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Preference Learning: Models, Methods, Applications

The preferences of an individual, say, the participant of an electronic auction or the

customer of an electronic store, can be expressed in various ways, either explicitly,

e.g., in the form of preference statements or implicitly, e.g., through the way of acting

in different situations. The problem of finding out about an individual’s preferences,

or about those of a group of individuals, is referred to as preference elicitation. This

requires, among other things, models for the formal representation and methods for

the (automatic) acquisition of preferences. Touching on various aspects of Artificial

Intelligence, both theoretical and practical, preference elicitation is one of this field’s

most recent and interesting research topics.

Like other types of complex learning tasks that have recently entered the stage in

the field of machine learning, preference learning deviates strongly from the standard

machine learning problems of classification and regression. It is particularly challenging

because it involves the prediction of complex structures, such as weak or partial order

relations, rather than single values. Moreover, training input will not, as it is usually

the case, be offered in the form of complete examples but may comprise more general

types of information, such as relative preferences or different kinds of indirect feedback.

For example, learning problems might be posed by providing – or, in the style of an

active learner, by asking for – preference relations between the training examples rather

than a target value (as in supervised learning) or a utility degree (as in reinforcement

learning).

Apart from posing challenging theoretical problems, preference learning is highly rele-

vant from a practical point of view. As an example, consider the important application

of autonomous (web) agents performing various tasks on the net, such as acting on

behalf of a user in electronic commerce or recommending decisions to users in collabo-

rative filtering. Following the major paradigm of modern Artificial Intelligence, namely

that of a rationally acting agent, ideas and concepts from decision theory often serve as

a theoretical basis for implementing such agents. The behavior of a decision-theoretic

agent has to be driven by an underlying preference model, and an agent recommending

decisions or acting on behalf of a user should clearly reflect that user’s preferences.

Therefore, the formal modeling as well as the automatic learning, discovery and adap-

tation of preferences can be considered an essential aspect of autonomous agent design.
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Abstract

We consider supervised learning of a ranking function, which is a map-
ping from instances to total orders over a set of labels (options). The training
information consists of examples with partial (and possibly inconsistent) in-
formation about their associated rankings. From these, we induce a ranking
function by reducing the original problem to a number of binary classification
problems, one for each pair of labels. The main objective of this work is to
investigate the trade-off between the quality of the induced ranking function
and the computational complexity of the algorithm, both depending on the
amount of preference information given for each example. To this end, we
present theoretical results on the complexity of pairwise preference learning.
We also carry out some controlled experiments investigating the predictive
performance of our method for different types of preference information,
such as top-ranked labels and complete rankings. The domain of this study
is the prediction of a rational agent’s ranking of actions in an uncertain envi-
ronment.

1 Introduction

The increasing trend to treat consumers, computer users and patients as individ-
uals has produced, among other things, user-adapted software and operating sys-
tems (Horvitz et al., 1998), e-commerce personalization of products and services
(Riecken, 2000), and systems for patient-centered medical care (Couch, 1998). A
key prerequisite in all of these applications is the ability of discovering and captur-
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ing an individual’s preferences, a problem often referred to as preference elicita-
tion.

We consider the acquisition of preferences in the context of supervised learn-
ing. Roughly speaking, this means to generalize given examples to a “preference
structure-valued” function, that is, a function which assigns preference structures
to instances (computer users, customers, patients, ...). This problem, which can ob-
viously be seen as an extension of learning a classification function, will be referred
to as preference learning. It should be distinguished from preference elicitation in
a more narrow sense, where the goal is to learn about the preferences of a single
individual, and where specific questions can be asked to that individual.1

The problem of learning with or from preferences has recently received a lot
of attention within the machine learning literature. The problem is particularly
challenging because it involves the prediction of complex structures, such as weak
or partial order relations, rather than single values. Moreover, training input will
not, as it is usually the case, be offered in the form of complete examples but
may comprise more general types of information, such as relative preferences or
different kinds of indirect feedback.

More specifically, the learning scenario that we will consider in this paper con-
sists of a collection of training examples which are associated with a finite set of
decision alternatives. Following the common notation of supervised learning, we
shall refer to the latter as labels. However, contrary to standard classification, a
training example is not assigned a single label, but a set of pairwise preferences
between labels, expressing that one label is preferred over another.

The goal is to use these pairwise preferences for predicting a total order, a
ranking, of all possible labels for a new training example. More generally, we
seek to induce a ranking function that maps instances (examples) to rankings over
a fixed set of decision alternatives (labels), in analogy to a classification function
that maps instances to single labels. To this end, we investigate the use of round
robin learning or pairwise classification. As will be seen, round robin appears
particularly appealing in this context since it can be extended from classification to
preference learning in a quite natural manner.

The paper is organized as follows: In the next section, we introduce the learn-
ing problem in a formal way. The extension of pairwise classification to pairwise
preference learning and its application to ranking are discussed in section 3. Sec-
tion 4 provides some results on the computational complexity of pairwise prefer-
ence learning. Results of several experimental studies investigating the predictive
performance of our approach under various training conditions are presented in

1Here, the major problem is to ask such questions in a clever way, so as to find a good approxi-
mation of the individual’s preference structure with an as small as possible number of questions.
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section 5. We conclude the paper with an overview of related work in section 6 and
some complementary final remarks in section 7.

2 Learning Problem

We consider the following learning problem:

Given:

• a set of labels L = {λi | i = 1 . . . c}
• a set of examples E = {ek | k = 1 . . . n}
• for each training example ek:

– a set of preferences Pk ⊆ L × L, where (λi, λj) ∈ Pk indicates
that label λi is preferred over label λj for example ek.

Find: a function that orders the labels λi, i = 1 . . . c for any given example.

We will abbreviate (λi, λj) ∈ Pk with λi �k λj , or even λi � λj if the
particular example ek doesn’t matter or is clear from the context.

This setting has been previously introduced as constraint classification by Har-
Peled et al. (2002). As has been pointed out in their work, the above framework is
a generalization of several common learning settings, in particular (see ibidem for
a formal derivation of these and other results)

• ranking: Each training example is associated with a total order of the labels,
i.e., for each pair of labels (λi, λj) either λi � λj or λj � λi holds.

• classification: A single class label λi is assigned to each example. This
implicitly defines the set of preferences {λi � λj | 1 ≤ j �= i ≤ c}.

• multi-label classification: Each training example ek is associated with a sub-
set Sk ⊆ L of possible labels. This implicitly defines the set of preferences
{λi � λj |λi ∈ S, λj ∈ L \ S}.

As pointed out before, we will be interested in predicting a ranking (total order)
of the labels. Thus, we assume that for each instance, there exists a total order of
the labels, i.e., they form a transitive and asymmetric relation. For many practical
applications, this assumption appears to be acceptable at least for the true pref-
erences. Still, more often than not the observed or revealed preferences will be
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incomplete or inconsistent. Therefore, we do not require the data to be consistent
in the sense that transitivity and asymmetry applies to the Pk. In fact, this property
is not compulsory for our learning algorithm. Yet, we do make the reasonable as-
sumption that Pk is irreflexive (λi �� λi) and anti-symmetric (λi � λj ⇒ λj �� λi).
(Note that 0 ≤ |Pk| ≤ c(c − 1)/2 as a consequence of the last two properties.)

3 Pairwise Preference Ranking

A key idea of our approach is to learn a separate theory for each of the c(c − 1)/2
pairwise preferences between two labels. More formally, for each possible pair
of labels (λi, λj), 1 ≤ i < j ≤ c, we learn a model mij that decides for any
given example whether λi � λj or λj � λi holds. The model is trained with all
examples ek for which either λi �k λj or λj �k λi is known. All examples for
which nothing is known about the preference between λi and λj are ignored.

At classification time, an example is submitted to all c(c − 1)/2 theories, and
each prediction is interpreted as a vote for a label. If classifier mij predicts λi � λj ,
we count this as a vote for λi. Conversely, the prediction λj � λi would be
considered as a vote for λj . The labels are ranked according to the number of votes
they receive from all models mij . Ties are first broken according to the frequency
of the labels in the top rank (the class distribution in the classification setting) and
then randomly.

We refer to the above technique as pairwise preference ranking or round robin
ranking. It is a straight-forward generalization of pairwise or one-against-one clas-
sification, aka round robin learning, which solves multi-class problems by learning
a separate theory for each pair of classes. In previous work, Fürnkranz (2002)
showed that, for rule learning algorithms, this technique is preferable to the more
commonly used one-against-all classification method, which learns one theory for
each class, using the examples of this class as positive examples and all others as
negative examples. Round robin has also been successfully used in other fields,
in particular in the area of support vector machines (Hsu and Lin, 2002, and ref-
erences therein). We refer to Section 8 of (Fürnkranz, 2002) for a brief survey of
related work on pairwise classification.

More importantly, however, Fürnkranz (2002) showed that, despite its com-
plexity being quadratic in the number of classes, the algorithm is no slower than
the conventional one-against-all technique. We will generalize these results in the
next section.
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4 Complexity

Consider a learning problem with n training examples and c labels.

Theorem 4.1 The total number of training examples over all c(c − 1)/2 binary
preference learning problems is

n∑
k=1

|Pk| ≤ n max
k

|Pk| ≤ n

(
c

2

)
= n

c(c − 1)
2

Proof: Each of the n training examples will be added to all |Pk| binary training
sets that correspond to one of its preferences. Thus, the total number of training
examples is

∑n
k=1 |Pk|. As the number of preferences for each example is bounded

from above by maxk |Pk|, this number is no larger than maxk |Pk|n, which in turn
is bounded from above by the size of a complete set of preferences nc(c− 1)/2. 2

From this immediately follows a result of Fürnkranz (2002):

Corollary 4.2 For a classification problem, the total number of training examples
is only linear in the number of classes.

Proof: A class label expands to c − 1 preferences, therefore
∑n

k=1 |Pk| = (c −
1)n. 2

Note that we only considered the number of training examples, but not the
complexity of the learner that runs on these examples. For an algorithm with a
linear run-time complexity O(n) it follows immediately that the total run-time is
O(dn), where d is the maximum (or average) number of preferences given for
each training example. For a learner with a super-linear complexity O(na), a > 1,
the total run-time is much lower than O((dn)a) because the training effort is not
spent on one large training set, but on many small training sets. In particular, for a
complete preference set, the total complexity is O(c2na), whereas the complexity
for d = c − 1 (round robin classification) is only O(cna) (Fürnkranz, 2002).

For comparison, the only other technique for learning in this setting that we
know of (Har-Peled et al., 2002) constructs twice as many training examples (one
positive and one negative for each preference of each example), and these exam-
ples are projected into a space that has c times as many attributes as the original
space. Moreover, all examples are put into a single training set for which a sep-
arating hyper-plane has to be learned. Thus, under the (reasonable) assumption
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that an increase in the number of features has approximately the same effect as a
corresponding increase in the number of examples, the total complexity becomes
O((cdn)a) if the algorithm for finding the separating hyper-plane has complexity
O(na) for a two-class training set of size n.

In summary, the overall complexity of pairwise constraint classification de-
pends on the (maximum or average) number of preferences that are given for each
training example. While being quadratic in the number of labels if a complete
ranking is given, it is only linear for the classification setting. In any case, it is
more efficient than the technique proposed by Har-Peled et al. (2002). However, it
should be noted that the price to pay is the large number of classifiers that have to
be stored and tested at classification time.

5 Empirical Results

The previous sections have shown that an extended version of round robin learn-
ing can induce a ranking function from a set of preferences instead of a single
label. Yet, it turned out that computational complexity might become an issue. Es-
pecially, since a ranking induces a quadratic number of pairwise preferences, the
complexity for round robin ranking becomes quadratic in the number of labels. In
this context, one might ask whether it could be possible to improve efficiency at
the cost of a tolerable decrease in performance: Could the learning process perhaps
ignore some of the preferences without decreasing predictive accuracy too much?
Apart from that, incomplete training data is clearly a point of practical relevance,
since complete rankings will rarely be observable.

The experimental evaluation presented in this section is meant to investigate
issues related to incomplete training data in more detail, especially to increase
our understanding about the trade-off between the number of pairwise preferences
available in the training data and the quality of the learned ranking function. For
a systematic investigation of questions of such kind, we need data for which, in
principle, a complete ranking is known for each example. This information allows
a systematic variation of the amount of preference information in the training data,
and a precise evaluation of the predicted rankings on the test data. Since we were
not aware of any suitable real-world datasets, we decided to conduct our experi-
ments with synthetic data.

5.1 Synthetic Data

We consider the problem of learning the ranking function of an expected utility
maximizing agent. More specifically, we proceed from a standard setting of ex-
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pected utility theory: A = {a1, . . . , ac} is a set of actions the agent can choose
from and Ω = {ω1, . . . , ωm} is a set of world states. The agent faces a problem of
decision under risk where decision consequences are lotteries: Choosing act ai in
state ωj yields a utility of uij ∈ R, where the probability of state ωj is pj . Thus,
the expected utility of act ai is given by

E(ai) =
m∑

j=1

pj · uij . (1)

Expected utility theory justifies (1) as a criterion for ranking actions and, hence,
gives rise to the following preference relation:

ai � aj ⇔ E(ai) > E(aj). (2)

Now, suppose the probability vector p = (p1, . . . , pm) to be a parameter of the
decision problem (while A, Ω and the utility matrix matrix U = (uij) are fixed).
We denote by �p the ranking of actions induced by the vector p according to (2).

The above decision-theoretic setting can be used for generating synthetic data
for preference learning. The set of instances corresponds to the set of probability
vectors p, which are generated at random according to a uniform distribution over
{p ∈ R

m | p ≥ 0, p1 + . . . + pm = 1}. The ranking function associated with an
example ek is given by the ranking �ek

as defined in (2). Thus, an experiment
is characterized by the following parameters: The number of actions/labels (c),
the number of world states (m), the number of examples (n), and the utility ma-
trix which is generated at random through independent and uniformly distributed
entries uij ∈ [0, 1].

