural handling of partially available data.

The latter is especially important for parallel evaluation, since communication chan-

nels can be modelled by lazy lists and circular topologies of processes connected by

such lists can be created. The demand-driven evaluation within processes is impor-

tant to avoid unnecessary computations. In particular, we will avoid unnecessary

blocking on non-available input, and consuming available but non-needed data.

Nevertheless, lazy evaluation is changed to eager evaluation in two cases: pro-

cesses are eagerly created, and they produce their output even if it is not demanded.

Eager process creation means that process instantiations in local definitions (let-

and where-blocks) are treated in a special way: Instead of creating a closure rep-

resentation in the heap, the process is immediately created. These modifications

aim at increasing the parallelism degree and at speeding up the distribution of the

computation. Even though, it is sometimes still necessary to produce additional

demand in order to unfold certain process systems. In many cases the programmer

will experience distributed sequentiality, because demand-driven (lazy) evaluation

activates the parallel evaluation only when its result is already needed to continue

the overall computation, i.e. it immediately waits for the result. This situation is

illustrated by the next example:

Example 3 (parallel map)

Replacing the function application in the map function:

map :: (a -> b) -> [a] -> [b]

map f xs = [f x | x <- xs]
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by a process instantiation, leads to a simple parallel map function, in which a dif-

ferent process is created for each element of the input list:

map_par_1 :: (Trans a, Trans b) => (a -> b) -> [a] -> [b]

map_par_1 f xs = [process f # x | x <- xs]

The process abstraction process f determines that the input parameter x, as well

as the result value, will be transmitted via channels.

However, the expression sum (map par 1 square [1..10]) will for instance create 10

processes, but only one after the other as demanded by the sum function which

sums up the elements of a list of numbers. Consequently, the computation will not

speed up by “parallel” evaluation, but slow down because of the process creation

overhead added to the sequential evaluation. /

Fortunately, it is easy to impose additional demand on expressions, e.g. by using

evaluation strategies (Trinder et al., 1998). Evaluation strategies (or simply strate-

gies) are functions which control the evaluation of expressions without producing

a result value1. They are applied by means of a function using, which first applies

the strategy to the input, and then returns the value of the input:

type Strategy a = a -> ()

using :: a -> Strategy a -> a

using x s = s x ‘seq‘ x

The evaluation itself is enforced by the operator seq :: a -> b -> b —defined in

the Haskell prelude— which evaluates its first argument to weak head normal form

(whnf) and then returns its second argument. As above, it is usually introduced to

overrule laziness for performance reasons.

Example 4 (parallel map with demand control)

The traversal of the spine of a list is achieved by the strategy spine defined as
follows:

spine :: Strategy [a]

spine [] = ()

spine (_:xs) = spine xs

With this strategy, the map par function of Example 3 can be modified in such a

way that all processes are created as soon as there is demand for the evaluation of

the list.

map_par :: (Trans a, Trans b) => (a -> b) -> [a] -> [b]

map_par f xs = [process f # x | x <- xs] ‘using‘ spine

The spine strategy eagerly evaluates the spine of the process instantiation list. In

this way all processes will immediately be created. /

The function map par defines a basic scheme of parallel evaluation which eagerly cre-

ates a set of independent processes. Such parallelism abstractions are an important

part of the Eden methodology and we elaborate on them in Section 3.

1 Originally, they have been introduced to specify parallel behaviour of programs. However, we
only use them to control sequential evaluation.
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2.3 Coordination Aspects

In this subsection we provide an informal introduction to Eden’s semantics. A more

formal treatment is given in Subsection 2.4.

Concurrent activities (processes and threads) are initiated when a process instan-

tiation is evaluated. We consider the following questions:

• When should a process instantiation be evaluated (a process be created)?

• To which degree should output expressions be evaluated?

• When should the results of output expressions be transmitted between pro-

cesses?

Process creation. Local definitions of process instantiations in let or where blocks,

i.e. bindings of the form outp = pabs # inps, lead to the immediate creation of a

process when they are accessed during the evaluation. To look at this the other way

round, the instantiation of a process will be postponed when it does not appear at

“top-level”, namely when it occurs, for instance,

• as the body of a lambda abstraction or function definition: The instantia-

tion takes place as soon as the abstraction or function is fully applied and

evaluated.

• as a component of a data structure: Its instantiation takes place as soon as

the corresponding component of the data structure is evaluated.

• in a branch of a case analysis: It will only be instantiated if this branch is

selected and evaluated.

A new process has a thread for each of its outports; moreover, the parent pro-

cess will initiate a thread to serve each of the inports of the newly created child

(communication from parent to child).

Eden has been designed to run in distributed settings, therefore a common shared

memory is not assumed. The concept of a virtually shared global graph is avoided,

to save the administration costs while paying the price of possibly duplicating work,

because all bindings needed for the evaluation of the free variables in the process

body must be copied from the parent to the child. However, when the evaluation

of the process body depends on a value to be communicated from some other

process, the process creation is delayed until the necessary communications and

instantiations have taken place.

Example 5 (Delayed process creation)

In the Eden expression

let x out = (process x) # x in

in combine x out ((f x out) # y in)

process x will be created when the let-expression is evaluated, while the second

process instantiation (f x out) # y in) yielding process y is only performed when

it is needed by combine. If process y is created before process x has completely

delivered its output, process y’s creation must be postponed until x’s output is

available, because channel inports cannot be copied from parent to child heaps. /
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Communication. Outport expressions are evaluated to normal form, except for ex-

pressions with a function type, which are evaluated to weak head normal form. In

that latter case it is mandatory to copy —from the producer to the consumer— all

the bindings needed for the evaluation of the free variables in the abstraction. As in

the case of process creation, this copy can take place only if there is no dependency

on pending communications.

Results of the evaluation of outports are sent to the connected inports as soon as

they are available. A channel is closed when the output value has been completely

transmitted to the receiver.

Synchronisation. If a thread needs some input value that has not been received, the

thread is suspended until the corresponding producer sends the desired data. No-

tice that communication through channels has non-blocking sending, but blocking

reception, and that process synchronisation is achieved exclusively by exchanging

data through the communication channels.

Termination. The execution of an Eden process is controlled by the evaluation of

its outports, so that execution will end as soon as the process has no more outports

or when its output is detected to be unnecessary (during garbage collection). Upon

termination of a process, its inports are closed immediately. Then the corresponding

outports will be closed in the producer processes, so that termination cascades

through the process network.

2.4 Formal Semantics

The non-strict semantics of the Haskell subset is preserved in Eden. Denotationally,

i.e. considering just the input-output behaviour, process abstractions and instantia-

tions could be identified with function definitions (λ-abstractions) and applications,

respectively. However, this view completely neglects parallelism and ignores issues

like process creation and communication. In the following we define an operational

semantics in the style of (Baker-Finch et al., 2000) which is based on Launchbury’s

natural semantics for lazy evaluation (Launchbury, 1993). The semantics handles

process creation and communication and is precise about expression scheduling and

evaluation order. Therefore it is e.g. suitable for measuring the amount of specula-

tive computation produced during program execution.

For simplicity, we define the semantics for a core language consisting of the un-

typed λ-calculus just extended with local definitions (let) and the derived process

instantiation operator (#’). The (abstract) syntax, based on variables x ∈ Var and

expressions E ∈ Exp, is given in Figure 1.

Following (Launchbury, 1993), we assume a general renaming of variables which

avoids name clashes during expression evaluation. Moreover, the language is nor-

malised to a restricted syntax (see Figure 1) where all subexpressions, except for

the body of λ-abstractions, are replaced by variables defined in let-expressions.

An expression (E1 E2) with non-variable sub-expressions E1 and E2 will e.g. be

normalised to let x = Ẽ1; y = Ẽ2 in (x y), where Ẽ1 and Ẽ2 are the results of nor-
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Syntax Restricted Syntax

E ::= x x identifier
| λx.E λx.E λ-abstraction
| E1E2 x1x2 application
| E1#’E2 x1#’x2 process instantiation
| let {xi = Ei}

n
i=1 in E let {xi = Ei}

n
i=1 in x local declaration

Fig. 1. Eden core syntax

malising E1 and E2. In contrast to Launchbury, we replace not only the argument

expression in applications by variables, but also the functional expression as well as

the body of let-expressions. In this way, all subexpressions of any expression may

be shared and will be evaluated at most once. Additionally, the semantic definition

of evaluating an application (lazily) is simplified.

In (Launchbury, 1993), closures are modelled as variable-to-expression bindings

which are collected in a heap representing the program space. In (Baker-Finch et al.,

2000), such bindings are also used to model threads, which share a unique heap and

are executed by the available processors. Due to the distributed nature of Eden,

each process is represented by a separate heap. Distinct variables c ∈ Chan are

introduced to represent communication channels, where Chan denotes the set of

channel identifiers. A process is represented by a pair 〈p,H〉, where p is a process

identifier and H is the bindings heap. As each binding is considered a potential

thread, a label indicates the thread’s state: x
α
7→ e, where α ::= I|A|B corresponds

to Inactive (either not yet demanded or already completely evaluated), Active (or

demanded), and Blocked (demanded but waiting for the value of another binding),

respectively. Channel identifiers can appear on either side of a binding. On the left-

hand side, a channel identifier represents an outport of the corresponding process.

A channel identifier on the right-hand side denotes an inport of the process.

In the following, we will use x, y, z ∈ Var for “ordinary variables”, c ∈ Chan for

channels, where θ ∈ Var ∪ Chan, and p and q for process identifiers.