5.2 Experimental Setup

In the following, we will report on results of experiments with ten different states
(m = 10) and various numbers of labels (c = 5, 10, 20). For each of the three
configurations we generated ten different data sets, each one originating from a
different randomly chosen utility matrix U . The data sets consisted of 1000 training
and 1000 test examples. For each example, the data sets provided the probability
vector p ∈ R

m and a complete ranking of the c possible actions.2 The training
examples were labeled with a subset of the complete set of pairwise preferences
as imposed by the ranking in the data set. The subsets that were selected for the
experiments are described one by one for the experiments.

2The occurrence of actions with equal expected utility has probability 0.
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We used the decision tree learner C4.5 (Quinlan, 1993) in its default settings3 to
learn a model for each pairwise preference. For instances in the test set we obtained
a final ranking using simple voting (and tie breaking) as described in section 3.
The predicted ranks were then compared with the actual ranks on the test set, and
evaluation measures were computed as follows: Denote by (ρ1

k, . . . , ρ
c
k) the true

ranking of a test example ek, where ρ1
k is the top-ranked label (action). Likewise,

denote by (τ1
k , . . . , τ c

k) the predicted ranking, again with τk
1 being the label that has

been assigned the top rank. Further, we use rk(λi) to denote the true rank of label
λi for example ek. The following four evaluation metrics were computed:

Error, the percentage of examples for which the top rank was incorrect:

1
n

n∑
k=1

δ(τ1
k , ρ1

k) × 100%,

where δ(i, j) = 1 if i �= j and 0 if i = j.

Average Deviation, the average of the (average absolute) deviation of the pre-
dicted rank from the true rank:

1
cn

n∑
k=1

c∑
r=1

|r − rk(τ r
k )|

Maximum Deviation, the average of the maximum (absolute) deviations of the
predicted rank from the true rank of each example:

1
n

n∑
k=1

max
r=1..c

|r − rk(τ r
k )|

Correlation, the average Spearman rank correlation coefficient:

1
n

n∑
k=1

1 − 6
∑c

r=1 (r − rk(τ r
k ))2

c(c2 − 1)
(3)

Note that this coefficient assumes values between −1 (for reversed rankings)
and +1 (for identical rankings).

3Our choice of C4.5 as the learner was solely based on its versatility and wide availability. If we
aimed at maximizing performance on this particular problem, we would resort to algorithms that can
directly represent the separating hyperplanes for each binary preference.
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Table 1: Comparison of ranking (a complete set of preferences is given) vs. clas-
sification (only the preferences for the top rank are given). Also shown are the
results for the complementary setting (all preferences for the top rank are omitted).

c prefs error avg dev. max dev. rank corr.

ranking 13.380 ± 8.016 0.295 ± 0.096 0.663 ± 0.201 0.907 ± 0.038

5 classification 14.400 ± 8.262 0.567 ± 0.234 1.236 ± 0.537 0.783 ± 0.145

complement 32.650 ± 14.615 0.401 ± 0.120 0.864 ± 0.248 0.872 ± 0.051

ranking 15.820 ± 8.506 0.594 ± 0.121 1.823 ± 0.293 0.940 ± 0.018

10 classification 16.670 ± 9.549 1.559 ± 0.312 4.103 ± 0.757 0.711 ± 0.108

complement 24.310 ± 9.995 0.617 ± 0.116 1.858 ± 0.287 0.937 ± 0.018

ranking 24.030 ± 4.251 1.012 ± 0.057 3.461 ± 0.204 0.966 ± 0.004

20 classification 26.370 ± 5.147 3.320 ± 0.389 10.526 ± 1.125 0.697 ± 0.066

complement 32.300 ± 3.264 1.026 ± 0.055 3.479 ± 0.191 0.966 ± 0.004

5.3 Ranking vs. Classification

Figure 1 shows experimental results for the cases where pairwise preferences are
selected as follows: First, when using the full set of c(c−1)/2 pairwise preferences.
Second, for the classification setting which uses only the c − 1 preferences that
involve the top label. Third, for the complementary setting that uses the (c −
1)(c − 2)/2 preferences that do not involve the top label.

There are several interesting things to note for these results. First, the difference
between the error rates of the classification and the ranking setting is comparably
small. Thus, if we are only interested in the top rank,4 it may often suffice to use
the pairwise preferences that involve the top label. The advantage in this case is
of course the reduced complexity which becomes linear in the number of labels.
On the other hand, the results also show that the complete ranking information can
be used to improve classification accuracy, at least if this information is available
for each training example and if one is willing to pay the price of a quadratic
complexity.

The results for the complementary setting show that the information of the top
rank preferences is crucial: When dropping this information and using only those
pairwise preferences that do not involve the top label, the error rate on the top rank
increases considerably, and is much higher than the error rate for the classification

4It should be noted that there is nothing special about the top rank. We expect that the same type
of results can be observed if we focus on any arbitrary rank (e.g., the bottom rank or the median
rank).
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setting. This is a bit surprising if we consider that in the classification setting, the
average number of training examples for learning a model mij is much smaller
than in the complementary setting. Interestingly, the effective number of training
examples for the top labels might nevertheless decrease. In fact, in our learning
scenario we will often have a few dominating actions whose utility degrees are
systematically larger than those of other actions. In the worst case, the same action
is optimal for all probability vectors p, and the complementary set will not contain
any information about it. While this situation is of course rather extreme, the class
distribution is indeed very unbalanced in our scenario. For example, we determined
experimentally for c = m = 10 and n = 1000 that the probability of having the
same optimal action for more than half of the examples is ≈ 2/3, and that the
expected Gini-index of the class distribution is ≈ 1/2.

With respect to the prediction of complete rankings, the performance for learn-
ing from the complementary set of preferences is almost as good as the perfor-
mance for learning from the complete set of preferences, whereas the performance
of the ranking induced from the classification setting is considerably worse. This
time, however, the result is hardly surprising and can easily be explained by the
amount of information provided in the two cases. In fact, the complementary set
determines the ranking of c−1 among the c label, whereas the top label alone does
hardly provide any information about the complete ranking.

As another interesting finding note that the classification accuracy decreases
with an increasing number of labels, whereas the rank correlation increases (this
is also revealed by the curves in Figure 2 below). In other words, the quality of
the predicted rankings increases, even though the quality of the predictions for the
individual ranks decreases. This effect can first of all be explained by the fact that
the (classification) error is much more affected by an increase of the number of
labels. As an illustration, consider random guessing: The chances of guessing the
top label correctly are 1/m, whereas the expected value of the rank correlation
(3) is 0 regardless of m. Moreover, one might speculate that the importance of a
correct vote of each individual learner mij decreases with an increasing number of
labels. Roughly speaking, incorrect classifications of individual learners are better
compensated on average. 5 This conjecture is also supported by an independent
experiment in which we simulated a set of homogeneous learners mij through
biased coin flipping with a prespecified error rate. It turned out that the quality
measures for predicted rankings tend to increase if the number of labels becomes
large (see Fig. 1), though the dependence of the measures on the number of labels
is not necessarily monotone.

5This gives some intuitive support to the interpretation of round robin learning as an ensemble
learning technique (Fürnkranz, 2003).
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Figure 1: Expected Spearman rank correlation as a function of the number of
labels if all learners mij have an error rate of ε (curves are shown for ε =
0.1, 0.2, 0.3, 0.4, 0.5).

5.4 Missing Preferences

While the previous results shed some light on the trade-off between utility and
costs for two special types of preference information, namely top-ranked labels
and complete rankings, they do not give a satisfactory answer for the general case.
The selected set of preferences in the classification setting is strongly focused on a
particular label for each example, thus resulting in a very biased distribution. In the
following, we will look at the quality of predicted rankings when selecting subsets
of pairwise preferences from the full sets with equal right.

Figure 2 shows the curves for the classification error in the top rank and the
average Spearman rank correlation of the predicted and the true ranking over the
number of preferences. To generate these curves, we started with the full set of
preferences, and ignored increasingly larger numbers of them. This was imple-
mented with a parameter pi that caused any given preference in the training data to
be ignored with probability pi (100 × pi is plotted on the x-axis).

The similar shape of the three curves (for 5, 10, and 20 labels) suggests that the
decrease in the ranking quality can be attributed solely to the missing preferences
while it seems to be independent of the number of labels. In particular, one is
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p

Figure 2: Average error rate (left) and Spearman rank correlation (right) for various
percentages of ignored preferences. The error bars indicate the standard deviations.
The vertical dotted lines on the right indicate the number of preferences for classifi-
cation problems (for 5,10, and 20 classes), those on the left are the complementary
sizes.
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inclined to conclude that—contrary to the case where we focused on the top rank—
it is in general not possible to reduce the number of training preferences by an
order of magnitude (i.e., from quadratic to linear in the number of labels) without
severely decreasing the ranking quality. This can also be seen from the three dotted
vertical lines on the right. These lines indicate the percentage of preferences that
were present in the classification setting for 5, 10, and 20 labels (from inner-most
to outer-most). A comparison of the error rates, given by the intersection of a line
with the corresponding curve, to the respective error rates in Figure 1 shows an
extreme difference between the coincidental selection of pairwise preferences and
the systematic selection which is focused on the top rank.

Nevertheless, one can also see that about half of the preferences can be ignored
while still maintaining a reasonable performance level. Even though it is quite
common that learning curves are concave functions of the size of the training set,
the descent in accuracy appears to be remarkably flat in our case. One might be
tempted to attribute this to the redundancy of the pairwise preferences induced by
a ranking: In principle, a ranking ρ could already be reconstructed from the c − 1
preferences ρ1 � ρ2, . . . , ρc−1 � ρc, which means that only a small fraction of
the pairwise preferences are actually needed. Still, one should be careful with this
explanation. First, we are not trying to reconstruct a single ranking but rather to
solve a slightly different problem, namely to learn a ranking function. Second, our
learning algorithm does actually not “reconstruct” a ranking as suggested above.
In fact, our simple voting procedure does not take the dependencies between in-
dividual learners mij into account, which means that these learners do not really
cooperate. On the contrary, what the voting procedure exploits is just the redun-
dancy of preference information: The top rank is the winner only because it is
preferred in c − 1 out of the c(c − 1)/2 pairwise comparisons.

Finally, note that the shape of the curves probably also depends on the num-
ber of training examples. We have not yet investigated this issue because we were
mainly interested in the possibility of reducing the complexity by more than a con-
stant factor without losing too much of predictive accuracy. It would be interesting,
for example, to compare (a) using p% of the training examples with full preferences
and (b) using all training examples with p% of the pairwise preferences.

5.5 Mislabeled Preferences

Recall that our learning scenario assumes preference structures to be complete
rankings of labels, that is transitive and asymmetric relations. As already pointed
out, we do not make this assumption for observed preferences: First, we may not
have access to complete sets of preferences (the case studied in the previous sec-
tion). Second, the process generating the preferences might reproduce the underly-
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Figure 3: Average Spearman rank correlation over various percentages of random
preferences. The error bars indicate the standard deviations. The solid thin lines
are the curves for ignored preferences (Figure 2).

ing total order incorrectly and, hence, produce inconsistent preferences. The latter
problem is quite common, for example, in the case of human judgments.

To simulate this behavior, we adopted the following model: Proceeding from
the pairwise preferences induced by a given ranking, a preference λi � λj was
kept with probability 1 − ps, whereas with probability ps, one of the preferences
λi � λj and λj � λi was selected by a coin flip. Thus, in approximately ps/2
cases, the preference will point into the wrong direction.6 For ps = 0, the data
remain unchanged, whereas the preferences in the training data are completely
random for ps = 1.

Figure 3 shows the average Spearman rank correlations that were observed
in this experiment. Note that the shape of the curve is almost the same as the
shape of the curves for ignored preferences. It is possible to directly compare these
two curves because in both graphs a level of n% means that 100 − n% of the
preferences are still intact. The main difference is that in Figure 2, the remaining
n% of the preferences have been ignored, while in Figure 3 they have been re-

6In fact, we implemented the procedure by selecting ps/2 preferences and reversing their sign.

14



assigned at random. To facilitate this comparison, we plotted the curves for ignored
preferences (the same ones as in Figure 2) into the graph (with solid, thin lines).

It is interesting to see that in both cases the performance degrades very slowly
at the beginning, albeit somewhat steeper than if the examples are completely ig-
nored. Roughly speaking, completely omitting a pairwise preference appears to
be better than including a random preference. This could reasonably be explained
by the learning behavior of a classifier mij : If mij does already perform well, an
additional correct example will probably be classified correctly and thus improve
mij only slightly (in decision tree induction, for example, mij will even remain
completely unchanged if the new example is classified correctly). As opposed to
this, an incorrect example will probably be classified incorrectly and thus produce a
more far-reaching modification of mij (in decision tree induction, an erroneous ex-
ample might produce a completely different tree). All in all, the “expected benefit”
of mij caused by a random preference is negative, whereas it is 0 if the preference
is simply ignored.

From this consideration one may conclude that a pairwise preference should
better be ignored if it is no more confident than a coin flip. This can also be grasped
intuitively, since the preference does not provide any information in this case. If it
is more confident, however, it clearly carries some information and it might then be
better to include it, even though the best way of action will still depend on the num-
ber and reliability of the preferences already available. Note that our experiments
do not suggest any strategy for deciding whether or not to include an individual
preference, given information about the uncertainty of that preference. In our case,
each preference is equally uncertain. Thus, the only reasonable strategies are to
include all of them or to ignore the complete sample. Of course, the first strat-
egy will be better as soon as the probability of correctness exceeds 1/2, and this
is also confirmed by the experimental results. For example, the correlation coef-
ficient remains visibly above 0.8 even if 80% of the preferences are assigned by
chance and, hence, the probability of a particular preference to be correct is only
0.6. One may conjecture that pairwise preference ranking is particularly robust to-
ward noise, since an erroneous example affects only a single classifier mij which
in turn has a limited influence on the eventually predicted ranking.

6 Related Work

As pointed out before, especially relevant for our work is the framework of con-
straint classification, introduced as an extension of standard classification by Har-
Peled et al. (2002). The learning method proposed in this work constructs two
training examples for each preference λi � λj , where the original d-dimensional
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training examples are mapped into a cd-dimensional space. The positive example
copies the original training vector into the components d(i − 1) + 1 . . . di and its
negation into the components d(j − 1) + 1 . . . dj of a vector in the new space. The
remaining entries are filled with 0, and the negative example has the same elements
with reversed signs. In this cd-dimensional space, the learner tries to find a separat-
ing hyperplane. For classifying a new example e, the labels are ordered according
to the response resulting from multiplying e with the i-th d-element section of the
hyperplane. This technique also compares favorably to a one-against-all approach.

There has also been some recent work on ranking algorithms. For example,
Crammer and Singer (2003) consider a variety of on-line learning algorithms for
the problem of ranking possible labels in a multi-label text categorization task.
However, we are only aware of one work that actually uses a complete ranking
of the available labels for each example for training or evaluation: Brazdil et al.
(2003) investigate the meta-learning task of ranking learning algorithms according
to their suitability for a new dataset, based on the characteristics of this dataset.

Some authors have investigated the problem of preference elicitation in a more
narrow sense, that is, the learning of one single preference function. For example,
Cohen et al. (1999) propose a two-step approach for ranking a set of objects (and
not a set of labels associated with the objects as in our approach) given feedback
in the form of preference judgments. Similarly, Haddawy et al. (2003) assume
training data to be available in the form of pairwise comparisons of objects. Given
such data, they train an artificial neural network that takes as input two objects and
outputs either 0 or 1, depending on whether or not the first object is preferred to the
second one. (A somewhat similar approach has already been proposed by Wang
(1994)). Joachims (2002) analyzes “click-through data” in order to rank documents
retrieved by a search engine according to their relevance. This is a nice example
of a kind of indirect preference information. Using this information, learning of a
retrieval function is accomplished by training a support vector machine.

The problem of learning a preference relation over a set of labels L can also
be approached in a somewhat indirect way, namely through learning a value or
utility function that assigns a utility degree to each label. Note that the preference
relation induced by a utility function is necessarily complete (linear) in the sense
that all tuples of labels are assumed to be comparable. Moreover, note that learning
a utility function can be considered a more difficult problem than learning a (linear)
preference relation, since the latter subsumes the former but not vice versa.

Depending on the underlying utility scale one can distinguish between learning
a numeric function and learning a function that maps into an ordinal (ordered cate-
gorical) scale. These two cases involve, respectively, a problem of standard regres-
sion and ordinal regression (also called ordinal classification). Ordinal regression
has been investigated thoroughly in statistics and econometrics (McCullagh and
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Nelder, 1983) and has recently also received attention in machine learning. For
example, a method for ordinal regression based on a modification of regression
tree learning has been proposed by Kramer et al. (2001). Frank and Hall (2001)
suggest a method for translating an ordinal regression problem into a set of ordi-
nary (binary) classification problems. In (Herbich et al., 2000), ordinal regression
is approached in the context of support vector machines, using a special type of
loss function suitable for comparing predictions on an ordered categorical scale.

The problem of learning (eliciting) real-valued utility functions has been in-
vestigated in fields such as decision theory and economics for a long time, and
has more recently become a topic of research in AI and machine learning as well.
A particularly elegant approach is due to Tesauro (1989), who proposes a sym-
metric network architecture that can be trained with representations of two states
and a training signal that indicates which of the two states is preferable. The el-
egance of this comparison training approach comes from the property that one
can replace the two symmetric parts of the network with a single network, which
can subsequently provide a real-valued evaluation of single states. More recently,
Chajewska et al. (1998) simplify the elicitation of utility functions by clustering
exemplary utility functions, deriving prototypes from the clusters, and inducing a
decision tree whose inner nodes are associated with properties of utility functions
(questions that can be asked to a person) and whose leaf nodes are identified with
the prototypes. The idea of Chajewska et al. (1999) is to simplify elicitation by
exploiting the additive independence of variables. Given a database of exemplary
utility functions, statistical learning (model selection) methods are used in order to
induce a factorization of utility functions into additive subutility functions. Cha-
jewska et al. (2000) accomplish learning of a utility function by treating utility as
a random variable. Starting with some prior distribution (derived from analyzing a
database of available utility functions), the model is incrementally updated based
on information elicited from the user. In order to decide on which questions should
be asked next to the user, the authors fall back on the principle underlying the value
of information. Chajewska et al. (2001) study the problem of learning the utility
function that determines the behavior of an agent which is rational in the sense of
expected utility theory. The approach proposed by the authors proceeds from a
prior probability distribution over a class of utility functions having a certain (lin-
ear) structure. The agent’s decisions are then used for defining constraints on its
true utility function (see (Ng and Russell, 2000) for a quite similar approach). Fi-
nally, these constraints are employed in order to turn the prior distribution over the
class of utility functions into a posterior distribution.

Learning preferences is also a key topic in recommender systems and collab-
orative filtering (Goldberg et al., 1992; Resnick and Varian, 1997; Kautz, 1998).
Methods proposed in this field are closer to learning utility functions, but are of-
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ten specifically adjusted to commercial applications where the set of alternatives
(labels) to be recommended is usually very large. The method of choice is quite
often a case-based or memory-based approach, where the basic idea is to estimate
a user’s preferences from the preferences of other users that appear to be similar
(see e.g. Ha and Haddawy (2003); Nakamura and Abe (1998); Billsus and Pazzani
(1998)).

7 Concluding Remarks

We have introduced pairwise preference learning as an extension of pairwise clas-
sification to constraint classification, a learning scenario where training examples
are labeled with a preference relation over all possible labels instead of a single
class label as in the conventional classification setting. From this information, we
also learn one model for each pair of classes, but focus on learning a complete
ranking of all labels instead of only predicting the most likely label. Our main
interest was to investigate the trade-off between ranking quality and the amount of
training information (in terms of the number of preferences that are available for
each example). We experimentally investigated this trade-off by varying parame-
ters of a synthetic domain that simulates a decision-theoretic agent which ranks its
possible actions according to an unknown utility function. Roughly speaking, the
results show that large parts of the information about pairwise preferences can be
ignored in round robin ranking without losing too much predictive performance. In
the classification setting, where one is only interested in predicting the top label, it
also turned out that using the full ranking information rather than restricting to the
pairwise preferences involving the top label does even improve the classification
accuracy, suggesting that the lower ranks do contain valuable information. For rea-
sons of efficiency, however, it might still be advisable to concentrate on the smaller
set of preferences, thereby reducing the size of the training set raises by an order
of magnitude.

The main limitation of our technique is probably the assumption of having
enough training examples for learning each pairwise preference. For data with a
very large number of labels and a rather small set of preferences per example, our
technique will hardly be applicable. In particular, it is unlikely to be successful in
collaborative filtering problems (Goldberg et al., 1992; Resnick and Varian, 1997;
Breese et al., 1998), although these can be mapped onto the constraint classification
framework in a straightforward way. A further limitation is the quadratic number
of theories that has to be stored in memory and evaluated at classification time.
However, the increase in memory requirements is balanced by an increase in com-
putational efficiency in comparison to the technique of Har-Peled et al. (2002). In

18



addition, pairwise preference learning inherits many advantages of pairwise clas-
sification, in particular its implementation can easily be parallelized because of its
reduction to independent subproblems.

There are several directions for future work. First of all, it is likely that the pre-
diction of rankings can be improved by combining the individual learners’ votes
in a more sophisticated way. Several authors have looked at more sophisticated
ways for combining the predictions of pairwise theories into a final ranking of
the available options. Proposals include weighting the predicted preferences with
the classifiers’ confidences (Fürnkranz, 2003) or using an iterative algorithm for
combining pairwise probability estimates (Hastie and Tibshirani, 1998). However,
none of the previous works have evaluated their techniques in a ranking context,
and some more elaborate proposals, like error-correcting output decoding (Allwein
et al., 2000), organizing the pairwise classifiers in a tree-like structure (Platt et al.,
2000), or using a stacked classifier (Savicky and Fürnkranz, 2003) are specifically
tailored to a classification setting. Taking into account the fact that we are explic-
itly seeking a ranking could lead to promising alternatives. For example, we are
thinking about selecting the ranking which minimizes the number of predicted pref-
erences that need to be reversed in order to make the predicted relation transitive.
Departing from the counting of votes might also offer possibilities for extending
our method to the prediction of preference structures more general than rankings
(total orders), such as weak preference relations where some of the labels might
not be comparable.

Apart from theoretical considerations, an important aspect of future work con-
cerns the practical application of our method and its evaluation using real-world
problems. Unfortunately, real-world data sets that fit our framework seem to be
quite rare. In fact, currently we are not aware of any data set of significant size that
provides instances in attribute-value representation plus an associated complete
ranking over a limited number of labels.
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Abstract. Active learning aims at controlling and reducing the need of
labeled training data in supervised learning. Starting with only a small
amount of labeled examples, the learner selects new training examples
from a finite set of initially unlabeled examples, then requests their cor-
rect labels and incrementally learns the target function. While active
learning with kernel machines has been successfully applied in classifica-
tion to accelerate learning processes, we consider an extension to active
learning of ranking functions. We employ a transformation process to
state a ranking problem in terms of an equivalent binary classification
problem. Analyzing active selection for binary problems yields a natural
framework for active selection criteria in the case of more complex rank-
ing problems. We study different strategies within this framework, and
conduct an experimental study on synthetic data to investigate their pre-
dictive performance. As binary component learners, both support vector
machines and (large scale) Bayes point machines are employed.

1 Introduction

The standard supervised machine learning model assumes that a completely
labeled training set of examples is available to learn a target function. This
implies that each example within the training set has to be assigned to the
correct output value. However, in many practical applications, labelling examples
cannot be performed automatically but involves human judgement or costly
experimental measurements and is therefore time-consuming and expensive.

Pool-based active learning (selective sampling) [1] aims at controlling the
labelling effort and accelerating the learning process: Starting with only a small
amount of training examples, the algorithm selects new training examples from
a finite set of initially unlabeled examples, then requests their correct labels and
incrementally learns the desired function. The objective for the algorithm is to
learn a target function at a certain level of accuracy using only a small amount
of labeled training examples.

We consider the active learning framework in the field of kernel machines [2,
3], which have received ample treatment being both theoretically well founded
and showing excellent generalization performance in practice. It has been shown
empirically that active learning with kernel machines outperforms learning by



randomly adding training examples in the field of character recognition [4], docu-
ment classification [5, 6] and computational chemistry [7]. Whilst active learning
in the field of kernel machines has been exclusively applied to classification prob-
lems so far, we present an extension to ranking problems. Prediction of rankings
(preferences), i.e. total orders over a finite set of alternatives, is of particular im-
portance in various fields of application such as personalized computer systems.

As in the case of multiclass classification there exist different approaches to
reduce ranking problems to binary classification problems. As a straightforward
generalization of one-against-one (multiclass) classification, ranking problems
can be decomposed considering all pairwise preferences between two alterna-
tives [8]. Each pairwise preference problem is treated independently as a binary
classification problem and predictions are made by applying a voting scheme.

We adopt a different approach introduced in [9] to the expression of ranking
problems in terms of single binary classification problems. While this approach
is limited to linear classifiers as binary component learners, it is particularly
suitable for generalizing binary active learning: All preference dependencies are
encoded into a single binary problem which is amenable to well-studied binary
active selection. Studying the transformation process, we derive a natural frame-
work for active selection criteria in the case of ranking.

The remainder of this paper is organized as follows: In section 2, we recapit-
ulate the transformation process to express ranking problems as single binary
classification problems with special emphasis on the efficient kernelization of this
approach. Based on this reduction, section 3 considers active selection of binary
examples and naturally derives a framework of selection criteria for ranking prob-
lems. Computational complexity issues of this approach are discussed in section
4. The subsequent section presents experimental results on synthetic data of
different selection criteria within our framework. As linear component learners,
both support vector machines [2] and (large scale) Bayes point machines [10] are
investigated. Finally, in section 6 we discuss further research issues.

2 General Setting

The subsequent section introduces the general class of ranking functions mod-
elling the unknown preference concept. We closely follow [9] to transform a
ranking problem into an equivalent binary classification problem. In general,
any algorithm learning a consistent linear classifier can be employed to solve
this classification problem. Expanding the binary classifier yields a solution to
the initial ranking problem. We explicitly apply this transformation process to
kernel machines both to increase the expressivity of the resulting ranking func-
tion and to make use of (typically) highly accurate classifiers.

Suppose we are given a training set

T = {(x1, y1), . . . , (xm, ym)} ⊂ (X × S(d))m



with X denoting a nonempty set and S(d) being the symmetric group of degree
d, i.e.

yi = ([yi]1, . . . , [yi]d) with {[yi]1, . . . , [yi]d} = {1, . . . , d}.
In other words, the objects to be learnt are full orders over a finite and a-priori
fixed set of alternatives, represented as permutations.

To increase flexibility and expressivity, we embed patterns from input space
X using a kernel k : X × X → R. The corresponding kernel feature space
is denoted by F and the feature map by φ : X → F [2]. We focus on the
class of linear sorting functions within the kernel induced feature space F as
our hypothesis space. In other words, we consider ranking functions having the
following structure:

f : X → S(d)

x �→ argsort
n=1,...,d

〈wn, φ(x)〉

with w1, . . . , wd ∈ F being normal vectors of hyperplanes and argsort returning
a permutation of {1, . . . , d} where i precedes j if 〈wi, φ(x)〉 > 〈wj , φ(x)〉.

Transforming the initial ranking problem both involves embedding the train-
ing data in a higher dimensional space and expanding single ranking examples
into multiple binary classification examples. Consider a training example (xi, yi)
which is mapped into feature space F by xi �→ φ(xi). We expand this example
into 2(d − 1) binary classification examples in Fd × {−1, +1} in the following
way:

Let −→x +
i,j denote a vector in Fd with components

[−→x +
i,j ]n =




φ(xi) if n = [yi]j ,
−φ(xi) if n = [yi]j+1,

0 else.

for j = 1, . . . , d − 1. −→x −
i,j is defined analogously with a componentwise change

of sign. Note that the components of −→x +
i,j and −→x −

i,j respectively are potentially
infinite dimensional feature vectors.