The semantics consists of a two-level transition system: the lower level handles

local effects within processes, while the upper level describes the effects global to

the whole system (the set of all parallel processes), like process creation and data

communication. In order to avoid writing multiple similar transition rules, we allow

a binding to appear with several labels, corresponding to the different possibilities

admitted by the rule. Thus, if for instance x
IAB
7−→ E appears on the left-hand

side of a rule, and x
ABA
7−→ E′ on the right-hand side, this means that the thread

corresponding to the closure x 7→ E becomes active in the case it was either inactive

or blocked, while it becomes blocked if it was previously active. Besides, notation

H + {x
α
7→ E} means that the heap H is extended with the binding x

α
7→ E, while

H : x
α
7→ E means that the binding for x is the one which guides the application of

the corresponding rule.
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2.4.1 Local process evolution

Local transitions express the reduction of an active thread in the context of a single

process. This internal activity affects only the corresponding heap: bindings may be

created, modified, blocked or activated. The evaluation of an expression terminates

when a weak head normal form (whnf) value (v ∈ Val) has been reached. Local

transitions take the form H : x
A
7→ E −→ H ′, which is read as “the evaluation of

the active thread x
A
7→ E transforms the heap H + {x

A
7→ E} into H ′”. The rules

given in Figure 2 express how lazy evaluation progresses under demand.

H + {x
I
7→ v} : θ

A
7→ x −→ H + {x

I
7→ v , θ

A
7→ v} (value)

if E /∈ Val , H + {x
IAB
7−→ E} : θ

A
7→ x −→ H + {x

AAB
7−→ E, θ

B
7→ x} (demand)

H : x
A
7→ x −→ H + {x

B
7→ x} (blackhole)

if E /∈ Val , H + {x
IAB
7−→ E} : θ

A
7→ x y −→ H + {x

AAB
7−→ E, θ

B
7→ x y} (app-demand)

H + {x
I
7→ λz.E} : θ

A
7→ x y −→ H + {x

I
7→ λz.E, θ

A
7→ E[y/z]}

(β-reduction)

H : θ
A
7→ let {xi = Ei} in x −→ H + {yi

I
7→ σ(Ei)}

n
i=1 + {θ

A
7→ σ(x)} (let)

where fresh(yi) (1 ≤ i ≤ n) and σ := [y1/x1, . . . , yn/xn]

Fig. 2. Local transition rules

Whenever the evaluation of an expression finishes, the resulting whnf value is shared

with other bindings. By applying the rule (value), the value is copied and bound to

the demanding variable. The corresponding binding remains active, because bind-

ings blocking on it must be unblocked before the binding is deactivated. Unblocking

and deactivation is performed by scheduling rules which will be introduced later.

The rule (demand) handles the case where the demand is issued before the value

has been obtained; then, the demanding binding is blocked while the demanded one

is activated (or remains blocked if it was already blocked). The rule (blackhole)

deals with cyclic dependencies. In an application, demand is propagated to the

variable corresponding to the abstraction (rule (app-demand)). The application

of the obtained abstraction is specified by the rule (β-reduction). A local decla-

ration introduces new bindings in the heap (rule (let)); all of them are labelled

as inactive, as they have not been demanded yet. To avoid name clashes, the local

variables xi are renamed by fresh variables yi using the substitution σ.

All these local evolutions are considered to occur simultaneously, entwined in a

parallel (global) step. At the lower level, we consider the evolution of parallel threads

inside a process with a common heap Hp. The corresponding rule (parallel-p) is

given in Figure 3. Let ET (Hp) denote the set of active threads in process p that

may evolve (as defined in Subsection 2.4.3), and np = |ET (Hp)| be the number of



12 R. Loogen, Y. Ortega-Mallén, R. Peña-Maŕı

{H(i,1)
p + H

(i,2)
p : θi

p

A
7→ Ei

p −→ H
(i,1)
p + K

(i,2)
p

| Hp = H
(i,1)
p + H

(i,2)
p + {θi

p

A
7→ Ei

p} and θi
p

A
7→ Ei

p ∈ ET (Hp)}
np

i=1

〈p, Hp〉
par
=⇒p 〈p, (∩

np

i=1H
(i,1)
p ) ∪ (∪

np

i=1K
(i,2)
p )〉

Fig. 3. Rule parallel-p: concurrent thread evolution within a single process p

{〈p, Hp〉
par
=⇒p 〈p, H ′

p〉}〈p,Hp〉∈S

S
par
=⇒ {〈p, H ′

p〉}〈p,Hp〉∈S

Fig. 4. Rule (parallel): parallel process evolution

“evolutionary” threads. All threads share a common heap Hp and modify this heap

without any interference. Therefore, we can decompose the common heap, for each

thread i with 1 ≤ i ≤ np, into three parts: H
(i,1)
p is the part of Hp that remains

unchanged during the application of the corresponding local rule, while H
(i,2)
p is the

part that will be modified into K
(i,2)
p . The third part is the active thread binding

which must be a member of ET (Hp). The parallel execution of the active threads

keeps all parts of the heap which are not changed at all (∩
np

i=1H
(i,1)
p ) and adds every

modification that has been done by any rule (∪
np

i=1K
(i,2)
p ).

2.4.2 Global system evolution

The upper level defines global transitions between process systems (S ), i.e. sets of

processes. A global transition takes the general form:

{〈p,Hp〉}p∈S
�

=⇒ {〈p,H ′
p〉}p∈S∪S′

where each heap Hp (associated to a process p in S) is transformed to H ′
p, while

new processes (in S′) may be created. The diamond � is a place-holder for the name

of the rule. As a first global transition we consider the parallel evolution of all the

processes within the system S, shown in Figure 4.

After each process has internally evolved, the following tasks have to be done at the

system level: process creation, interprocess communication and state management

(thread unblocking and deactivation). In general, these tasks imply multiple single

steps, each involving at most two processes. Let S be a process system, and � the

name of a rule, for each single-step rule S
�

−→ S′ we can define a multi-step rule

S
�

=⇒ S′ satisfying:

1. S
�

−→
∗

S′ and,

2. there is no S′′ such that S′ �
−→ S′′.

The application of a single-step rule � to a binding in some process, may enable the
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Process creation:

(S, 〈p, H + {θ
α
7→ x#’y}〉)

pc
−→ (S, 〈p, H + {θ

B
7→ c1, c2

A
7→ y}〉,

〈q, η(nh(x, H)) + {c2
A
7→ η(x) z, z

B
7→ c1}〉)

if noChan(nh(x, H)) = True and q, z, c1, c2 are fresh (channel) variables / identifiers

and substitution η replaces all variables by fresh ones.

Fig. 5. Process creation rule

application of the same rule � to other bindings—in the same or in other processes—

but it can never disable applications of rule � which were enabled before the former

application.

Process creation. When evaluating E1#’E2, a new child process q is created and

fed with the value of E2 by its parent process p via an input channel. It evaluates

E1 E2 and returns the result (to its parent) via an output channel. The following

diagram illustrates this:

p E1#’E2−→

p

6E1E2?E2

q

The process creation can only take place, if the body E1 does not depend on

a channel variable, i.e. on some value which has not been communicated yet. The

rule for process creation is given in Figure 5. Speculative parallelism is achieved by

applying this rule to inactive bindings.

For a normalised expression x#’y, the argument y is evaluated by the parent

(p), while the body x as well as the application, x y, are evaluated by the new-born

child (q). Two channels are introduced: one is used to communicate the value of the

argument from the parent to the child process; the result of the child is returned to

the parent process via the other channel. The two bindings with the new channel

variables on their left-hand side are active and will be evaluated if there are enough

resources.

The initial heap of the child process contains all the bindings needed for the

evaluation of the dependent variables in the process body; these are copied, in an

inactive state, from the parent to the child heap by the function nh (needed heap):

nh(x,H) collects all the bindings in H that are reachable from x. A renaming η

with fresh variables is applied to avoid name clashes. As mentioned before, a process

creation is blocked if there is a dependency on values that have to be communicated.

A predicate noChan checks whether the heap needed by the process body does not

depend on a channel variable.

The process creation rule introduces new bindings and modifies only the one cor-

responding to the #’-expression. As a consequence, the creation of a process cannot

disable the creation of other processes. On the contrary, it may even bring new top-

level #’-expressions. Even then, the number of processes that can be created in one



14 R. Loogen, Y. Ortega-Mallén, R. Peña-Maŕı

Communication:

(S, 〈p, Hp + {c
α
7→ v}〉, 〈q, Hq + {θ

B
7→ c}〉)

com
−→

(S, 〈p, Hp〉, 〈q, Hq + {θ
A
7→ η(v)}+ η(nh(v , Hp))〉)

if noChan(nh(v , Hp)) = True and η introduces fresh names for all variables.

Fig. 6. Value communication rule

multi-step is always finite, and thus, the corresponding multi-step rule
pc

=⇒, which

carries out every possible process creation, is well defined.

Communication. The rule for value communication between processes is given in

Figure 6. In this simple calculus, values are always abstractions, and it is mandatory

to copy—from the producer’s heap to the consumer’s heap—all the bindings needed

for the evaluation of the dependent variables in the communicated abstraction.

Again, this copy can only take place if the abstraction does not depend on pending

communications; a renaming substitution (η) is applied to the transferred heap,

and bound variables are replaced by fresh variables.

Although a communication may enable additional ones, this never leads to an infi-

nite number of communications (in one system step) because there is always only a

finite number of communication channels in the system. The corresponding multi-

step rule
com
=⇒, which carries out every possible communication, is therefore well

defined. The order of communications is not relevant, because variables that are

already bound to values are not affected by communications.

Scheduling. Once all the enabled process creations and communications have been

done, the following tasks have to be executed:

• Unblocking bindings depending on a variable bound to a whnf value mean-

while.

• Deactivating bindings to values in whnf.

• Blocking process creations that could not be executed.