Using this notion, we define a set T ′ of binary training examples correspond-
ing to initial ranking examples

T ′ =
⋃

i=1,...,m
j=1,...,d−1

{(−→x +
i,j , +1), (−→x −

i,j ,−1)}

consisting of both (d − 1)m positive and negative examples.
Since mapping examples into the kernel feature space is performed implicitly,

we cannot directly calculate dot products in hypothesis space Fd but have to
express it in terms of the kernel. Suppose we are given two examples (−→x ,−→y ),
(−→x ′,−→y ′) ∈ T ′. Then, the components of −→x and −→x ′ can be expressed as

[−→x ]n = βn φ(xin) and [−→x ′]n = β′
n φ(xjn)



with βn, β′
n ∈ {−1, 0, +1}. Hence,

〈−→x ,−→x ′〉 =
d∑

n=1

βnβ′
n k(xin

, xjn
).

Note that there are at most two nonzero elements in this sum - independently of
the number d of alternatives! Thus, by exploiting the sparsity of the expanded
examples we can calculate dot products with at most twice the original compu-
tational cost as in input space F . Similarly, using an indirect sparse encoding
yields only a constant need of storage space for each expanded example.

Assuming that the kernel is chosen such that the expanded binary classifica-
tion problem is linearly separable, we can train a kernel machine to calculate a
discriminative linear classifier

g : Fd → {−1, +1}
−→x �→ sign(〈−→w ,−→x 〉)

which is consistent with the training set. The normal vector −→w can be expanded
in terms of the 2(d − 1)m training examples −→x i with [−→x i]n = βi,nφ(xin

) in T ′:

−→w =
2(d−1)m∑

i=1

αi
−→x i and [−→w ]n =

2(d−1)m∑
i=1

αiβi,n φ(xin).

Now, we decompose the above stated binary classifier into its d components
to construct a ranking function:

f : X → S(d)

x �→ argsort
n=1,...,d

〈[−→w ]n, φ(x)〉 = argsort
n=1,...,d

2(d−1)m∑
i=1

αiβi,n k(xin
, x). (1)

This ranking function does not involve direct computation of the kernel feature
map anymore since it is expressed exclusively in terms of the kernel function.

Suppose we are given an arbitrary example (xi, yi) ∈ T and consider two
succeeding components of yi at position j and j + 1. To show consistency with
respect to this training example, we have to prove that

〈
[−→w ][yi]j , φ(xi)

〉
>

〈
[−→w ][yi]j+1 , φ(xi)

〉

⇔ 〈
[−→w ][yi]j − [−→w ][yi]j+1 , φ(xi)

〉
> 0

⇔ 〈−→w ,−→x +
i,j

〉
> 0.

The last equation holds since we assumed g(·) = sign(〈−→w , ·〉) to be a consistent
binary classifier for the transformed ranking problem.

In this section, we discussed a transformation process of a ranking problem
into an equivalent binary classification problem with emphasis on the kernel-
ization of this method. Thus, to train a ranking function any kernel machine



can be utilized based on the expanded binary training set. Furthermore, we can
deal with noisy, linearly nonseparable data in an elegant way by adding some
constant ν > 0 to the diagonal elements of the kernel matrix, k(xi, xj) + δijν,
such that the training set becomes linearly separable [11].

3 Active Learning

Before deriving a framework for active selection criteria for ranking problems, we
briefly recapitulate (pool-based) active learning in the case of a binary classifica-
tion problem: Let us consider a linearly separable binary classification problem
in feature space. The nonempty set

V def= {w ∈ F | sign(〈w, φ(xi)〉) = yi for i = 1, . . . , n and ‖w‖ = 1}
is called version space [12]. V consists of all (normalized) weight vectors cor-
responding to linear classifiers in feature space which separate the training set
without errors. We can view learning as a search problem within version space.
Each training example (xi, yi) limits the volume of the version space because to
correspond to a consistent classifier a weight vector has to satisfy

sign(〈w, φ(xi)〉) = yi ⇔ yi 〈w, φ(xi)〉 > 0.

In other words, consistent solutions can only lie on one side of the hyperplane
with normal vector φ(xi), depending on the class label yi.

Suppose we are given an approximation of the center of mass of version space
wcenter, then it is a reasonable strategy to select that unlabeled example which
corresponds to the restricting hyperplane in version space closest to wcenter. In-
dependent of the actual class label, the version space is reduced to approximately
half the initial volume. In the empirical section, we consider two kernel machines,
support vector machines [2] and (large scale) Bayes point machines [10], which
approximate the center of mass of version space. It is easy to verify that this
selection strategy is equivalent to choosing unlabeled examples closest to the
classification hyperplane corresponding to wcenter, i.e. we select examples min-
imizing |〈wcenter, φ(xi)〉|. Apart from the version space model which has been
considered in [6], there are other theoretical justifications for this approach [4,
5].

Coming back to ranking problems, we introduce a generalization of the dis-
tance from the classification hyperplane by employing the transformation process
discussed in section 2. Each ranking example is expanded into 2(d − 1) binary
classification examples. Therefore, a straightforward extension of the distance
measure to ranking problems is to consider the minimal distance within the set
of expanded binary examples:

Definition 1 (Generalized Distance). Consider a linear sorting function

f : X → S(d)

x �→ argsort
n=1,...,d

〈[−→w ]n, φ(x)〉 .



The distance δ of a ranking example (x, y) with respect to f is defined as

δ : X × S(d) → R�0

(x, y) �→ min
j=1,...,d−1

| 〈[−→w ][y]j , φ(x)
〉 − 〈

[−→w ][y]j+1 , φ(x)
〉 |.

In a similar fashion, one can define a generalized margin [9] which is max-
imized if a support vector machine is used as the component learner on the
expanded binary training set. Both definitions reduce to the standard margin
and to the standard distance from the classification boundary respectively for
ranking problems with d = 2 (which can be considered as binary classification
problems).

While in the case of binary classification (d = 2) this distance measure can
be evaluated even without knowledge of the class label y,

δ(x, y) = δ(x, 1) = δ(x, 2) = | 〈[−→w ]1, φ(x)〉 − 〈[−→w ]2, φ(x)〉 |,
this is not true in general (d > 2). However, it is possible to state a lower bound
and an upper bound on the distance:

δ(x, y) ≥ min
n1,n2=1,...,d

n1 �=n2

| 〈[−→w ]n1 , φ(x)〉 − 〈[−→w ]n2 , φ(x)〉 | (2)

def= δ−(x).

and

δ(x, y) ≤ max
n=1,...,d

〈[−→w ]n, φ(x)〉 − min
n=1,...,d

〈[−→w ]n, φ(x)〉 (3)

def= δ+(x).

It is easy to see that these bounds are tight in the sense that for every x there
exists a y such that equality holds in (2) or (3) respectively.

As stated above, distance based active selection of new training examples
has been successfully applied in binary classification. Class labels of examples
with minimal distance from the classification boundary are requested and then
these examples are added to the current training set. However, since distances
cannot be evaluated for ranking examples in general, there is no straightforward
generalization of this selection strategy.

Nevertheless, instead of exactly evaluating distances we are able to employ
criteria that approximate this quantity. The bounds δ− and δ+ provide a frame-
work for reasonable approximate distance based selection strategies. Further-
more, both δ− and δ+ can be considered as approximate distance measures at
the extreme points of the spectrum. In the following, we investigate active se-
lection of ranking examples based on δ− and δ+, denoted by distance− and
distance+. In other words, unlabeled examples minimizing δ− (δ+) are selected
to be labeled and subsequently added to the current training set.

In the beginning with the number of labeled training examples being small,
our intermediate models are expected to perform poorly in terms of generaliza-
tion accuracy. As a consequence, δ− is likely to underestimate the true distance



of an unlabeled example. Similarly, when our models get more accurate δ+ is
likely to overestimate the true distance.

To overcome this problem, we consider a hybrid strategy starting with the
δ+ strategy which switches to δ− in a data dependent fashion. When employing
support vector machines as the binary component learner, the minimum dis-
tance of a labeled example to the classification boundary is normalized to 1.
Furthermore, only those unlabeled example with a distance less than 1 to the
boundary are guaranteed to intersect with the version space. Therefore, when
selecting an unlabeled ranking example x for which δ+(x) ≥ d holds, labeling
this example might not put further restrictions on the version space. Based on
this observation, we suggest switching to the δ− strategy whenever there is no
unlabeled example with δ+(x) ≤ d. Since the reasoning above does solely hold
for support vector machines, we consider this hybrid strategy only in the case of
support vector machines.

4 Computational Complexity

Consider a ranking problem consisting of m training examples with d preferences
in a standard supervised batch learning setting. In section 2, we discussed a
technique which has been proposed in [9] to reduce a ranking problem to a single
binary classification problem. This transformation process relies on an expansion
of the ranking training set into 2(d − 1)m binary classification examples and a
mapping into the higher dimensional space Fd.

However, as stated above, by using an indirect sparse encoding it is not nec-
essary to explicitly increase the dimension of the problem. Thus, independently
of d, calculating dot products is at most twice as expensive as in input space F
in terms of computational time, and only a constant amount of storage space
for each expanded example is necessary (if we preserve a copy of the original
training set). Therefore, the computational complexity when using a kernel ma-
chine with running time O(nα) in the number of training examples amounts to
O((2dm)α). Since the running time of support vector machines is empirically
estimated at O(n2), learning a ranking function is of order O(d2m2) in this
special case. Note that the pairwise decomposition technique proposed in [8]
requires computational time of equal order. Finally, predicting a ranking is of
order O(dm) independently of the kernel machine as can be easily derived from
(1).

Evaluating the active selection criteria distance− and distance+ for a single
example is of comparable computational complexity as prediction. Therefore,
actively learning m examples from a set of n examples requires computational
time of order O((2d)α mα+1 + ndm2).



5 Empirical Evaluation

5.1 Experimental Setting

To evaluate the efficiency of the distance− and distance+selection strategy we
have conducted a number of experiments using both support vector machines
and Bayes point machines as linear component learners. Due to the lack of
suitable real-world datasets, we decided to generate synthetic data using a setting
described in [8] from expected utility theory. In a nutshell, the data generation
process works as follows: Fixing the number of input features n and the number
of preferences d, we generate a d×n (utility-) matrix U with independently and
uniformly distributed entries Uij ∈ [0, 1]. To produce a set of ranking examples,
we independently draw features of examples from a uniform distribution over
{x ∈ R

n |x ≥ 0, x1 + · · · + xn = 1}. The corresponding rankings y ∈ S(d) are
generated according to the preference relation � induced by E(i) =

∑n
j=1 xj ·Uij ,

i.e.
i � j ⇔ E(i) > E(j).

Obviously, this corresponds to a noise-free scenario in our learning model
since given a feature vector x an alternative way to express the corresponding
ranking is y = argsortj=1,...,d 〈x, uj〉 with uj denoting the j-th row vector of U .

In all experiments, we fixed the number of input features n = 10. For
d ∈ {5, 10} we generated 5 different datasets consisting of 2000 examples, each
dataset originating from a different matrix U . Each dataset was randomly split
10 times into a training set and a test set of equal size. Active selection of new
training examples was restricted to the training set, while the Spearman rank
correlation coefficient was evaluated on the test set after each iteration (selec-
tion and training). The results were averaged over all splits and 5 datasets. We
started with a randomly selected training set of size 4 in all experiments.

Active selection of new ranking examples and training was performed using
the distance−, distance+ and a hybrid strategy based on two different underly-
ing kernel machines, support vector machines [2] and (large scale) Bayes point
machines [10]. In all experiments involving support vector machines we fixed the
penalty parameter c = 1000, and when using Bayes point machines we always
averaged over 100 kernel perceptrons. For both kernel machines we used lin-
ear kernels. Furthermore, we considered the random selection of new examples,
which served as a baseline strategy.

5.2 Experimental Results

In all experiments with d = 5 (see figures 1(a) and 1(b)), distance− and distance+

based on both support vector machines and Bayes point machines outperform
random selection after only a few iterations. For d = 10 (see figures 1(c) and
1(d)), active selection seems to be more challenging. The distance− strategy still
shows slight advantages over random selection after 50 steps, while distance+

is clearly outperformed by random selection except for slight advantages at the
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(a) Support vector machine (d = 5)
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(b) Bayes point machine (d = 5)
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(c) Support vector machine (d = 10)
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(d) Bayes point machine (d = 10)

beginning of the learning process. This observation suggests that with the num-
ber of alternatives growing distance+ is too coarse a measurement for selection.
Furthermore, as predicted on theoretical grounds, distance− is too optimistic
at the beginning of the learning process where our intermediate models are not
very accurate. In contrast to this, the advantage of distance+ is restricted to
the beginning, with distance− reaching the same level of accuracy after circa 45
(d = 5) and 20 (d = 10) iterations respectively.

Furthermore, in the case of support vector machines, we investigated a hybrid
strategy which starts with the distance+ strategy and then switches to distance−

in a data-dependent fashion (see section 3). While both distance− and distance+

seem to have some advantages and disadvantages at certain stages of the learning
process, the hybrid strategy combines the strengths of both methods in our
experiments (see figures 1(a) and 1(c)).

In theory, Bayes point machines are able to approximate the center of version
space more accurately than support vector machines. This property is reflected in
our experiments with Bayes point machines achieving a higher level of accuracy
in terms of rank correlation.