The corresponding rules are given in Figure 7, where Ex
B denotes an expression

that is immediately blocked on the variable x, i.e. either x or x y, with y being an

arbitrary variable. The sequential execution of the rules in Figure 7 gives a new

global rule:

Unbl
=⇒ =

wUnbl
=⇒ ;

deact
=⇒ ;

bpc
=⇒ .

For each multi-step rule in
Unbl
=⇒ it can be proven: (1) that a single step never disables

any other rule application enabled before, and (2) that the number of steps is always

finite.

The global system evolves by applying each of the global transition rules that have

been introduced so far:
sys
=⇒ =

comm
=⇒ ;

pc
=⇒ ;

Unbl
=⇒
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WHNF unblocking:

(S, 〈p, H + {x
A
7→ v , θ

B
7→ Ex

B}〉)
wUnbl
−→ (S, 〈p, H + {x

A
7→ v , θ

A
7→ Ex

B}〉)

WHNF deactivation:

(S, 〈p, H + {θ
A
7→ v}〉)

deact
−→ (S, 〈p, H + {θ

I
7→ v}〉)

blocking process creation:

(S, 〈p, H + {θ
IA
7→ x#’y}〉)

bpc
−→ (S, 〈p, H + {θ

B
7→ x#’y}〉)

Fig. 7. Rules for scheduling

The order of rule applications is not arbitrary; a communication may enable a

pending process creation, but not the other way around, because when a new process

is created no communication can take place without at least a local value transition.

Finally, each transition step of the system is defined as follows:

=⇒ =
par
=⇒ ;

sys
=⇒ .

2.4.3 Speculative parallelism

The evaluation of an Eden program may give rise to different computations. The

exact amount of speculative parallelism depends on the number of available proces-

sors, the scheduler decisions and the speed of basic instructions. Hence, the execu-

tion of a program may range from reducing the speculation to the minimum—only

what is effectively demanded is computed—to expanding it to the maximum—every

speculative computation is carried out. While the former would be equivalent to ex-

ecuting the program on a single processor with the scheduler giving priority to the

demand originated by the main expression, the latter would correspond to having

an unlimited set of processors for evaluating the output of every generated process.

Moreover, if a reduction sequence for a program expression E is defined as a—finite

or infinite—sequence of configurations

〈p0, {main
A
7→ E}〉 =⇒∗ 〈p0, H + {main

I
7→ v}〉, 〈p1, H1〉, . . . , 〈pn, Hn〉 =⇒∗

then, in a minimal semantics, the final configuration is the first one where the main

variable becomes inactive, while in the case of a maximal semantics, the execution

continues until every process that has been created is finished or blocked, i.e. until

there are not active threads in the system.

Minimal semantics. We need a way to give preference to demands originating from

the main expression. An auxiliary function pre (preference) not shown here collects

all bindings that are demanded by a variable x (or by a channel c) for its immediate

evaluation within a process 〈p,H〉 and a system S. For a minimal evaluation, we

start from the variable main:

pm(S) = pre(main, 〈p0, H0〉, S)



16 R. Loogen, Y. Ortega-Mallén, R. Peña-Maŕı

where 〈p0, H0〉 is the main process, i.e. the one which contains the variable main.

Finally, we define the set of evolutionary threads of a heap H (used in the rule

parallel-p) as ET min(H) = H ∩ pm(S). Notice that in this semantics a process

can be speculatively created, but its body will be evaluated only if its output is

demanded.

Maximal semantics In this case, all the active bindings in the system evolve in

parallel at each step. We simply define ET max(H) as the set of all active bindings

in H.

A first version of this operational semantics was presented in (Hidalgo-Herrero

& Ortega-Mallén, 2001). In (Hidalgo-Herrero & Ortega-Mallén, 2002) it was re-

elaborated and extended with streams for communication and the language features

introduced in the next subsection: dynamic channels and nondeterminism. For more

details, such as correctness proofs, examples and applications, the reader is referred

to (Hidalgo-Herrero, 2004). A denotational semantics for Eden has been defined

in (Hidalgo-Herrero & Ortega-Mallén, 2003). A more detailed version extended

with communication streams is given in (Hidalgo-Herrero, 2004). This semantics

addresses three different aspects: (1) functionality: the final value computed; (2)

parallelism: the process system topology and its corresponding interactions gener-

ated by the computation; and (3) distribution: the degree of speculation.

2.5 Extra-Functional Features

To make programming in Eden more convenient and to improve the expressive

power of the language, two additional constructs have been added to the language:

dynamic reply channels which simplify the creation of complex communication

topologies and reactive process systems, and many-to-one communication using

a non-deterministic fair merge process.

2.5.1 Dynamic Channels.

With the Eden constructs introduced up to now, communication channels are only

established between parent and child processes during process creation. This results

in purely hierarchical process topologies.

Example 6 (Pipeline)

Consider the following straightforward definition of a process pipeline2:

pipe :: Trans a => [a -> a] -> a -> a

pipe [] vals = vals

pipe (p:ps) vals = pipe ps (process p # vals)

The process evaluating a pipe application will create all processes of the pipeline

and consequently, the topology shown in Figure 8(a) will be produced. Data is

2 An equivalent, much shorter definition of pipe would be pipe = flip (foldl ((#).process))
but for didactic reasons we prefer the explicit version.
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Fig. 8. Pipeline topologies

passed from one pipeline stage to the next via the parent process, which causes a

big communication overhead and contradicts the intention of the programmer. In

an alternative definition each pipeline process creates its successor process.

pipeC :: Trans a => [a->a] -> a -> a

pipeC [] vals = vals

pipeC ps vals = process (generatePipe ps) # vals

generatePipe :: Trans a => [a->a] -> a -> a

generatePipe [p] vals = p vals

generatePipe (p:ps) vals = (process (generatePipe ps)) # (p vals)

The cascading pipe pipeC is defined using the auxiliary function generatePipe which

will be executed by each pipeline process causing the creation of a successor process

only if its list parameter contains at least two elements. Note that generatePipe

will always be called with a non-empty list parameter. Evaluating an application of

pipeC yields the process topology shown in Figure 8 (b). This is still not an optimal

realisation of a pipeline, because the pipeline results must be passed through all

pipeline stages before reaching the originating process, but it is the best we can

achieve with only tree-shape process topologies. /

In order to establish direct channel connections between arbitrary processes, Eden

has been extended with dynamic channel creation.

An Eden process may explicitly generate a new dynamic input channel and send

a message containing the channel’s name to another process. The receiving process

may then either use the name to return some information directly to the sender

process (receive and use), or pass the channel name further on to another process
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Fig. 9. Intended pipeline topology

(receive and pass). Both possibilities exclude each other, and a runtime error will

occur if a channel name is used more than once.

Eden introduces a unary type constructor ChanName for the names of dynamically

created channels. Moreover, it adds an operator

new :: Trans a => (ChanName a -> a -> b) -> b

Evaluating an expression new (\ ch_name ch_vals -> e) has the effect that a new

channel name ch name is declared as reference to the new input channel via which

the values ch vals will eventually be received in the future. The scope of both is the

body expression e, whose value is the result of the whole expression. The channel

name must be sent to another process to establish the direct communication. A

process receiving a channel name ch name, and wanting to reply through it, uses the

function

parfill :: Trans a => ChanName a -> a -> b -> b

Evaluating an expression parfill ch_name e1 e2 means: Before e2 is evaluated, a

new concurrent thread for the evaluation of e1 is generated, whose normal form

result is transmitted via the dynamic channel. The result of the overall expression

is e2. The generation of the new thread is a side effect. Its execution continues

independently from the evaluation of e2.

Example 7 (Pipeline, continued)

By passing a dynamic reply channel through the pipeline the last process can di-

rectly send the final results to the originator process. This yields the intended

process topology shown in Figure 9

pipeD :: Trans a => [a->a] -> a -> a

pipeD [] vals = vals

pipeD ps vals = new (\ chan res ->

(process (generatePipeD ps chan)) # vals

‘seq‘ res)

generatePipeD :: Trans a => [a->a] -> ChanName a -> a -> ()

generatePipeD [p] c vals = parfill c (p vals) ()

generatePipeD (p:ps) c vals = (process (generatePipeD ps c)) # (p vals)

It is obvious that the amount of communications is substantially reduced in this

version. /
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The ring topology described in Section 3 is another example where the di-

rect dynamically-established channel connections increase the performance sub-

stantially.

Although dynamic channels are a non-functional feature, they do not extend the

expressiveness of Eden. They have been introduced to improve the efficiency of

programs, but any program that uses dynamic channels can be rewritten into a

program that shows the same input/output behaviour with only hierarchical com-

munication. This can be seen from the following argumentation. There will always

be a “first” dynamic channel whose channel name has been passed through a purely

“static” network, i.e. without using dynamic channel connections. By introducing

new reverse static channel connections along the path of the channel name leads to

an indirect connection between the sender and the receiver of the dynamic channel

which can be used instead for message transfer. Thus the dynamic channel can

be eliminated from the program. Using this method, all dynamic channels can be

systematically eliminated from a program. Consequently, dynamic channels do not

extend the expressiveness of the language, but they are an important optimisation

technique.

2.5.2 Merge

Many-to-one communication is an essential feature for many parallel applications,

but, unfortunately, it introduces non-determinism and, in consequence, spoils the

purity of functional languages. In Eden, the predefined process abstraction

merge :: Trans a => Process [[a]] [a]

is used to instantiate a process which does a fair merging of several input streams

into a single (non-deterministic) output stream. The incoming values are passed to

the output stream in the order in which they arrive. A merge process can profitably

be used to react quickly to requests coming in an unpredictable order from a set

of processes. This is the only way to enable dynamic load balancing of parallel

programs in a master-worker scheme:

(finalresult,taskss) = master (merge # [worker # tasks | tasks <- taskss])

The resulting process topology3 shown in Figure 10 is utilised in the replicated

workers skeleton described in Section 3. Note that the above definition is recursive,

because the master and the workers mutually depend on each other.