6 Conclusions and Future Research

We applied a transformation process to express a ranking problem in terms of an
equivalent binary classification problem. Considering active selection in binary
classification provides a natural framework for active selection criteria in the case
of the more complex class of ranking problems. While we merely investigated
two simple strategies on the basis of synthetic data within this framework, our
analysis might serve as a starting point to develop more sophisticated ones.
Preliminary results of a hybrid strategy are promising and indicate that it is
possible to combine the strengths of both strategies. Furthermore, we discussed
how to efficiently employ kernel machines as binary component learners both
increasing the expressivity of this model and providing an elegant technique
to deal with noisy data. In practice, data might contain incomplete preference
information. However, a slight modification of the expansion step can incorporate
this setting. Therefore, we plan to explore the full potential of using kernels and
incorporating incomplete preference information on real-world data.
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Abstract. In this paper, we present an overview of preference learning
applications to support collaborative work on the internet. Based on de-
riving some basic requirements a more generalized and extensible internet
collaboration environment should satisfy, a system architecture for the
flexible integration of different web applications to support a workgroup
in different everyday aspects of their internet based work is proposed.
By using WebService technology, the system implements such web ap-
plications by orchestrating local or remote components. Adoption of the
WebService paradigm also increases the flexibility in the deployment and
extensibility of the system. By defining an extensible component for pref-
erence learning, the system supports the integration of recommendation
techniques into web applications.

1 Introduction

The World Wide Web has become an essential source of information and an
environment for e-commerce. Using email as a primary means of communica-
tion is commonplace, and we spend a substantial share of our time processing
email messages. More and more business applications that have traditionally
been implemented as specialized client applications (perhaps in a client/server-
environment) are implemented as intranet- or even internet- applications that
are accessible to the user via a standard web-browser. Leveraging the experience
of a workgroup and collaborating in these tasks is an obvious way of increasing
productivity.

With the growing success of online shopping websites, a lot of attention from
both the industrial world as well as the academic world went into recommender
systems. These systems usually focus on enhancing the usage experience of the
visitor of a particular website by predicting his/her future browsing direction or
product preference. This is usually done by exploiting his/her past behaviour or
clustering users to derive recommendations from selections of other members of
that group. (The “customers who bought this book also bought:” recommenda-
tion of amazon.com is a common example for such a recommender system.)

The acceptance of HTTP as common transport protocol for information on
the internet and XML based markup languages has led to the development of the
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WebService standards. By transferring SOAP1 messages via HTTP connections
one can carry out remote procedure calls on a functional entity that exposes its
interface described using WSDL2 to the Web. The adoption of the WebService
paradigm is leading to a different way of application development. WebServices
can be seen as functional components that may be used to compose or orchestrate
more complex applications.

In this paper, we review related work in the field of preference learning ap-
plied to internet collaboration (e.g. collaborative filtering, annotating resources)
and derive requirements a generalized internet collaboration environment should
satisfy. Based on these requirements, we present a proposal for the design of a
generalized framework that supports the creation of flexible and adaptive ap-
plications to support group collaboration; flexibility and adaptivity is achieved
by relying on the WebService paradigm to assemble an application from dis-
tributed components. Our main goal is to develop a platform that enables non-
intrusive support to user communities, helping with the usual workflow rather
than radically changing it. Therefore, our system does not require changes to
the client software and integrates into heterogeneous computing environments
without forcing clients to a particular operating system. We chose a proxy design
that enables us to catch user interaction with the internet. This choice allows
us to weave additional information and user interfaces into the replies of user
requests while not breaking the medium the user interacts with. A second build-
ing block of our system is a generic and extensible component that encapsulats
methods for preference learning and experience management. The focus of our
work is on integration of learning methods into a collaboration environment, not
on the development or evaluation of learning methods.

This paper is organised as follows. Section 2 gives an overview of related
work in the field of preference learning in an internet environment. In Section
3, we present our design of an internet collaboration environment that leverages
group experience not only in simple web browsing but also in more advanced
web applications. In Section 4 we discuss some use cases and sample applications
to be built upon our framework. Conclusions and directions for future work are
presented in section 5.

2 Related Work

In this chapter, we give an overview of related work from the perspective of pref-
erence learning in an internet context and derive a number of requirements for
an advanced internet collaboration environment. Most applications facilitating
preference learning in an internet context can be characterized as recommender
systems or collaborative filtering systems. They are intended to support users in
gathering information or classifying items, singling out the ones most interesting
to the user.

1 Simple Object Access Protocol
2 Web Service Description Language
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2.1 Recommender Systems

A number of applications that try to capture a users preferences for the pur-
pose of suggesting other items that might be of interest to the user have been
implemented in the past and in general are referred to as recommender systems.
Different techniques for recommendation have been proposed, based e.g. on fea-
tures of the items/content, historical data about user decisions, demographic
data or a combination of different techniques as in hybrid recommender systems
[1, 2]. A classification of recommendation techniques for a set of items and users
is presented by [1], where the most important techniques can be described as:3

– Collaborative recommendation takes a number of ratings of items and groups
similar users to extrapolate from their ratings of other items (it is often
referred to as collaborative filtering).

– Content-based recommenders use features of the items to generate a classifier
that fits a users ratings of items and apply this classifier to other items.

– Knowledge-based recommenders take a description of a users needs as well as
the features of items into account, employing knowledge of how these items
meet a users need to infer a match.

Even though every recommendation process can be seen as some kind of
inference, adding knowledge about how an item meets a users needs introduces
additional value by enabling a more advanced inference. Recent work [4, 3] argued
to integrate ontologies and languages with a well defined semantic data model to
improve the preference learning process and make the results more expressive.
According to the authors of these papers, the expectation of acquiring better
results by learning from RDF4 marked-up instances instead of plain-text data
was not supported by the results, but using RDF reduced the computational
complexity and lacked ontological support for the data and relations between
instances [3].

Therefore, a generalized collaboration system to support preference learning

should at least be able to capture user ratings and features associated to the items

of interest. Additionally, it should allow for the seamless integration of ontological

knowledge and processes, taking advantage of this formal and knowledge rich

information.

2.2 Collecting Preference Data

A question arising in the design of recommender systems is the way in which user
preferences will be captured. In general, there is the choice between making use
of implicit vs. explicit expressions of preference by a user. This choice extends to
the collection of relevance feedback about recommended items to the system. The
problem of collecting preference data is closely related to the new-user problem

3 Other recommendation techniques include using demographic data about users and
using a utility-function representing users preferences.

4 Resource Description Framework
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faced by collaborative filtering (CF) systems. As preferences are predicted based
on the similarity of users, the system has to elicit initial preference values for
a new user to give reasonable recommendations. Strategies to overcome this
problem have recently been proposed [11, 2].

The implicit capturing of user preference is often addressed by mining web
usage data (i.e. requests of a search engine, log files of a web server) [5, 6]. Using
these techniques, one can discover common sequences of web usage or improve
search results by grouping URLs matching certain keywords. Furthermore, they
take the users choice of presented search results into account for improving future
results [7]. The work most closely related to our approach presented in the next
section uses a proxy-based zero-input interface with non-intrusive presentation
of page rankings, based on access statistics and user profiles for registered users
[12]. The ranking of pages is solely based on statistical data about the number
of visitors (and the number of experts thereof) to a page and the total number
of visits to the page.

The explicit capturing of user preferences involves the user to actively state
his/her preference of an item A over item B or to assign a value indicating the
usefulness of an item or a recommendation. An early system to rely on the ex-
plicit feedback on items that a user experienced is GroupLens [8]. In a system
taking content into account, this might require the user to actively annotate
items with metadata that can be used by the system to infer semantic relation-
ships and relevance of items [9].

While gathering explicit ratings of a users likes and dislikes provides a CF
system with better data to derive recommendations from, users tend to be re-
luctant to take the burden of explicitly rating items.

This leads to the conclusion that: A generalized collaboration environment

should provide means to implicitly as well as explicitly collect preferences and

relevance feedback. Ideally, the mechanisms themselves should be adaptive to the

operational context, to elicit as much information from the user as possible in a

non-intrusive way.

2.3 System Integration

As stated before, preference learning has mostly been employed as an integral
part of other web applications (e.g. the well known product recommenders in
web based shopping systems). Obviously, the learning and deduction mechanisms
can easily access a local database of items that comprise their domain of rec-
ommendation. It is also easy for the application developer to integrate facilities
for rating collection as well as result presentation into the single user interface.
Preference data is usually captured and evaluated in a single server that is also
the point of interaction with the user.

A different approach of system design in collaboratively filtering internet
information (i.e. web pages) is taken by gathering preference information in a
proxy environment. In this case, preference data is collected and processed apart
from the original source of information in a proxy server [12]. Preferences learned
from the collected usage information is later on used to recommend the most



Preference Learning in Internet Collaboration Environments 5

valuable search result and is nonintrusively woven into the google5 search result
pages. Another system based on a proxy architecture is aimed at supporting
cooperative browsing [13] by showing group members the pages that other users
logged into the proxy currently visited. It did not employ techniques to learn
user preferences.

A third place for application integration of preference learning or recommen-
dation systems is the internet client software. Some personal information scouts
have been implemented as personal recommendation agents extending a web-
browser. Supporting collaboration imposes the need to enable user agents to
communicate and probably exchange preference information or otherwise imple-
ment some distributed machine learning algorithms. An algorithm and protocol
to support collaborative filtering in a distributed environment has recently been
proposed for privacy reasons [14]. Since collected preference information allows
a centralized system to gain intimate knowledge about a users habits, the au-
thor favors a scheme where every user keeps his/her preference data protecting
his/her privacy.

In the previous subsection we presented different grades of explicitness of
preference collection. This is affected by the choice of system integration. While
a solution integrated into a web application does not, or only to a very limited
extent, capture preference in using other web applications, a system integrated
into the client software is capabale of accurately tracking a user’s actions.

In conclusion, we derive that: A general internet collaboration environment

should be as flexible as possible, with regard to the internet information sources

and applications it can be used with. Furthermore, it should be as minimaly

invasive to a user’s habits or software as possible.

3 System Architecture

To summarize the findings of the previuous section, the requirements for a flexi-
ble internet collaboration environment that adapts to the users’ needs by learning
their preferences are:

– Extensible storage of preference assertions and features related to the items
of interest. The seamless extension towards integration of more knowledge
rich data should be supported.

– The system should be flexible in the way and explicitness of the processes
to collect preference and relevance feedback.

– The collaboration environment should be usable with as many internet re-
sources as possible.

– To support users rather than distract them, the collaboration framework
should integrate into their software environment with the least possible re-
quired changes and should also aim at integration into the usual workflow
of accessing resources.

5 http://www.google.com
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The system architecture we propose to satisfy these requirements can roughly
be divided into two main building blocks as shown in figure 1: A proxy compo-
nent, that handles the interaction with the user and an analysis component, that
stores instance data and encapsulates learning and analysis functionality. This
separation of components allows the analysis component to reside on a different
host than the proxy. Instances of the proxy could, for example, run on every
client machine and use a central analysis component.

The WebService paradigm is central to the design of our system, as it allows
for a very flexible implementation of applications composed of loosely coupled
entities. Using remote procedure calls with SOAP messages allows us to access
system components as well as remotely deployed components of third parties
(e.g. a specialized translation service, or an advanced information extractor).
The application of WebService communication in the system is shown by dashed
lines in figure 1.

RDF−Store

Usage

Data

UI Service

UI ServiceServiceUI

Orchestration

Extractor

Extractor

Data Mining

Learning

Preferences

Authentication

Proxy

Request

Analysis Engine

Reply

Component/WebService invocation

Fig. 1. Schematic view of the internet collaboration environment

To use the system, a user configures his/her web browser to use the proxy.
As a means of identifying a user, we require a client to authenticate itself via
the standard proxy authorization mechanism [17]. Disregarding all additional
functionality of the system, it then works like an ordinary web proxy. A user’s
request is forwarded to the remote server, then the proxy delivers the reply to the
client. In the following subsections, we focus on the extractor and application
integration components of the proxy as well as some aspects of the analysis
engine.
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3.1 Extraction of Instance Data

In the process of answering requests, web usage data is collected. This collection
is performed by the request extractor. The target of a request, its originator and
the time of its occurence are collected as the basic information. Other extractor
components may optionally be used to extract further information (e.g. the
values of cgi attributes from requests occuring as submission of HTML form
data) or to regard more complex constraints in the extraction process (e.g. the
context of a user).

To allow content-based learning, the system needs a facility to extract content
features. The extraction of features is even more closely coupled to the wide vari-
ety of possible content types than in the case of a users requests. The extraction
of features may also require more sophisticated methods a provider might not
want to disclose. Integrating such components as WebService instances allows
the system to use remote methods to extract features. The external extractor
on the left in figure 1 could be located at some other provider’s computer.

3.2 Application Integration by WebService Orchestration

Applications to support a group of users in internet collaboration are imple-
mented by orchestrating basic WebService components into more complex pro-
cess flows. This is done by an orchestration or flow engine that takes the descrip-
tion of a compound service as input and executes the resulting, more complex
application. For its semantic expressivenes and to examine reasoning about the
processes, flows are specified using the DAML-S [16] language and are also stored
in the analyser’s RDF-store.

The user interacts with the WebServices using dedicated web applications
bound to the services for presentation6. Natural services of the system have
their user interface (UI) bound to the deployed service, while UI components for
remote services have to be deployed in the system, in order to access third party
services that bring no own UI. The reply of a server is processed by the proxy,
allowing the orchestration engine and individual services to alter its contents or
- in other words - weave its own user interface into the original content. This
mechanism enables an application to integrate references or results of execution
into the reply that is presented to the user (e.g. as hyperlink or tooltip7 menu).

3.3 Analysis Engine

The second large component of our system architecture is the analysis engine or
analyser (on the right) that stores and processes instance data and results of the
learning process. Usage data is collected by storing assertions about resources

6 Even though WebServices are accessible via the HTTP protocol and XML based
SOAP language, the interface is rather machine readable than suited for human
interaction.

7 A popup that appears to the event of the mouse hovering over a page element.
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involved. RDF was specified by the W3C with the purpose of storing assertions
about internet resources. Furthermore, it is the basis for more expressive lan-
guages like DAML+OIL [15] and DAML-S. Being able to extend the system
with semantically founded learning methods led to the choice of a RDF storage
facility as central data repository. The analysis component exposes itself as a
WebService, to enable remote access to its functionality.