Although merge is of great worth, because it is the key to specify many reactive

systems, one has to be aware that functional purity and its benefits are lost when

merge is being used in a program. Trying to encapsulate the non-deterministic merge

into a monad in order to isolate the non functional behaviour would severely re-

strict its usability, since mutually recursive value-passing as seen above cannot be

expressed with monadic binding operators. In general, functional purity can still

3 The communication between merge and the processes feeding it is always direct.
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Fig. 10. Master-worker process topology

Predefined types

class NFData a => Trans a where (...)

data (Trans a, Trans b) => Process a b = ...

Process abstraction and instantiation functions:

process :: (Trans a, Trans b) => (a -> b) -> Process a b

( # ) :: (Trans a, Trans b) => Process a b -> (a -> b)

Dynamic reply channels:

type ChanName a = ...

new :: Trans a => (ChanName a -> a -> b) -> b

parfill :: Trans a => ChanName a -> a -> b -> b

Many-to-one communication:

merge :: Trans a => Process [[a]] [a]

Fig. 11. Eden Constructs

be preserved in most portions of an Eden program. In particular, it is possible to

use sorting in order to force a particular order of the results returned by a merge

process.

The Eden constructs are summarised in Figure 11. Sections 3 and 5 give evidence

that a powerful and flexible extension for parallelism has been achieved with only

five new functions.
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3 Skeleton-Based Programming Methodology

Skeletons (Cole, 1989) provide commonly used patterns of parallel evaluation and

simplify the development of parallel programs, because they can simply be used

in a given application context. A good example is the well-known map function,

which applies its argument function to each element of a given list. As each of these

calculations is independent, the evaluation of each element of the result list can be

done in parallel (see Examples 3 and 4). Normally, a skeleton can be implemented

in several ways. Implementations may differ in the process topology created, in the

granularity of tasks, in the load balancing strategy or in the target architecture

used to run the program. So, the implementation hides many details from the

potential user, and also determines the efficiency of the program. One of the main

characteristics of skeletons is that it is possible to predict the efficiency of their

applications. This can be done by providing a cost model for a particular skeleton

implementation. A cost model is just a formula stating the predicted parallel time

of the algorithm, which will be parameterised by some constants that may depend

either on the problem to be solved, on the underlying parallel architecture, or on

the runtime system (RTS).

For a functional programmer, a skeleton is nothing more than a polymorphic

higher-order function which can be applied with different types and parameters.

Thus, programming with skeletons follows the same principle as programming with

higher-order functions (in fact the principle used in any abstraction): To define each

concept once and to reuse it many times.

Eden is one of the few functional languages in which skeletons can be both used

and implemented. In other approaches like (Darlington et al., 1993) or (Michaelson

et al., 2001), the creation of new skeletons is considered as a system programming

task or even as a compiler construction task. Skeletons are implemented by using

imperative languages and parallel libraries. Therefore, these systems offer a closed

collection of skeletons which the application programmer can use, but without the

possibility of creating new ones, so that adding a new skeleton usually implies a

considerable effort. Describing both the functional specification and the parallel

implementation of a skeleton in the same language context has several advantages.

First, it constitutes a good basis for formal reasoning and correctness proofs. Sec-

ond, it provides much flexibility, as skeleton implementations can easily be adapted

to special cases, and if necessary, new skeletons can even be introduced by the pro-

grammer himself. In this section we present a selection of typical Eden skeletons.

For details on Eden skeletons (their specification, implementation and cost models),

the reader is referred to (Loogen et al., 2002).

3.1 Task Farms

In most parallel implementations of the well-known map function, the input list is

considered as a task queue that can be processed using several processor elements

(PEs). In Examples 3 and 4 we have already developed a straightforward paral-

lelization of map, map par, which creates a new process for each task. This simple
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map_farm :: (Trans a, Trans b) => (a -> b) -> [a] -> [b]

map_farm = farm noPe unshuffle shuffle

farm :: (Trans a, Trans b) =>

Int -> (Int->[a]->[[a]]) -> ([[b]]->[b]) -> (a->b) -> [a] -> [b]

farm np unshuffle shuffle f tasks =

shuffle (map_par (map f) (unshuffle np tasks))

Fig. 12. Farm skeleton

approach is not always well-suited, especially in the presence of many fine-grained

or irregular tasks. Alternative parallel implementations of map use a fixed number

of worker processes, each processing a subset of tasks.

The main process of the farm implementation creates as many processes as pro-

cessors are available, distributes the tasks evenly amongst the processes, and collects

the results. Each process applies the parameter function to each task it receives,

and sends the results back to the main process. The number np of workers, and

the distribution and collection functions unshuffle and shuffle are parameters of

farm (see Figure 12). The map par skeleton is used to create as many processes as

the number of task lists into which the original list is decomposed. noPe is an Eden

constant giving the number of available processors. Different strategies to split the

work into the different processes can be used provided that (shuffle . unshuffle

n) xs == xs holds for every list xs. The farm implementation is appropriate when

task granularity is uniform, and when an even distribution of tasks amongst all the

processors can be achieved.

In Eden’s skeleton library there is a variant of map farm in which the list of tasks

is passed to each worker as a free variable instead of through a channel. This may

imply the duplication of work (see Section 2.4) but nevertheless this approach often

reduces the total execution time, as the amount of communication is much lower.

When the evaluation of the task list is cheaper than communicating the evaluated

list (or parts of it), it is better to allow the workers to evaluate the list of tasks on

their own and to select their part of it. The resulting skeleton is called self-service

farm implementation of map.

3.2 Replicated Workers

Load balancing is a crucial issue when developing parallel programs. A bad load

balance will cause poor speedups for an otherwise elegant parallel algorithm. The

farm implementation is appropriate only if the granularity of the different tasks

in the list can be guaranteed to have a regular granularity. Besides irregular task

granularity, a non-homogeneous processor architecture or additional load on some

processors may require to distribute work on demand. In this case, a new task will

be assigned to a process only when it has finished its previous task. Thus, some
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map_rw :: (Trans a, Trans b) => (a -> b) -> [a] -> [b]

map_rw = rw noPe 2

rw :: (Trans a, Trans b) => Int -> Int -> (a -> b) -> [a] -> [b]

rw np prefetch f tasks = results

where

results = sortMergeByTid outss

outss = [(worker f i) # input | (i,input) <- zip [0..np-1] inputs]

inputs = distribute tasksAndIds (initReqs ++ map owner unordResult)

tasksAndIds = zip [1..] tasks

initReqs = concat (replicate prefetch [0..np-1])

unordResult = merge # outss

distribute [] _ = replicate np []

distribute (e:es) (i:is) = insert i e (distribute es is)

where insert 0 e ~(x:xs) = (e:x) : xs

insert (n+1) e ~(x:xs) = x: (insert n e xs)

data (Trans b) => ACK b = ACK Int Int b

worker :: (Trans a, Trans b) => (a->b) -> Int -> Process [(Int,a)] [ACK b]

worker f i = process (map f’)

where f’ (id_t,t) = ACK i id_t (f t)

Fig. 13. Replicated workers skeleton

processors may solve a few complex tasks while others solve many small ones. The

amount of work done by each processor will be approximately equal.

This idea gives rise to the replicated workers skeleton (Klusik et al., 2002). Ini-

tially, the manager assigns one or more tasks to each of the workers. By assigning

several tasks, idle time between tasks is minimised. Each time a worker finishes a

task, it sends an acknowledgement message to the manager including the result,

and then a new task (if available) is assigned to that process. The computation

finishes when the manager has received all the results. The programmer cannot

predict the order in which processes are going to finish their works, as this depends

on runtime issues. By using the reactive process merge, results from different pro-

cesses can be received by the manager in the order in which they arrive. Thus, if

each result contains the identity of the sender process, the list of merged results

can be scrutinised to know who has sent the first message, and a new task can be

assigned to it. Notice that this approach could not be used in a purely functional

language, as process merge is not functional (see Section 2.5.2).

The input parameters of the skeleton shown in Figure 13 are: (1) the number

of worker processes to be used; (2) the size of workers’ pre-fetching buffer; (3) the

worker function; and (4) the list of tasks. Notice that the output of the list of

workers, outss, is used in two different ways:

1. An instance of merge is applied to it in order to obtain a list unordResult
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containing the order in which the results are generated. This list is used by

distribute to assign new tasks to processors which have delivered a result.

2. The final result is obtained by applying sortMergeByTid to it, which is a simple

Haskell function (not shown) merging the workers lists (each of them already

sorted) into a single list sorted by task identity.

Sorting the results guarantees that, seen from the outside, the skeleton is completely

deterministic. In order to implement map, a worker is created for every processor.

3.3 Divide-and-Conquer

Divide-and-conquer is a well-known scheme in sequential programming: The prob-

lem is split into one or more smaller subproblems. Once they are recursively solved,

their results are combined to produce the solution of the original problem. The

splitting process stops when a subproblem is trivial enough to be solved without

recursively invoking the function. The Haskell version of this idea is the following

polymorphic higher-order function:

dc :: (a -> Bool) -> (a -> b) -> (a -> [a]) -> (a -> [b] -> b) -> a -> b

dc is_trivial solve split combine x

| is_trivial x = solve x

| otherwise = combine x children

where children = map (dc is_trivial solve split combine) (split x)

Notice that the resulting call tree may be non-homogeneous, and that trivial so-

lutions may appear at any level of the tree. The easiest way to parallelise the dc

scheme in Eden is to replace map by map par and to stop the parallel unfolding at

a given level d. A dynamic tree of processes will then be created with each process

connected to its parent. The additional integer parameter d determines the max-

imum level after which no more child processes are generated, and the sequential

version is used instead. We call the resulting skeleton dc par.