Internally, the RDF store is used by an extensible collection of learning and
data mining components. Extracted preferences are stored to be retrieved by the
orchestration engine that uses this data in order to personalize the collaboration
applications. While we specified the analysis engine to be extensible, currently
we focus on the integration of preference learning algorithms in the collaboration
environment rather than developing own algorithms.

4 Use Cases and Applications

This section will introduce some use cases and sample applications currently
being using our framework. We have chosen sample applications we believe to
be particular useful to research and development groups, as we intend to use
them in our own productivity environment. The scenario consists of a group of
users accessing static resources (HTML pages) as well as dynamic resources (web
applications) on the internet. The participants of the system also communicate
vie email. The sample application should support the group of users in their
tasks, preferably leveraging experience of other users.

4.1 Bookmark Recommendation and Annotation

Keeping bookmarks for interesting or useful web addresses is well known and
supported by almost every web browser. Storing and synchronizing them against
a repository that can be accessed from different locations (e.g. other computers,
other users’ accounts) is poorly integrated into and not often supported by stan-
dard web-browsers. The bookmarking process involves the active recognition of
a valuable resource and some explicit action to add its URL to a local or shared
repository. Our goal is to support the user group in the collection of such a
repository.

Repeated visits to a resource are an indicator for the relevance of a resource.
The collaboration system may therefore collect web usage information per user
and recommend the addition of a repeatedly visited address to the repository.
Determining often visited resources may be performed by analyzing the web
usage information of the entire group.

The systems asks a user for explicit confirmation, prior to adding a resource
to the repository, for various reasons:

– Resources can be manually categorized or the automatic (e.g. content based)
categorization can be confirmed by a user.

– Even regularly accessed resources might hold no value for the repository,
therefore the quality of the repository can be improved.
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– A user may decide not to publish his/her usage information for privacy
reasons.

The entire process is shown in figure 2: Web usage information (a) is collected
by the extractor component (EX) in the proxy and stored in the analyser’s data
repository (b). Regular analysis of the data leads to recommendations (c) that
are presented to the user via a summarizing web page, summarizing email (di)
or direct recommendation woven into the reply (dii). Apart from recommending
the addition to the repository, an explicit command may be woven into every
page by the WebService orchestration engine (OE). In addition to statistical
access information, the proxy is able to use another extractor to collect content
information of a resource or associated meta data out of the reply by the remote
server (e) and also store this information in the repository (b). Therefore, the
system is able to learn a user’s preferences based on contents. A recommended
bookmark is added to the bookmark repository (g) (i.e. a centralized stand-
alone WebService that is used by the collaboration environment) upon explicit
confirmation by the user (f).

(a)

(b)

(c)

(di)

(dii)

(e)

(f)

(g)

EX

OE

Proxy

Summary

Bookmark Repository

Analysis Engine

Fig. 2. Bookmark recommendation: (a) request, (b) collection of usage informa-
tion (c) analysis leads to recommendation (d) presentation via i) summarizing
web page/email ii) embedding, (e) collection of content features, (f) confirma-
tion by user, (g) addition to repository.

The collaboration environment may as well be used to annotate [10, 9] web
resources. A web application supporting the creation of RDF based annotations
is embedded into web pages by the orchestration engine (OE). This application
uses the data repository of the analyser component to store RDF based anno-
tations to a resource. The annotations may be used to improve the web usage
analysis performed by the analyser component, as annotations are additional
content features of a resource.
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Various aspects of this simple application hold the potential for dynamic
adaptation to a user’s preferences or context: The method of presentation (i.e.
summarizing web pages, summarizing email or embedding recommendation fa-
cilities into replies), the choice of a particular repository WebService, the analysis
features (e.g. integration of content features) or even the activation of the ap-
plication. Those configuration features may be monitored and analysed by the
system itself, allowing the system to learn a user’s (or a group of users’) config-
uration preferences. For example, the system may analyse how frequently a user
confirms his/her recommendations or uses an embedded application to deactivate
the component in question. On the contrary, the system may find similar users
to access a newly introduced application and activate it as a recommendation.

4.2 Spam Filtering and Email Classification

The use of a proxy is not limited to the HTTP protocol. As a second domain for a
sample application we have chosen email. The increasing flood of unsolicited bulk
email (spam) has led to the integration of different spam filtering mechanisms
into mail servers and client applications, based e.g. on bayesian classifiers. Figure
3 shows the integration of a spam filtering application into the collaboration
environment.

classifier

Mailserver

Proxy

OE

HTTP IMAP
spamfilter

(a)

(b)

(c)

(d)

Analysis Engine

bayes

Fig. 3. Spam filtering, email classification is implemented by a second IMAP
proxy, reusing the analyser and orchestration components.

Using an IMAP8 proxy, the system is able to monitor the user interaction
with a mail server (to move a message from the inbox to a mail folder called

8 Internet Message Access Protocol
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“spam” may be such an action). The actions taken by the user are stored in the
analyser repository (a) as well as content information that may be gained by
inspecting individual messages. The clustering functionality integrated into the
analysis component may then be used to process this interaction and content
information and then leads to the classification of a new message (e.g. by an
integrated bayesian classifier) or an action recommendation (b). The spamfilter,
run by the orchestration engine (OE) may use these recommendations or clas-
sifications (c) to issue commands to the mail-server via the IMAP proxy (d).
Similarly, a content based clustering of messages could be used to sort messages
into different mail folders. The system may leverage the actions of many users,
learning spam classification on a larger sample base.

5 Conclusions and Future Work

In this paper, we have presented an overview of preference learning applications
to support work on the internet, especially collaborative work. We have derived
some fundamental requirements that a more generalized and extensible inter-
net collaboration environment should satisfy, and have proposed design of such
a system. Our system allows for the flexible integration of different web appli-
cations to support a workgroup in different everyday aspects of their internet
based work. By using WebService technology, the system implements such web
applications by orchestrating local or remote components. Adoption of the Web-
Service paradigm also increases the flexibility in the deployment of the system
and the extensibility thereof. By defining an extensible component for preference
learning, the system supports the integration of recommendation techniques into
its web applications.

Future work includes the extension of this implementation to gather experi-
mental results for its usability and the performance questions raised by including
SOAP calls. Furthermore, we will focus on the orchestration of compound service
processes and the application of preference learning to the orchestration process,
as already sketched in the bookmark scenario.
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Abstract. Memory-based collaborative filtering is a popular technique
for personalizing content with heterogeneous preferences on the web in-
telligently. Most of these algorithms are based on its first, published by
Resnick et al. in 1994. Unfortunately their algorithm has so far only an
empirical justification.

This paper shows how two linear models can be the theoretical basis
of memory-based collaborative filtering algorithms and explains why
the performance measurement is an essential part thereof. It reveals
the (here) existing dependency of generating individual predictions and
weighting them.

The two models and two techniques to estimate them are compared
using the EachMovie dataset. The setup for the test chosen retained the
structure of the dataset. It was found that the benchmark algorithm
of Herlocker et al. [1999] was improved significantly by considering the
general preference of a product.

1 Introduction

The telecommunication industry spent several hundred billions of dollars for
acquiring mobile licenses. These high spendings cannot be justified by future
charges for regular telephone calls alone, but only by additional earnings from
mobile data services. Since it is hardly possible to display the relevant infor-
mation much more compact than on the web, the limited display of the mobile
devices force them to get personalized. One method of personalization is called
collaborative filtering.

Its basic assumption is that people share preferences and behavior [9]. There-
fore, the preference or action of a particular user might be predicted well by other
similar users. Since this kind of prediction is only based on comparing prefer-
ences and behavior, it can be used well for predicting complex products (such as
books, jokes, movies, music or wine) where key product attributes are hard to
identify and the preferences are heterogeneous, so that no single opinion (even
that of an expert) can possibly lead to an ultimate advice for everyone.
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2 Measure of performance

Personalization does not come for free. Therefore, (almost only) corporations use
it on the web today and only when they hope to make money out of it. The best
algorithm of personalization — from a corporations perspective — therefore
maximizes the return on investment. Unfortunately the monetary return can
often hardly be measured so that an appropriate proxy has to be used instead.

Several different measurements have been proposed to measure the quality of
an algorithm [12].1 As long as they are not totally equivalent, the best algorithm
will depend on the measurement chosen. Therefore it is crucial to know the
optimization criteria (i.e. the measurement) before developing an algorithm. For
example, if the only focus is to minimize the calculation complexity and data
requirement under maximum coverage2, a good, but not necessarily accurate
algorithm could simply return a constant or random profile. Since the criteria just
mentioned are generally in direct conflict to the prediction error, an appropriate
measurement should balance them all reasonably.

3 Model

The model presented in this paper is designed to predict preference values. In
contrast to predicting behavior (which is most often of binary nature), memory-
based3 algorithms have shown to predict here more accurately than model-based4

ones [2, 7]. A reason for this unexplained phenomenon will be revealed till the
end of this section.

The focus in this paper is on minimizing the squared amount by which the
estimated preferences differ from their real ones (mean squared (prediction) er-
ror, MSE)5, while using only preference data and having no lower coverage nor
higher computational complexity than a given base algorithm.

3.1 Memory-based model

The memory-based approach shows the basic idea behind collaborative filtering
algorithms (see section 1) most clearly: It tries to predict the preference û∗

p∗ of a
particular user (active user, U∗) for a product p∗ (active product) by weighting
predictions û∗

p∗,U each based on only a single other user U . The weights ωU,U

1 There are two main classes of measurements [4]: One focusing on the order of different
predictions, one on the quality of each prediction separately.

2 The coverage is the percentage of the products for which a prediction can be given
[7].

3 Memory-based algorithms “operate over the entire user database to make predic-
tions” [2].

4 Model-based algorithms use the user database first “to estimate or learn a model,
which is then used for predictions” [2].

5 To compare this paper more easily with others the mean absolute error (MAE) is
also stated.
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measure how similar the active user is to an other user U within the considered
neighborhood U (see eq. (1)).

û∗
p∗ =

∑
U∈U

[ωU,U · û∗
p∗,U ] (1)

This is generalization of the approach of [2], allowing e.g. differences in the
user variances as suggested in [5]. Two problems of determination have to be
solved: The individual prediction û∗

p∗,U and the corresponding weight ωU,U for a
given user U .

3.2 Modeling individual predictions

A simple approach to model the preferences for a product p of the active user
yp and another user up is to assume a linear relationship (M) between them.

u∗
p = αU + βUup (M)

An advanced approach is to assume a linear relationship between their deviation
from the average product preference tp calculated over all known preferences for
the product p.

ũ∗
p = αU + βU ũp

with ũ∗
p = u∗

p − tp, ũp = up − tp
(M∗)

Since the advanced model (M∗) can easily be transformed into the simpler
model (M), we focus on the simpler one, knowing that similar results can be
used for the advanced model as well.

Both approaches assume the parameter αU and βU to be constant for all
products for any two users. α and β are estimated on in common rated products
p, such that the model holds up as good as possible, i.e. the sum of the resulting
errors εp,U squared is as small as possible (eqn. (2)). One common technique to
solve this kind of problems is called ordinary least squares (OLS), which leads
to the results shown in eqn. (3).

min
α̂U ,β̂U

∑
p

[
u∗

p − (α̂U + β̂Uup)︸ ︷︷ ︸
εp,U

]2
(2)

α̂U = u∗ − β̂U u

β̂U =
σ̂U∗

σ̂U
rU

(3)

Here rU denotes the correlation coefficient between the active user U∗ and an
other user U . Their average preferences u∗, u and estimated standard deviations
σ̂U∗ , σ̂U are calculated on products they rated in common.
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3.3 Weighting individual predictions

Assuming the independence of the error terms of different users, it can be shown,
that the expected squared error for the active product p∗ is minimal if and only
if the weights ωU,U have been chosen invers proportional to the corresponding
expected squared errors [3].

E
[(

û∗
p∗ − u∗

p∗
)2] = min ⇐⇒ ωU,U ∼ 1

E
[
ε2

p∗,U

] (U ∈ U) (4)

In other words, the weights should measure the expected prediction error
and therefore depend on the model used.6 When using an OLS-estimated linear
relationship (M) the expected squared error E

[
ε2

p∗,U

]
is well known to be

E
[
ε2

p∗,U

]
=

(
1 +

1
nU

+
(up∗ − u)2∑
p (up − u)2

) ∑
p ε2

p,U

nU − 2
(5)

where the user’s average u and sums are calculated over the number nU of
products rated in common by the active user and the other considered user U .

Independently of the technique used for estimation, the neighborhood U

should be chosen as large as possible, because every user considered reduces
the error. Therefore the neighborhood should include all those users who have
rated the active product p∗ (necessary to make the prediction) and at least 3
products the active user has rated on (necessary to estimate the expected error).

3.4 Remarks

The presented model is based on a weighted average of linear predictions. The
weights should be chosen inverse proportional to the corresponding expected
squared errors (assumed to be independently). In the model therefore, the fore-
cast of a single perfect predictor cannot be disturbed by other less perfect ones.
This obviously correct result can never be achieved when the measured similar-
ity between two people is bounded. As a bounded measurement, the correlation
coefficient underweights therefore indeed more accurate predictors.

To use this model to predict behavior — which often implies binary data
commonly found in e.g. ecommerce applications — other models of estimation
and / or individual representation might be more appropriate.

4 Empirical Validation

In this section, the two previously described models (M) and (M∗) are evalu-
ated on the EachMovie dataset, provided by Compact Computers. Next to the
6 For this reason, sequentially modifying and testing single modifications of an algo-

rithm may not lead to an optimal solution and should therefore be avoided.
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technique of ordinary least squares (OLS), a second one developed in [5] is con-
sidered: Their algorithm — already used by e.g. [6] as a benchmark — fit the
model (M) and can therefore be also applied to the model (M∗).

4.1 Dataset

The EachMovie dataset is a widely used dataset for testing collaborative filtering
algorithms [1, 2, 6, 8, 11]. The dataset is based on 72 916 users who were able to
rate on 1 628 movies between February 1st. 1996 and September 15th. 1997. A
total number of 2 811 983 individual preferences — based on a discrete rating
scale of 0 to 5 stars — are known. 73% (252 876 votes) of all 0 star ratings were
assigned to movies the users did not nor intended to see (sounds awful).

The average votes per user is 38.56, the median is 20 (see Figure 1). As
unequally as the votes are distributed among the users, they are among the
movies (Figure 2): Most users evaluated the same movies.7 Therefore the number
of in common rated movies is higher than one would expect by a density of known
preferences of 2.4%.
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Fig. 1. Distribution of ratings among the
users
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Fig. 2. Distribution of ratings among the
movies

4.2 Setup

In order to perform accurate tests, all zero-star votes which are based on un-
seen movies and afterwards all users without any ratings were deleted from the
dataset. 20% of those remaining users were used as a constant hold-out–sample
7 The Figure 2 shows that 65% of the ratings are on 10% of the movies. This quota of

ratings is higher (95%) for people with a few and lower (47%) for people with many
ratings.
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from which the active users were taken. In order to double the number of predic-
tions, the other 80% were evenly divided into two datasets, used for generating
the predictions.

To avoid an unrealistic bias in the tests, the setup maintained the unequal
distribution of preferences found in the dataset in two aspects. First, three sce-
narios were used to examine the effect of the number of known preferences for
the active user. The number of known preferences for the active user was chosen
to be a small number (5) in the first, an average number (20) in the second and
a large number (as many as possible, but not less than 20) in the third scenario.
In any scenario, 6 other preferences were withheld to be predicted (see Table
1).8

Table 1. Scenarios

Scenario 1 Scenario 2 Scenario 3

Number of known preferences 5 20 20 and more
Number of active user 9 228 6 005 6 005
Number of predicted movies per user 6 6 6
Number of databases 2 2 2

Second, the set of preferences known from the active user was randomly
drawn out of his rated movies. In order to assure a realistic set, the probability
of a movie preference to be known had been chosen proportional to the movies
popularity in the dataset.9 The movie preferences to be predicted were estimated
under the remaining ones the same way, because users rated these movies most
likely next.

4.3 Algorithms

The method of ordinary least squares (OLS) is compared with the one implied
by an algorithm developed in [5]. Their algorithm10 matches the simple model
(M), where the parameters are given by

α̂U = u∗ − β̂Uu,

β̂U =
σU∗

σU
· 1,

ωU,U ∼ |rU | · min{50; nU},
(H)

8 To avoid a bias, all active users with less than 5 + 6 = 11 (20 + 6 = 26) ratings were
excluded from the first (second / third) scenario.

9 A total random choice would have lead to more predictions of more popular movies
using less popular ones.

10 This algorithm predicts significantly more precisely [3] than one based on [2], which
e.g. is used as a benchmark in [1].
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and the neighborhood U is limited to those 30 users U with the highest positive
weights ωU,U which are based on the correlation coefficient rU and the number of
in common rated products nU between the active user U∗ and the corresponding
user U . For robustness, the user averages u∗, u and standard deviations σU∗ , σU

are estimated over all their known preferences.
Both methods of estimation are used for prediction with each of the two mod-

els (M) and (M∗). The four resulting algorithms (see Table 2) were examined.11

Table 2. Algorithms examined

Based on OLS Herlocker et al.

Model (M) OLS H
Model (M∗) OLS∗ H∗

4.4 Results

The results of the four tested algorithms are shown in Table 3 and visualized
in Figures 3 to 8. A Wilcoxon–Wilcox significance test showed that the order of
the algorithms implied by the MAE12 to be significant at the 1% level.13

(worse) OLS ≺ OLS∗ ≺ H ≺ H∗ (better)

Table 3. Prediction errors

Scenario 1 Scenario 2 Scenario 3
Algorithm MSE MAE MSE MAE MSE MAE

OLS 1.5724 0.9755 1.3787 0.9113 1.4114 0.9208
OLS∗ 1.5592 0.9555 1.4096 0.9019 1.3503 0.8943
H 1.4853 0.9270 1.2066 0.8320 1.2151 0.8464
H∗ 1.3910 0.9064 1.1574 0.8260 1.1797 0.8393

11 In all four algorithms occurred a division-by-zero–errors during calculations, when-
ever the variance on the in common rated movies vanished. In those cases, the
non-active user was treated as non existent for the particular prognosis.

12 The higher MSE but lower MAE of the OLS∗ compared to the OLS algorithm in
the second scenario (see Figure 5) is due to a few out-of-bounds prognoses, caused
by some almost vanishing standard deviations in the denominator.

13 The significance level of 1% was achieved in the second scenario after tripling the
number of predictions.
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Most surprisingly, the two OLS based algorithms performed poorly compared
to the algorithm of [5], although theoretical constructed thoughts concluded oth-
erwise. This is mainly due to the fact, that the OLS algorithms assume perfect
data for their calculations: They react very sensitive to e.g. the estimated pre-
diction error which can only be approximated with little data from a discrete
zero to five star rating scale. It can therefore be concluded that the choice of
algorithm depends on the data used, because of a trade off between the theoret-
ical quality and robustness of estimation. Similar results were already found in
[2]: Their tested linear model performed comparably poorly on binary data, but
well on the EachMovie dataset.

In all cases, the advanced model (M∗) was able to outperform the model (M)
significantly without increasing its computational complexity. Therefore it seems
reasonable to consider the advanced model (M∗) as a basis for future algorithms.

The general decrease of the prediction error from the first to the second
scenario is due to better knowledge of the active user and therefore better de-
termination of accurate predictors and their errors. Because of the setup chosen
(see section 4.2), the popularity of the predicted movie decreases simultaneously
and so does the relevant neighborhood. For this reason, several better predictors
are excluded and a set of less accurately predicting neighbors remain. This effect
dominates from the second to the third scenario, so that the mean prediction
error increases.14

5 Summary

Memory-based collaborative filtering is a technique for personalizing content on
the web. Since finding the right algorithm is a problem of optimization, the
objective function i.e. the measurement of its quality should be given before its
development. In this paper, the algorithms primary objective was to minimize
the squared error of the predicted preferences.

This objective, the model of weighting individual predictions (1), and the
assumption of independence of the error terms from those predictions determine
the weights for the model: The weights should be chosen inverse proportional to
the estimated error of the corresponding predictions. This implies:

– The weights depend on the model of individual predictions and vice versa.
– A sequential testing of modifications which ignores this interdependency

might lead to false conclusions.
– The (multiplicative) inverse similarity-measurement should be interpretable

as an estimated prediction error of the individual prediction.

Analyzing the EachMovie dataset showed that the known preferences are
sparse and not equally distributed among products nor among people. This

14 The OLS∗ algorithm shows differently, because their primary problem — a few
almost vanishing variances calculated on a few in common rated products — has
been solved.
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unequal distribution should be maintained in tests by appropriately selecting
products and people. Using this data for testing four algorithms showed a trade
off between robust and correct estimation of parameter. The unexpectedly weak
performance of the OLS estimation can be attributed to the different nature of
the data (i.e. a discrete and limited versus a continuous and unlimited scale).
Due to its robust estimations, the estimation proposed in [5] showed to pre-
dict more accurately with the kind of data found in the EachMovie dataset. In
this paper, their algorithm was significantly improved by applying it not on the
preference data itself, but on its deviations from the average preferences of the
particular products.
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ABSTRACT
In electronic markets, matchmaking mediates demand and
supply based on profile information. Since a matchmak-
ing system is usually employed to support the decisions of
a real person, it is desirable to have the user’s preferences
reflected in the actions of the matchmaking system. These
preferences are usually modeled using a configurable sys-
tem which may be adapted to the actual requirements and
user’s needs. The question, however, is, how can the system
react to changing user preferences resp. how can the system
be adapted to different user requirements. We follow an
approach which incorporates explicit and implicit feedback
into the matchmaking process and thus enables the user to
react to the results presented by the matchmaking system.
The User Adaptability Framework introduced in the course
of this paper offers a general adaption solution with support
for recording implicit and explicit user feedback, perform-
ing feedback analysis and generating analysis reports. We
present several feedback analysis algorithms suited for differ-
ent purposes which have been implemented using the User
Adaptability Framework. In a subsequent evaluation these
algorithms are eventually compared regarding to analysis
performance and the evaluation results discussed.

Keywords
User-adaptability, user preferences, matchmaking, machine
learning

1. INTRODUCTION
Matchmaking [12] [10] is the process which determines the
relevance of an offered item compared to a given query in
a specific domain. Situations in which the matchmaking
process is typically used are market place scenarios where

∗The full version of this paper is available as the diploma
thesis Architektur and Basisalgorithmen eines Adaptiven
Matchmakingsystems (in german) at Philipps-University
of Marburg, Department of mathematics and computer
science

Preference Learning: Models, Methods, Applications. Workshop to be held
as part of the conference KI-2003 2003 Hamburg, Germany.

participants offer specific items and other users are inter-
ested in selecting the item which satisfies their requirements
at best. In typical application scenarios the structure of the
offered items and the specification of the requirement can
reach a complexity so that a human user is not able to per-
form the process in an acceptable time. Of course not only
the complexity drives the need for automated methods but
also the wish to implement autonomous user agents which
can act in the background according to the user preferences
and are able to return with a result that satisfies the user’s
requirements.

As different users usually determine the relevance of an of-
fer in different ways, a matchmaking system which forces a
single preference model for all users will most probably suf-
fer from acceptance problems as users want to see their own
preferences reflected in the returned results.

This requirement leads to a number of questions:

1. How can user preferences be modeled so that a match-
making system is able to incorporate these preferences
in the matchmaking process?

2. Given a preference model, how can the actual user
preferences be communicated to the matchmaking sys-
tem?

3. How can the system cope with changing preferences?

4. What can be done if the user is not satisfied with the
results returned by the system?

This paper deals with the above questions by first introduc-
ing the SieMatch Matchmaking Framework by Siemens AG
[7] as an example for a highly configurable matchmaking
system. In the context of [3] this system has been extended
by the User Adaptability Framework, which provides a sim-
ple way to incorporate user feedback in the matchmaking
process and which defines an architecture for feedback anal-
ysis algorithms to learn the actual user preferences without
forcing the user to specify them explicitly. Using this frame-
work, we will develop several analysis algorithms which im-
prove the matchmaker configuration by processing the user
feedback.

2. THE USER ADAPTABILITY
FRAMEWORK



As the underlying matchmaking system we use the SieMatch
Matchmaking Framework developed by the Siemens AG.
The SieMatch Framework follows a multi-dimensional match-
making approch. It is based on the assumption that the
match relevance of a candidate with regard to a given query
(a centroid in the SieMatch terminology) is composed of
one or more dimensions or “aspects” between the candi-
date and the centroid. An application of the matchmaker in
the human resources domain might for example define the
dimensions “Wage expectation”, “Skills” and “Education”
between applicants and openings. For each of these dimen-
sions, the SieMatch Matchmaker will compute the relevance
of the candidate for the given centroid. Using the dimen-
sion relevances, the matchmaker applies an aggregate func-
tion which computes the overall match relevance. Although
the SieMatch Framework is able to use arbitrary aggregate
functions, we restrict our focus to a weighted sum function
which incorporates a user preference model based on the
multi-attribute utility theory introduced in [14].

We will now provide a mathematical model for the match-
making process, which will be used in the course of this
paper to describe the developed framework and algorithms.

Let

• The application domain Dom, e.g. Dom = “human
resources”.

• The set C = CDom of candidates from the domain
Dom.

• The set Q = QDom of centroids (queries in the match-
making system) from the domain Dom.

• The recursively defined set Dim = String × ℘(Dim)
of all dimensions with String = set of all dimension la-
bels. Thus, a dimension is either atomic or composed
of several subdimensions and has a specific label de-
scribing its purpose.

For a fixed SieMatch configuration let:

• D = {D1, ..., Dn} ⊆ Dim be the dimensions between
centroid and candidate where

∀Di ∈ D : Di =


(si, {Di

1, ..., D
i
ni
}) ni sub − dim.

(si, ∅) else

and si ∈ String is the unique dimension label, e.g.
s2 = “soft skills”.

• For every dimension Di = (si, ∅) a distance function
fi : Q × C → [0; 1] to determine the match between
candidate and centroid dimension.

• For every dimension Dj = (sj , {Dj
1, ..., D

j
nj
}) an ag-

gregate function gj : [0; 1]nj → [0; 1] and fj(q, c) :=
gj(f

j
1 (q, c), ..., f j

nj
(q, c)) · kj(f

j
1 (q, c), ..., f j

nj
(q, c)).

• An aggregate function g : [0; 1]n → [0; 1] for the com-
putation of the overall result.

• For every dimension Di = (si, {Di
1, ..., D

i
ni
}) let ki :

[0; 1]ni → {0, 1} be defined as

ki(x1, ..., xni) =


0 ∃j : xj = 0 and Di

j k.o. − crit.
1 else

Let a similar function k be defined for the top-level
dimensions D.

Using these notions, the overall distance between a centroid
q ∈ Q and a candidate c ∈ C can then be computed as
f(q, c) = q(f1(q, c), ..., fn(q, c)) · k(f1(q, c), ..., fn(q, c)).

This work uses only a weighted sum aggregate function:

g(x1, ..., xn) = gw1,...,wn =
Pn

i=1 wi·xiPn
i=1 wi

. This is certainly a

restriction, but empirical studies [13] show that this model
yields satisfactory results.

The main goal of this paper is to introduce the User Adapt-
ability Framework which has been developed during the
diploma thesis [3]. In order to discuss the developed frame-
work, we first need to explain what we understand by the
terms ”user adaptability” and ”user feedback”.

2.1 User adaptability
Definition 1. (User adaptability). Automated learning of

the user’s preferences concerning the computation of the
matchmaking results so that the matchmaking system is
able to produce results which reflect the user’s requirements.
The preferences can cover these aspects of the matchmaking
system:

• Dimension weights: How important are the dimen-
sions for the user with regard to the main result? How
can these weights be be automatically fitted to the
user’s preferences without forcing him or her to spec-
ify the weights directly?