Using the rw implementation of map allows however a better control over process

granularity and distribution, and a better load balance. The process creation over-

head will be decreased as well, since only one process per processor will be created.

The original task is split up into a given depth, and a subtask is created for every

subtree at this depth. The list of subtasks is given to a map rw skeleton in which

the worker function is just the sequential algorithm (see Figure 14). In order to be

able to appropriately combine the results returned by the parallel processes, the

tree shape of splitting the task must be saved as well. Function generateTasks does

the splitting job, while function combineTop combines the results level-wise from

the leaves of the tree to the top (These are simple Haskell definitions which are not

shown here.). Notice that the initial splitting and the final combination are done

in the manager processor, while solving the leaves is done in the worker processors.

Due to the laziness of the language, part of the splitting and of the combination

can be done in parallel with solving the leaves. In any case, this load should be

small enough to avoid a bottleneck in the manager processor.
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dc_rw :: (Trans a,Trans b) =>

Int -> (a -> Bool) -> (a -> b) -> (a -> [a]) -> (a -> [b] -> b) ->

a -> b

dc_rw d is_trivial solve split combine x = combineTop combine levels results

where

(tasks,levels) = generateTasks d is_trivial split x

results = map_rw (dc is_trivial solve split combine) tasks

data Tree a = Node a [Tree a]

generateTasks :: Int -> (a -> Bool) -> (a -> [a]) -> a -> ([a], Tree a)

combineTop :: (a -> [b] -> b) -> (Tree a) -> [b] -> b

Fig. 14. Divide-and-conquer skeleton

strw :: (Trans tsk, Trans act, Trans res, Trans wl) =>

Int -> -- no. of PE

Int -> -- buffer size

(inp -> Int -> ([wl],[tsk],ml)) -> -- split function

(wl -> tsk -> [act] -> (res,wl)) -> -- worker function

(ml -> res -> Int -> ([[act]],[tsk],ml)) -> -- combine function

(ml -> result) -> -- result function

inp -> -- skeleton input

result -- skeleton result

Fig. 15. The type of the Eden skeleton strw (stateful replicated workers)

3.4 Replicated Workers with Dynamic Task Creation

Many problems are well-suited for a replicated workers implementation. For in-

stance, searching problems in which a huge-space state-tree has to be searched in

parallel to find one (or: the optimal) solution. In these problems the initial set of

tasks is small (it may even be only one initial task) but the number of tasks in-

creases as long as subproblems are solved. We have investigated several variants of

the basic replicated workers scheme in which workers are allowed to dynamically

generate new tasks. These variants are appropriate to solve depth-first and branch-

and-bound search problems. To complicate things, in some of these problems, the

workers must maintain an internal state (for instance, the cost of the best solution

found up to now) so that the result of the task at hand depends not only on the

task itself but also on the worker state. The manager may update the state from

time to time when new data are received from other workers.

We sketch a skeleton called stateful replicated workers implementing all these

features. The details of this skeleton can be found in (Mart́ınez & Peña, 2004).

Figure 15 shows only the type of strw in Eden. We maintain the parameters of

the stateless replicated workers skeleton seen before: the number of workers to be
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created by the skeleton, and the size of the prefetch buffer. The next four parameters

are the problem-dependent functions delivered to the skeleton. The implementation

of strw follows similar patterns to those of the basic skeleton presented in Figure 13.

A new main concern is termination, as tasks are now dynamically created. The

manager has to ensure that it triggers termination, only if no more new tasks

will be created. This is handled by the function distribute which has now eight

parameters instead of two in the basic version (see Figure 13). The purposes of

distribute are manifold:

1. It detects when a worker has finished a task and assigns a new one, as in the

basic rw skeleton.
2. It computes the list of pending updates for each individual worker and com-

bines it with the newly assigned task.
3. It detects termination. To this aim, it controls the number of tasks generated

by the skeleton, the number of tasks distributed to workers, and the number

of results received from workers. Termination can be triggered, as soon as

these numbers are equal.

3.5 Ring

Many parallel algorithms arrange processes in a unidirectional ring, where each

process —apart from sending and receiving values to and from the parent— is

connected to only two neighbours: the previous link, from which it receives values,

and the next link, to which it sends values. By using dynamic channels to provide

direct connections between processes, the ring skeleton defined in Figure 16 creates

the desired topology. Each ring process pring receives an input from the parent,

and a channel name used to send values to its successor in the ring. It produces

an output sent to the parent, and a channel name used to receive inputs from its

predecessor in the ring.

The parameters of the skeleton are the number n of ring processes, a function

distribute to distribute the input data to the ring processes, a function combine to

combine the outputs produced by the ring processes into a final result, a function f

to be performed in each ring process and the input data. As the type of function f

shows, each ring process receives data of type a from the parent, and data of type

[c] from its predecessor process. It produces output of type [c] for its successor

and a result of type b for the parent. Function mzip is a more lazy variant of the

standard function zip.

4 Implementation

Eden’s compiler4 has been developed by extending the Glasgow Haskell Compiler

(GHC, 1993). The GHC has been chosen as the basis of our compiler because of its

efficiency and portability. Moreover, Haskell features and extensions supported by

the GHC may be used in Eden.

4 Available at http://www.mathematik.uni-marburg.de/˜eden
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ring :: (Trans a, Trans b, Trans c) =>

Int -> (Int -> a -> [a]) -> ([b] -> b) -> ((a,[c]) -> (b,[c]))

-> a -> b

ring n distribute combine f input = combine toParent

where

(toParent, chans) = unzip (map_par (pring f) inputs)

inputs = mzip toChildren preds

toChildren = distribute n input

preds = last chans : init chans -- rotate chans

-- each individual process in the ring

pring ::(Trans a, Trans b, Trans c) =>

((a,[c]) -> (b,[c])) -> (a,ChanName [c]) -> (b,ChanName [c])

pring f (fromParent,nextChan) = new (\ (prevChan, previous) ->

let (toParent, next) = f (fromParent, previous)

in parfill nextChan next (toParent,prevChan))

Fig. 16. Ring skeleton
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Fig. 17. Overview of the GHC with extensions for Eden

4.1 Extending the Glasgow Haskell Compiler

The GHC translates Haskell programs into abstract C-Code which is flattened into

proper C using macro definitions of the runtime system. A standard C compiler

(Gnu) translates the resulting C code into native code which is finally linked with

the runtime system code to give the executable (see Figure 17). The GHC run-

time system (RTS) implements an abstract graph reduction machine, called the

STG machine (Peyton Jones, 1992). The compilation into STG-code is a chain of
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1. createProcess# request process instantiation on another processor
2. createDC# create (dynamic) communication channel
3. setChan# connect communication channel in the proper way
4. sendHead# send head element of a list on a communication channel
5. sendVal# send single value on a communication channel
6. noPe# determine number of processing elements in current setup
7. selfPE# determine own processor identifier
8. merge# nondeterministic merge of a list of outputs into a single input

Fig. 18. Primitive operations for Eden

data (Trans a, Trans b) =>

Process a b = Proc (ChanName b -> ChanName (ChanName a) -> ())

process :: (Trans a, Trans b) => (a -> b) -> Process a b

process f = Proc f_remote

where f_remote outDCs chanDC

= let (inDCs, invals) = createDC invals

in writeDCs chanDC inDCs ‘fork‘ (writeDCs outDCs (f invals))

Fig. 19. Haskell definition of Eden process abstraction

transformations, finally resulting in a C representation (abstract C) (Peyton Jones,

1996).

The GHC allows to extend the functionality of its runtime system by defining

additional primitive operations, i.e. functions directly implemented in C by the

compiler. They provide basic atomic actions which are performed directly in the

runtime system. The Eden compiler uses the eight primitive operations shown in

Figure 18 to provide the additional functionality needed by the Eden constructs.

The type class Trans, the type constructors Process and ChanName as well as the new

Eden functions like process and # have been defined in a special module, called the

Eden module, which has to be imported by every Eden program. The definitions

are based on the Eden-specific primitive operations. To give an impression of how

the Eden module realizes parallelism control, we show the definition for process

abstraction (see Figure 19) which defines how a new process is set up in a remote

environment.

A process abstraction of type Process a b is implemented by a function f remote

which will be evaluated remotely by a corresponding child process. The function’s

parameter are two channel names: the first outDCs (of type ChanName b) is a channel

for sending its output while the second chanDC (of type ChanName (ChanName a)) is

an administrative channel to return the names of input channels to the parent pro-

cess. The exact number of channels which are established between parent and child

process does not matter in this context, because the operations on dynamic chan-

nels are overloaded. The definition of process shows that the remotely evaluated



Parallel Functional Programming in Eden 29

Eden Programs

Skeleton Library

Eden Module

Primitive Operations

Runtime System

Fig. 20. Layer structure of the Eden system

function, f remote, creates its input channels via the function createDC which is a

wrapper function for the corresponding primitive operation. Moreover, a function

writeDCs which is defined using the primitive operations setChan#, sendHead#, and

sendVal#, is used twice: the dynamically created input channels of the child, inDCs,

are sent to the parent process via the channel chanDC and the results of the pro-

cess determined by evaluating the expression (f invals) are sent via the channels

outDCs.

Note that, although the language definition introduces merge as a process ab-

straction, the current implementation provides it as a function merge :: Trans a

=> [[a]] -> [a] implemented by a primitive operation. Thus, a merge is tightly

coupled with the receiver process, enabling direct channel connections from the

producer processes to the receiver and avoiding any additional process creation

overhead.

The main advantage of using primitive operations and the Eden module is that

Eden programs can be passed through the GHC front-end without any changes.

In particular, the original type inference algorithm checks the types of Eden pro-

grams. The changes of the GHC concern the back end of the compiler and mainly

the runtime system (RTS). The necessary modifications have been designed as

orthogonal additions to the existing implementation. The implementation re-uses

simplified kernel parts of the parallel functional RTS GUM, the implementation of

GpH (Trinder et al., 1996).

The layered implementation of Eden, shown in Figure 20, achieves more flexibility

and improves the maintainability of this highly complex system (Berthold et al.,

2003). By lifting aspects of the RTS into the Eden module, basic work-flows can be

defined on a high level of abstraction. The layer structure makes the development of

extensions much easier once the RTS support is implemented. It takes complexity

out of the low-level RTS and simplifies its maintenance.
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4.2 DREAM - The DistRibuted Eden Abstract Machine

Eden’s RTS is an implementation of the DREAM abstract machine (Breitinger

et al., 1997a), a parallel version of the sequential STG-machine. Each Eden process

is executed by its own instance of an extended STG-machine. It consists of one or

more concurrent threads of control. These threads, which evaluate different output

expressions, are independent of each other, but use a common heap with shared

information. Input is also shared among all threads in a process. As explained

before, the channels are represented by their ends which are called inport on the

receiver side and outport on the sender side. The inport points at heap locations

where the incoming data should be stored. Until the data arrives, a Queue-Me

closure (QM) blocks any demanding thread. Every thread is associated with its

own outport via which it will send the result of its computation. Each inport knows

from which sending thread (referred to by its outport) it will receive the values (see

Figure 21). The necessary information is kept in an inport table mapping inport ids

to the heap addresses of Queue-Me closures, and an outport table mapping outport

ids to the destination inport.

In contrast to the operational semantics shown in Subsection 2.4, the formali-

sation of the DREAM concept makes these port connections explicit in the state

of a process. The generated process system is a collection of inter-related DREAM

instances. The state of a process includes information common to all threads and

the states of the threads. The shared part includes the heap and the inport table.

The state of a thread comprises the state of an STG-machine and the associated

outport referencing the connected inport.

We do not go further into the details of the DREAM model, the interested reader

is referred to the original paper (Breitinger et al., 1997a).
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4.3 The Parallel Runtime System

In order to map arbitrary process systems on a finite machine, multiple processes

have to be evaluated in an interleaved manner on the same processor element (PE).

For the purpose of keeping process creation as cheap as possible, the RTS provides

only one instance of DREAM per PE, which can execute several Eden processes

concurrently. Processes executed on the same PE share the scheduler and the run-

time tables. Thus, there is only one instance of the inport and outport tables per

PE (see Figure 22). The inport table maps locally unique identifiers of inports

to the heap addresses of the corresponding Queue-Me closures and to the global

references to the connected outports. The outport references are used for the propa-

gation of termination information. The outport table maps locally unique identifiers

of outports to the corresponding address of the thread state object (TSO) which

represents a thread in the heap. The outport table is used for system management,

i.e. garbage collection, termination, error detection, etc. A process table provides

for each process the number of threads, which is equal to the number of outports,

and the number of inports.

The 1:1 channels allow to notify and in consequence to terminate the sending

thread when an inport is closed. Thus, local garbage collection (GC) may have

global effects. When the last thread of a process terminates, the whole process is

terminated and its remaining inports are closed. Otherwise the inports would be

kept alive until the next GC.

Eden uses a fair round-robin scheduling of threads to guarantee that threads

waiting for input are not blocked too long. To reduce the communication costs,

several messages addressed to the same PE can be put together into a single packet.
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This leads to a dynamic adaptation of the message granularity in the runtime system

(Berthold, 2004).

For the moment, Eden’s RTS supports two modes to map processes to proces-

sors, which can be chosen by the user for each execution. Round-robin mode: If

several processes are instantiated from a PE p, they are mapped to consecutive

processors starting with p + 1. Random mode: Each processor maps instantiated

processes to randomly chosen processors. Notice that the round-robin mode allows

the programmer to control the mapping of processes to some extent, as it may

be achieved that different processes will be placed on different processors. This is

e.g. the case for the farm and replicated workers skeletons introduced in Section 3.

Eden’s primitive for process instantiation allows explicit process placement and

we are currently experimenting with this feature to extend skeletons with explicit

placement instructions.

To sum up, the overall setting is to have one instance of the executable on each

PE, one of which is called the mainPE as it starts the execution by evaluating

the expression main. For the inter-processor communication, either PVM (1993)

or MPI (1997) can be used. As only very basic message passing operations are

used, they could readily be substituted by any other message passing library. The

current compiler uses PVM. The interested reader is referred to (Breitinger et al.,

1998; Klusik et al., 1999) for details on the implementation of the parallel Eden

RTS.

5 Case Studies and Performance Results

This section is devoted to three case studies which make use of the skeletons pre-

viously introduced. The main objective here is to show how easy it is to express

parallel algorithms in Eden, once you are provided with a library of skeleton im-

plementations. A second objective is to show performance results in the form of

relative speedup curves for some concrete examples. As usual, this means that the

reference sequential program is just the parallel Eden program running on a single

processor. So, the graphics will show how efficiently the algorithm uses the available

processors as we increase the number of them.

The case studies have been chosen as representatives of the kind of parallel prob-

lems that can be solved in Eden. The first one, called pair interaction, is a typical

systolic example in which a ring of processes performs a regular and highly synchro-

nised computation. The second one is Karatsuba’s algorithm for multiplying very

large integers. It is a parallel divide and conquer problem with irregular parallelism,

both in the created topology and in the task granularity. This is due to the different

length of the initial numbers. The main difficulty here is to map the tree-shaped

process topology to a fixed number of processors. The third case study parallelises

Buchberger’s algorithm from the field of computer algebra. Its granularity is irreg-

ular. Additionally, the number of parallel tasks is not known in advance, as they

are dynamically created.
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5.1 Pair Interactions

Let us assume that we want to determine the force undergone by each particle in a

set of n atoms. The total force vector fi acting on each atom xi, is

fi =

n∑

j=1,j 6=i

F (xi, xj)

where F (xi, xj) denotes the attraction or repulsion between atoms xi and xj . This

constitutes an example of pairwise interactions. For a parallel algorithm, we may

consider n independent tasks, each devoted to compute the total force acting on a

single atom. Thus, task i handles atom xi and computes {F (xi, xj) | j ∈ {1..n}, j 6=

i}.

A separate process for each task would generate a big overhead, when dealing

with a large set of particles. Therefore, we partition the set of atoms into as many

subsets as the number of available processors. Each processor must compute the

interaction between each of its local particles and all the rest. This is a quadratic

computation. In order to minimise the amount of communications, we arrange the

processors into a ring and make the atoms information flowing around the ring. In

this way, after n−1 rounds, all the processors will complete the computation of the

interactions. At the first iteration, each processor will compute the forces between

the local particles assigned to it. Then, at each subsequent iteration, it will receive a

new set of particles, and compute the forces between its own particles and the new

ones, adding the forces to the ones already computed in the previous iterations:

force :: [Atom] -> [ForceVec]

force xs = ring noPe splitIntoN concat (force’ noPe) xs

force’ :: Int -> ([Atom],[[Atom]]) -> ([ForceVec],[[Atom]])

force’ np (local,ins) = (total,outs)

where outs = take (np - 1) (local : ins)

total = foldl1’ f forcess

f acums news = zipWith addForces acums news

forcess = [map (faux ats) local | ats <- (local:ins)]

faux xs y = sumForces (map (forcebetween y) xs)

sumForces l = foldl’ addForces nullvector l

Function splitIntoN distributes the n particles to the noPe processors; function

forcebetween computes the forces betweeen two single particles; the list forcess

has type [[ForceVec]], and each of its blocks represents the forces undergone by

the local particles caused by the particles of a foreign block; function addForces ::

ForceVec -> ForceVec -> ForceVec simply adds two forces.

Figure 23 shows the speedups obtained using 7000 particles. We have obtained

a relative speedup of 25 with 30 processors. This corresponds to an efficiency of

83,3% with 30 PE. The execution time in one processor was 194.86 seconds. Notice

that the total communications of each process are in O(n), while its computations

are in O(n2/noPe).
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Fig. 23. Speedups of pair interactions

5.2 Karatsuba’s Algorithm

Karatsuba’s algorithm (see e.g. (Horowitz & Sahni, 1978)) computes the product

of two large integers using a divide-and-conquer approach. Let us assume that a

long integer is represented in base b as a list of “digits” di, where for all i we have

0 ≤ di < b. If two large integers x and y are to be multiplied, the algorithm works

as follows:

• Let n be half of the length of the longest of the two integers.

• Let x1 = x/bn, x2 = x mod bn, y1 = y/bn and y2 = y mod bn.

• Let u = x1y1, v = x2y2, w = (x1 + x2)(y1 + y2).

• The result of the multiplication is ub2n + (w − u − v)bn + v.

Notice that it is not necessary to perform any division to obtain x1, x2, y1 and y2.

It is enough to cut the lists representing x and y into two halves. The multiplication

with bn and b2n only needs appending zeros to the corresponding list. Therefore,

only three multiplications are needed, i.e. three subproblems of length n/2 are

generated when splitting a problem. Combining the subresults has a cost in O(n).

This leads to an overall complexity in O(nlog23).

This algorithm perfectly fits into a divide-and-conquer scheme. Notice that the

granularity of the subtasks may not be uniform as the three multiplications are

possibly applied to integers of different lengths. Also, trivial nodes may appear at

any depth in the tree. The implementation of the Karatsuba algorithm in terms of

the divide-and-conquer skeleton dc rw is as follows:

type LongInteger = [Int]

karat :: Int -> LongInteger -> LongInteger -> LongInteger

karat i1 i2 = dc_rw trivial solve split combine depth (i1,i2)

where depth = ceiling (logBase 3 (10*noPe))

trivial (i1,i2) = null i1 || null i2

solve _ = []

split :: ([Int],[Int]) -> [([Int],[Int])]

combine :: ([Int],[Int]) -> [[Int]] -> [Int]
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Fig. 24. Speedups of the Karatsuba algorithm

where the code of split and combine follows the patterns described above.

Both the dc rw and the dc par version of the divide-and-conquer skeleton have

been tested for the same input data. The execution time in one processor was 440

seconds. The speedups obtained for both skeletons can be seen in Figure 24. As

expected, the näıve implementation of the skeleton is worse and also more irregular

than the other, the main reason being that the load balance is poorer and more

random. Moreover, the overhead for creating processes is greater. For the dc rw

skeleton, we have obtained a relative speedup of 20 with 38 PE. This corresponds

to an efficiency of 52,6% with 38 PE. The explanation of this sub-optimal speedup

can be found in Amdahl’s law (Amdahl, 1967), as there is an inherent and not

negligible sequential part in this algorithm: the initial computation of the subtasks

and the final combination of the results.

5.3 Gröbner Bases

Gröbner bases computation is a computer algebra algorithm with plenty of appli-

cations in commutative algebra, geometry and systems theory. The problem can be

explained in the following terms: Given a finite set of polynomials F = {f1, . . . , fr}

in n indeterminates x1, . . . , xn, a Gröbner basis is another finite set of polynomials

G = {g1, . . . , gt} determining the same ideal and satisfying an additional canonical

property. The ideal I determined by a set S of polynomials, denoted I = 〈S〉 is the

smallest set containing S and closed under polynomial addition and product:

〈S〉
def
= {

∑

fi∈S

uifi | ui ∈ P [x1, . . . , xn]}

with P [x1, . . . , xn] being the set of all polynomials in n indeterminates.

Given a finite set F of polynomials, there exists an algorithm by B. Buchberger

(Adams & Loustaunau, 1994) which computes a Gröbner basis G for the ideal I de-

termined by F . It makes intensive use of two elementary steps: computation of the

S-polynomial of two polynomials f and g, denoted S(f, g), and reduction of a poly-

nomial f to normal form with respect to a set G of polynomials, denoted f
G

−→∗ h.
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function Buchberger (F = {f1, . . . , fr}) return G
G := F ; P := {(fi, fj) | fi, fj ∈ F, i 6= j};
while P 6= ∅ do

(f, g)← chooseAPair (P ); P := P − {(f, g)}

S(f, g)
G
−→∗ h such that h is reduced w.r.t. G

if h 6= 0 then
P := P ∪ {(u, h) | u ∈ G};
G := G ∪ {h}

end if
end while
return G

end function

Fig. 25. Buchberger’s sequential algorithm computing a Gröbner basis

These operations involve linear combinations of polynomials. The sequential Buch-

berger algorithm is shown in Figure 25.

It has been proven that the algorithm always terminates and that its cost is in

O(msp), where m and s are the worst case values for the length of the reduction

chains of S-polynomials and the cardinality of G, respectively. Value p is the number

of pairs in the final G. It is a priori unknown and depends on the form of the initial

polynomials in F . In the worst case, p can be exponential in the cardinality of F .

The parallel algorithm surveyed here has been run in a hybrid Eden-Maple system

by using an interface developed as part of the Eden project. The idea for the

parallel version of Buchberger’s algorithm is to compute the reduction to normal

form S(f, g)
G

−→∗ h in parallel for different pairs (f, g). The order in which such

pairs are chosen is not important for the correctness and the termination of the

algorithm. The granularity of such decomposition is large enough to justify the

communication of the polynomials f and g. This problem perfectly fits the stateful

replicated worker skeleton strw described in Section 3.4. So, the strategy chosen

has been to have a manager process communicating pairs (f, g) to a fixed set of

worker processes, and getting back the results h of such reductions. If the result is 0,

the manager will just move to the next pair. Otherwise, the manager will compute

additional pairs and add them to the list of pending pairs.

Each Eden worker process has an auxiliary Maple process to which it delegates

the computation of S(f, g)
G

−→∗ h. Maple systems usually provide a sub-library to

compute Gröbner bases sequentially. But they also provide the elementary steps of

the algorithm as individual functions. In particular, there exists a function called

spoly computing the S-polynomial of two given polynomials, and a function called

normalf computing the normal form of a polynomial with respect to a set of poly-

nomials. By looking at the sequential algorithm of Figure 25, it is easy to define

the four problem-dependent functions. They are shown in Figure 26.

We have run the skeleton, the problem-dependent functions and the Eden-Maple

interface in a small Beowulf cluster with five processors. The absolute and relative
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split F np
def
= ([

np
︷ ︸︸ ︷

F, . . . , F ], [(fi, fj) | fi, fj ∈ F, i 6= j], F )

wf G (f, g) [h1, . . . , hr]
def
= (res, G′) where

G′ = G ∪ {h1, . . . , hr}

res =

{

[ ] , if S(f, g)
G′

−→∗ 0

[h] , if S(f, g)
G′

−→∗ h 6= 0

combine G res np
def
= ([

np
︷ ︸︸ ︷
res, . . . , res], tsks, G′) where

(tsks, G′) =

{
([ ], G) , if res = [ ]
([(u, h) | u ∈ G], G ∪ {h}) , if res = [h]

result G
def
= G

Fig. 26. Problem-dependent functions of strw for Gröbner problem
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Fig. 27. Speedups of the parallel algorithm computing a Gröbner basis

speedups are shown in Figure 27. The reference sequential version for the absolute

speedup is Buchberger’s algorithm written completely in Maple. Its sequential time

was 212 sec. Notice that the Eden version running in one processor is about 32%

slower (280 sec.) than the pure Maple version. We find this overhead acceptable as

the combination of the two languages, one of them functional, the interface itself,

which communicates Eden and Maple via a Unix pipe, and the Eden RTS, which

creates threads and processes, constitute enough reasons for it. The relative speedup

is however rather good: 4,91 with 5 PE, or 98,2% efficiency with 5 PE. This means

that the skeleton strw provides a very good load balance and that there are no

sequential bottlenecks in the algorithm.

The three case studies have shown that programs can easily be parallelized using

pre-defined skeletons and that good speedups can be achieved offhand.



38 R. Loogen, Y. Ortega-Mallén, R. Peña-Maŕı

6 Related Work

This section is divided into three parts. First, we describe Eden-specific related

work, i.e. we shortly sketch further achievements of the Eden project which are out

of the scope of this paper. Then, we give an overview of other parallel or concur-

rent functional languages. Finally, we discuss Eden in the context of these other

approaches, thereby pointing at similarities and explaining essential differences.

6.1 Further Achievements

In this paper, we have given a survey on Eden’s design, the semantics, the program-

ming methodology, the implementation, and some runtime experiments. Further

work has been done on program analysis, profiling, automatic skeleton selection

by meta-programming techniques, and an interface between Eden and the Maple

system which has been used in the case study on Gröbner bases. In this subsection,

we want to point the interested reader at the corresponding publications.

Analyzing Eden programs. The GHC follows the principle “compilation by pro-

gram transformation” (Peyton Jones, 1996). Some optimizing transformations may

however affect the semantics of Eden programs, in particular in the presence of

non-determinism. Fortunately, the critical GHC transformations tend to reduce the

degree of non-determinism in Eden programs, i.e. the number of different behaviours

(Pareja et al., 2001). Non-determinism analyses have been investigated by Peña and

Segura (2004). Another Eden-specific analysis tries to find out whether incoming

data will immediately be transferred to other processes without any local evalu-

ation depending on them. Bypassing such roundabout ways leads to substantial

improvements of the overall communication topology (Klusik et al., 2000).

Automatic skeletons. Haskell has recently been extended with compile-time meta-

programming facilities, called Template Haskell (Sheard & Peyton-Jones, 2002). A

system for automatically deriving Eden implementation skeletons from high-level

skeleton specifications has been described in (Hammond et al., 2003). The approach

uses Template Haskell to automatically transform high-level skeletons into good

parallel implementations on the basis of static cost information.

Profiling. It is not easy to write efficient parallel programs, or to reason about their

runtime behaviour. Some kind of feedback is needed in order to check whether pro-

grams are well-parallelized or to understand the reasons of possible inefficiencies.

PARADISE (PARAllel DIstribution Simulator for Eden) is a simulator tool for pro-

filing Eden programs (Hernández et al., 2000). It substantially modifies GranSim

(Hammond et al., 1995), a corresponding simulator for Glasgow parallel Haskell

(GpH). Unfortunately, the paradise simulator is no longer available in the current

Eden system. Instead, the Eden runtime system has been instrumented by trace

outputs which are protocolled per processor and combined into a single trace file

after program termination. This trace file can then be analysed with a separate
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trace-viewer tool (Roldán Gómez, 2004) which displays interactive diagrams of ma-

chine, process and thread activities, as well as their communication.

Eden-Maple interface. The Eden-Maple interface briefly mentioned in Section 5.3

allows the parallelization of computer algebra algorithms, which are known to be

computation-intensive. The idea is to use Eden as a coordination layer running

on top of multiple Maple systems, all of them running in parallel in the available

processors. The computation intensive functions are kept in the Maple processes

and these are called from the Eden layer. The interface and its use are described in

detail in (Mart́ınez & Peña, 2004)5.

6.2 The Spectrum of Parallel Functional Languages.

As functional languages offer good opportunities for parallelism due to the freedom

in the evaluation order of their subexpressions, there have been many different

approaches to parallel functional programming. Comprehensive overviews have been

given in (Hammond & Michaelson, 1999) and by Trinder, Loidl, and Pointon (2002).

The exploitation of implicit parallelism is challenging, but time has shown that

implicit parallelism is simply too much to be exploited effectively. There is a high

risk to produce a large number of fine-grained parallel activities in such a way

that the benefits of parallelism are lost in creating and communicating processes.

For this reason, many of the more recent approaches rely on the programmer to

decide which expressions deserve the effort of creating a parallel process for their

evaluation. The degree of explicitness chosen in the various proposals is however

different. We distinguish between the following two language groups:

Transformational languages: In a parallel transformational system, inputs are

transformed to outputs functionally depending on them. The main purpose of

parallelism is to speed up the computation. The programmer adds special expres-

sions to a purely functional program, either written as annotations interspersed

in the text or provided as specialised wiring functions, which abstractly specify

where and when processes should be created. The denotational semantics of a

program with these specialised expressions is (almost) the same as the semantics

without them. An important semantic difference might be the order of evaluating

subexpressions. We refine this group further into three subgroups:

Annotated languages: These are languages like Concurrent Clean (Nöcker

et al., 1991), Glasgow parallel Haskell (GpH) (Trinder et al., 1998), or Cal-

iban (Kelly, 1989).

Skeleton languages: Here we include most of the work done on skeletons. Typ-

ical examples are: (Bratvold, 1993; Darlington et al., 1993; Bacci et al., 1999;

Herrmann, 2000; Hamdan, 2000; Michaelson et al., 2001).

Data-parallel languages: Examples are NESL (Blelloch, 1996), pH (Nikhil

et al., 1995), Sisal (Gaudiot et al., 2001), and SaC (Scholz, 1996).

5 The sources of the interface are available at http://dalila.sip.ucm.es/~ricardo.
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Reactive languages Reactive systems are different from transformational ones:

usually they do not have clear notions of inputs and outputs or even of termi-

nation. The purpose of parallelism, often called concurrency in this context, is

to maintain a set of separate tasks interacting with an external environment. Of

course, reactive constructs can also be used to express parallel transformational

systems but the set of possible systems is wider than in the previous group. Non-

determinism inevitably appears in these systems and the referential transparency

of functional languages may be lost.

Typically, languages in this group offer constructs not only for the creation of

processes but also for communicating and synchronising them. Most parallelism

issues are treated explicitly on a low level of abstraction. Languages in this group

are e.g. FACILE (Giacalone et al., 1990),Concurrent ML (Reppy, 1991), Erlang

(Wikström, 1994), Concurrent Haskell (Peyton Jones et al., 1996) and its dis-

tributed variant Glasgow distributed Haskell (GdH) (Pointon et al., 2001).

Classifying Eden into these groups poses some difficulties discussed in the following.

6.3 Discussion

Considering only process abstractions and instantiations, Eden could be classified

into the group of transformational languages, in particular into the sub-group of

annotated languages, because its basic coordination constructs can be viewed as

special annotations. Whereas GpH and Concurrent Clean use parallelism anno-

tations indicating only potential parallelism, which need not be exploited by the

runtime system, Eden’s process instantiation will definitely lead to the creation of

a new process. This gives the programmer direct control over parallel evaluation

and an indirect control over data distribution. Caliban introduces separate wiring

constructs which are combined with application code to construct static process

networks. As in Eden, processes and their topology are explicitly handled in Cal-

iban, but the focus is on extracting the static process topology during compile time

and on computing an optimal mapping on the parallel destination architecture. In

contrast to Caliban, Eden —and also GpH and Concurrent Clean— supports the

dynamic creation of parallel threads or processes, which gives the flexibility needed

for handling irregular or dynamically evolving parallel systems.

Skeletons can be defined in Eden as abstractions over lower-level definitions of

process systems, but Eden is not a skeleton language in the usual sense, because

there are no pre-defined skeletons with a specialised implementation. Most skeleton

languages work with pre-defined, specially supported sets of skeletons, and much

care has been taken to identify minimal sets of skeletons (Cole, 2003). New classes

of applications may, however, require new skeletons to obtain the best performance.

Therefore, in our opinion, the best minimum set of skeletons is the one which is

required to introduce and control parallelism in the host language. Higher-level

patterns can then be constructed from this basic mechanism as we have shown in

Section 3.

Data-parallelism can be expressed in Eden, as the Eden skeleton map and other
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show. Also, data distribution can be specified by the programmer by controlling

the free variables of process abstractions and the data communicated to processes

through channels. But Eden is neither a data-parallel language, because it has no

special support for data-parallel distribution primitives.

Because of merge, Eden can also be classified into the reactive languages group.

Note, however, that a lot of typical low-level features of coordination languages

such as forking processes, or sending and receiving messages, are missing in Eden.

In this respect, we agree with a recent note by Gorlatch (2004) which argues that

low-level coordination constructs like send and receive should be considered harm-

ful and should be hidden inside higher-level schemes like collective communication

operations or skeletons. Note that the merge process enables Eden to express re-

active systems like the replicated-workers skeleton which implements a dynamic

load balancing scheme. It is not possible to express this scheme in pure functional

languages. Summarising, Eden —a language with processes as first class values—

perfectly fits in both subgroups of our classification.

Many publications on Eden, like e.g. (Klusik et al., 2001b), (Peña & Rubio,

2001), (Loogen et al., 2002) show good runtime performance and speedups, most

of them obtained on a high-latency Beowulf cluster. Comparative measurements

of Eden and its sibling language GpH in (Loidl et al., 2001) showed that the ex-

plicit process model favoured by Eden gave better parallel performance for coarse-

grained applications running on a Beowulf cluster. The subsequent journal article

(Loidl et al., 2003) additionally considers the parallel functional ML-based language

PMLS (Michaelson et al., 2001) and compares the three languages with respect to

their coordination constructs, runtime performance and programmer productivity.

All three languages aim to provide higher-level models of parallelism, with the ob-

jective of reducing programmer overhead. In contrast to GpH and Eden, PMLS is

a strict skeleton language which provides a set of pre-defined skeletons with asso-

ciated parallel behaviours. As said before, skeleton languages are less flexible than

general-purpose parallel languages like GpH and Eden, but will cause the lowest

programmer overhead when applying a known scheme covered by the pre-defined

skeletons. As anticipated, PMLS showed the lowest runtimes for the three bench-

marks considered in the paper. Eden also showed good speedup results, but worse

absolute sequential and parallel runtimes than GpH. The latter was due to different

versions of the Glasgow Haskell compiler whose runtime system was substantially

revised from version 3 (underlying the Eden compiler) to version 4 (underlying the

GpH system). The article also contains comparative results with C+PVM bench-

marks for parallel matrix multiplication. While the runtime of the sequential C

program is a factor 4–6 less than the runtimes of the functional programs, the code

size increases by the same factor. The speedup values progress in a similar way

to the functional programs, but the ratio of lines-of-code of the parallel program

versus the sequential program, which somehow indicates the development costs of

the parallel programs is about 1:4 for the C+PVM programs and varies between

1:1.1 and 1:1.5 for the parallel functional programs. Thus, there is a clear trade-off

between performance and productivity.
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7 Conclusions

Eden has been designed in such a way that programmers get a reasonable degree

of control over parallelism, but without low-level coordination constructs, which

would make programs longer and more difficult to understand. Eden can be seen as

a compromise between several extreme alternatives in the design space of parallel

functional languages, e.g. implicitness vs. explicitness, laziness vs. eagerness, or

determinism vs. nondeterminism.

Eden programs are not intended to be written always from scratch. In a way

similar to the rich set of higher-order functions provided by Haskell’s prelude, a rich

set of skeletons is provided by Eden’s library. They cover many common patterns

of parallel algorithms such as parallel map, parallel divide-and-conquer, map-and-

reduce, parallel search, iterate-until and others, as well as typical process topologies

like grids, tori, rings, pipelines, and the like. For the vast majority of problems,

the task of the Eden programmer is to choose or to adapt one of the predefined

skeletons and to instantiate it with appropriate problem-dependent parameters.

Only a few problems may require the explicit definition of process abstractions and

instantiations in the program text. Even in this case, the recommended methodology

is to try to separate the problem-dependent aspects from the coordination aspects.

The latter can then be embedded in a polymorphic problem-independent skeleton

which can be added to Eden’s library to be used in future programs. This separation

of concerns is also useful for reasoning, documentation, and testing purposes.

A big advantage of Eden is the replicated workers skeleton, which provides dy-

namic load balancing and often yields substantial performance gains in comparison

with purely static schemes like tasks farms. Eden gets this additional expressive

power in comparison to other transformational functional languages like GpH or

Concurrent Clean from its non-deterministic merge process.

No special parallel hardware is required to run Eden programs. A couple of per-

sonal computers, connected by a mini-hub or by ethernet, and running Linux+PVM

is sufficient. In the near future it will be more and more common to have desktop

computers with two or four processors. Eden provides an easy way of exploiting

the power of these machines. Computation-intensive Haskell programs will easily

be converted into parallel Eden programs.

When compared to their counterpart programs directly written in C+PVM, there

will be some runtime overhead due to the more sophisticated runtime system. This

is the typical trade-off between low-level control and high-level expressiveness. The

main advantage of the latter lies in the higher productivity of programmers, as

programs can be easier developed, verified and maintained. Consequently, we can

state that parallel functional programs which show good speedups can be obtained

with low effort.
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Roldán Gómez, Pablo. (2004). The Eden Trace Viewer Tool. Diploma Thesis, Philipps-
University Marburg and Universidad Complutense de Madrid.

Scholz, S-B. (1996). Single Assignment C – Entwurf und Implementierung einer funk-
tionalen C-Variante mit spezieller Unterstützung shape-invarianter Array-Operationen
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