• Selection of k.o.-criteria: Which dimensions are k.o.-
criteria for the user, that is, which dimensions should
disqualify a candidate, if the dimension distance lies
below a certain threshold?

• Selection of the aggregate function: How does the user
determine the overall matchmaking result from the dis-
tances in the dimensions? Does the user prefer a dif-
ferent aggregate function than specified in the match-
making configuration?

• Selection of distance functions: Are there distance func-
tions which reflect the user’s preferences better than
the currently used ones?

• Definition of the dimensions between query and candi-
dates: Determine the structure of the dimensions for
the user. Is it possible that some elements of the pro-
files which haven’t been regarded in the configuration
are relevant for the distance computation?

• Source of the candidates (Connectors): Which candi-
date sources (”connectors” in the terms of the SieMatch
Framework) deliver candidates that are preferred by
the user? Is it possible to identify sources which usu-
ally provide the system with candidates with a low
rating?



This work concentrates on an adaptive dimension weighting
and selection of k.o.-criteria in the matchmaking configura-
tion. All other aspects will be discussed shortly in section 5
but have not been realized, mostly due to the limited time
of the diploma thesis.

The user adaptability should be realized by recording ex-
plicit and implicit feedback of the user to the matchmaking
results presented by the matchmaker.

Definition 2. (Explicit feedback). Explicit feedback gives
the user the possibility to express his or her opinion con-
cerning the presented matchmaking results. We distinguish
two basic types of explicit feedback:

• Qualitative feedback : The user associates a number
xM ∈ [−1; 1] to the matchmaking result. We dis-
tinguish different modes M of qualitative feedback:
M ∈ {MA,MR, CA, CR} which provide the number
xM with a semantic meaning

– MA (Match, absolute): The user gives a direct
rating of the quality of the matchmaking result.

– MR (Match, relative): The user rates the returned
result in relation to his or her impression of the
candidate (e.g. the returned match is far too good
for the candidate).

– CA (Candidate, absolute): An alternate rating
of the candidate, i.e. the match result the user
expects the matchmaker to return for this candi-
date.

– CR (Candidate, relative): The user rates the can-
didate in relation to the matchmaking result (the
opposite statement as MR feedback).

• Ranking orders: The possibility to arrange the candi-
dates (usually a subset) according to the user’s prefer-
ences without actually specifying the concrete match
relevances. This is probably a more natural way of
giving feedback than associating an abstract number
to a candidate.

Definition 3. (Implicit feedback). Observing the user’s
actions concerning the returned matchmaking results and
candidates. Some of the actions which may be performed
can give a hint on the user’s preference regarding the can-
didates, as for example deleting a candidate or inviting a
candidate to a job interview. In the simplest form of im-
plicit feedback, these actions can be associated to qualitative
feedback.

The User Adaptability Framework integrates all presented
kinds of feedback and provides the application developer
with an API that enables a simple integration of the frame-
work into existing matchmaking applications. The frame-
work is divided into a matchmaking independent part and
the Adaptive Matchmaking Component which uses the com-
mon api to implement a matchmaking-specific adaption so-
lution. The matchmaking independent part consists of the
following components:

• Action history: A component that enables the record-
ing of arbitrary user actions throughout the program
flow. The design is kept in such a way, that almost no
assumptions on the structure of the actions were made,
except that an action must have a name and can have
a type and one or two serializable parameters. The
component offers several Enterprise Java Beans based
interfaces to define, store and process user actions in
the application server.

• Application profile management: Delivers the basis for
storing the user preferences and context data required
for feedback analysis.

• Analysis and Report: Provides the possibility to per-
form an analysis in the application server using a ses-
sion bean that has been parameterized using the Com-
mand design pattern [2] to support different kinds of
analysis algorithms and the cooperation of multiple
algorithms. Additionally, the component contains an
interface for generation of analysis reports. These re-
ports are be used to return the result of the feedback
analysis to the user or to pass the intermediate result
of an algorithm to the succeeding algorithm.

• Miscellaneous helper components, e.g. an access tool
for the EJBs that enables to develop the algorithms
independently of the actual execution place, that is,
inside the application server or at the client.

2.2 Related work
Concering the matchmaking topic, much research has been
done by Sycara and Klusch who introduced the LARKS
matchmaker in [10]. Multidimensional matchmaking on which
the work of this paper is based has been covered by Veit,
Müller, Weinhardt in [12]. The GRAPPA framework pre-
sented in [12] integrates negotation role definitions and is
in many aspects different from other solutions: flexible def-
inition of demand and supply profiles, arbitrary description
schemes for the matchmaking logic including nested struc-
tures and an open design of the framework which enables
the easy integration of new matchmaking algorithms.

This paper extends the matchmaking approach by enabling
user-adaptable preferences. In [5] Guo and Müller follow
an information-theoretic approach to elicit utility functions
automatically using user feedback. This approach has been
extended and applied to the matchmaking problem. Other
methods used to learn user-preferences presented in this pa-
per involve genetic algorithms. [6] and [4] provide good in-
troductions to these subjects.

3. LEARNING ALGORITHMS
The User Adaptability Framework supports pluggable and
exchangeable analysis algorithms for different kinds of feed-
back. As one of the main results of [3] several algorithms for
qualitative and ranking order feedback have been developed
which. These algorithms will be presented in this section.

We use a genetic algorithm approach (see [6][4]) as a basis for
two analysis algorithms. This method was chosen because it
offers a flexible way of analyzing feedback of different kinds
and can be easily extended for future analysis algorithms.



3.1 Analysis of qualitative Feedback: Quali-
tative Feedback Analyzer

The first analyzer based on the genetic algorithm is suited
best for qualitative feedback in the mode Candidate, ab-
solute. The basic idea behind this algorithm is to try to
generate a dimension weighting that implies a minimal de-
viation from the given user feedback. To support the other
kinds of qualitative feedback as well, we use the heuristic
conversion described in [3], appendix B.

Hypothesis representation
A hypothesis h ∈ H about a possible matchmaker configu-
ration consists of a representation of the dimension weights
and the choice of k.o. criteria. The weight and the k.o. cri-
terion marker for each dimension are converted into a bit
string.

3.1.1 Fitness function
To determine the quality of a hypothesis the genetic algo-
rithm uses a fitness function which computes the fitness f(h)
for a given hypothesis h. In our case, the fitness function
must determine how good the matchmaking results pro-
duced under a given hypothesis fit to the feedback given
by the user. Of course, the analysis algorithm should be
careful with proposing k.o.-criteria, since these criteria are
a powerful way of disqualifying candidates. We use a rather
conservative way of dealing with k.o.-criteria, i.e. we ac-
cept only k.o.-criteria in a hypothesis where there is not a
single instance of user feedback that does not conform with
the selected k.o.-criterion. We use the following feedback
function: Let

• U ⊆ Q×C the set of centroid / candidate pairs rated
by the user.

• fCA
user : U → [0; 1] the mapping that associates the

Candidate, absolute feedback to a centroid / candidate
pair. Feedback in other modes will be converted using
the respective conversion rules ([3], appendix B).

• f : U → [0; 1] the mapping that computes the total
distance between the centroid and the candidate using
the matchmaking configuration.

• fh : U → [0; 1] do., using the matchmaking configura-
tion proposed in hypothesis h

• P the current population of hypothesis

Let the fitness function F : P → [0; 1] be defined by

F (h) := min

 P
u∈U |fuser(u) − fh(u)|

|U | , K(h)

ff

and

K(h) :=


0 falls ∃u ∈ U : kh(u) = 0 ∧ fuser(u) > 0
1 sonst

The function F computes the deviations between the match-
making results produced using the weights and k.o.criteria
from the hypothesis h and the ratings (i.e. Candidate, rela-
tive feedback) given by the user. K(h) is used to disqualify
a hypothesis with an illegal k.o.-criterion.

3.1.2 Genetic operators
The analyzer uses a slightly modified version of the standard
Mutation, Probabilistic and Elitist selection, and Crossover
operators to generate a best-fitting hypothesis. Addition-
ally, in order to take care of the special requirements re-
garding the dimension weights and the k.o.-criteria, we use:

• Weight normalization: Normalizes the weights wi in
the hypothesis h so that

Pn
i=1 wi = 1 with wi ∈ [0; 1]

• “Hypothesis tamer”: Deletes the k.o.-criteria of a hy-
pothesis that has been disqualified due to a false k.o.-
criterion. A k.o.-criterion is called “false” if it leads
at least once to disqualifying a candidate that was not
ranked with a maximum distance by the user.

3.2 Analysis of ranking orders: Ranking Or-
der Feedback Analyzer

The algorithms presented in the preceding text were only
applicable to qualitative feedback. As the second way of
giving explicit feedback, the User Adaptability Framework
allows the user to specify ranking orders of the candidates
for a given query.

It is the goal of the algorithm that analyzes the user-given
ranking orders to generate a dimension weighting and selec-
tion of k.o.-criteria under which the ranking orders given by
the user are preserved, i.e. the candidates are returned in
the same sequence as specified by the user.

The RankingOrderFeedbackAnalyzer algorithm is also based
on the genetic algorithm. The main difference to the al-
ready presented UserRatingFeedbackAnalyzer algorithm is
the special fitness function which provides a measure of how
good the ranking orders are preserved using the configura-
tion proposed by the hypothesis.

3.2.1 Input of the algorithm
The input for this analysis algorithm is:

• R1, ..., Rm ⊆ {((q, c1), ..., (q, cn)) ∈ (Q × C)n; n ∈ N>1}
the ranking orders specified by the user. A ranking or-
der Ri = ((r, c1), ..., (r, cn)) contains candidates cj that
have been put into a ranking order with regard to the
common centroid q.

3.2.2 Selection of the fitness function
Crucial for a successful application of a genetic algorithm
to search for a suitable configuration is the selection of the
fitness function. We chose the following way to determine
the quality of a hypothesis h:

• Determine the number of neighbor permutations nec-
essary to transform the ranking order generated under
h into the ranking order given by the user divided by
the number of maximum permutations.

If we have more than one instance of ranking order feedback,
we compute the arithmetic mean of the above value.



The computation of the fitness of a hypothesis h consists in
addition to the value mentioned above of two more compo-
nents:

• Square deviation of the original configuration weights:
Computes the square deviation between the weights wi

in hypothesis h and the original weights worig
i in the

currently used configuration. This ensures that the
new configuration deviates as little as possible from
the original configuration.

• Conservative treatment of k.o.-criteria: If h contains a
k.o.-criterion, so that a at least once a candidate that
has been disqualified because of this criterion does not
appear at the end of a ranking order, this hypothesis
is discarded.

The fitness function F : P → [0; 1] is defined as follows:

F (h) = min {0.95 · f(h) + 0.05 · g(h),K(h)}
with

g(h) =
n − Pn

i=1(wi − worig
i )2

n

and

K(h) =


0 at least one k.o.-crit. violates a ranking order
1 else

3.2.3 Genetic operators
We use the same operators as in the preceding algorithm.

3.3 Analysis of mutual information: Mutual
Information Feedback Analyzer

A completely different way of analyzing qualitative user feed-
back is the mutual information approach. This statistical
method tries to reveal a correlation between the positive and
negative rating of the user and the value of the candidates
in each dimension. The algorithm developed here extends
the adaptive weight determination method proposed in [5]
and applies it to the matchmaking situation.

The mutual information

H(A,B) =
X
a∈A

X
b∈B

P (A = a, B = b) log
P (A = a, B = b)

P (A = a)P (B = b)

introduced by Shannon in [9] measures the reduction in the
uncertainty in the prediction of the value of A, E(A), if the
value of the second variable B is already known.

The basic idea of this analysis algorithm is to compute H(A,B)
between the direction of the user feedback F and the dis-
tance Di of each dimension and thus determine how a good
or bad value in a single dimension correlates with positive
or negative user feedback.

Using these mechanisms we take the following approach:

• Let U ⊆ Q × C be the set of all centroid / candidate
pairs rated by the user.

• Let fuser : U → [−1; 1] the mapping that associates
the qualitative feedback in the mode candidate, rela-
tive1 to every u ∈ U .

• The distances occurring in a dimension Di will from
now on not be regarded absolute but relative to the
average distance in this dimension for all matched can-
didates. To differentiate between the actual dimension
value and the discrete value, we use the notation Di

for the original and D̃i for the discrete value.

• For a distance function fi : Q×C → [0; 1] let frelative
i :

Q×C → [−1; 1] be defined as the relative distance re-
spective to the average dimension distance of dimen-
sion Di

frelative
i (x) :=

8><
>:

fi(x)−ri
1−ri

if fi > ri

fi(x)−ri
ri

if fi < ri

0 else

with ri ∈ (0; 1) the reference distance for dimension
Di.

• The feedback F given by the user will also be treated
discretely so that only positive and negative feedback
is regarded. Notation: F̃ .

• Computation of the mutual information H(D̃i, F̃ ) be-
tween each dimension Di and the candidate, relative
feedback F given by the user (Di and F are being re-
garded as discrete random variables, to match with the
above presentation).

• Computation of hi :=

(
H(D̃i,F̃ )

E(F̃ )
if E(F̃ ) 	= 0

0 else
as

the mutual information relative to the uncertainty in
the user feedback E(F̃ ).

Thus, hi is the fraction by which the uncertainty in the user
feedback is reduced if it is known, if Di is above or below
average. Unfortunately, the mutual information H(D̃i, F̃ )
alone does not not make a proposition about the actual
direction of the correlation. [3] shows an example, where

H(D̃i, F̃ ) is identical for two opposed situations.

To avoid this problem, we take the feedback and the old
weights into account. The new weights w̃i are computed as
follows: Let

• wi ∈ [0; 1] be the weight of dimension Di in the original
configuration

• ∀i ∈ {1, ..., n} let si : U → [−1; 1] be defined as
si(u) := sign(frelative

i (u) ·fuser(u)) with fi : Q×C →
[0; 1] the i-th distance function of the matchmaking
configuration

• Then ŵi is defined as

w̃i := wi + k · H(D̃i, F̃ )Pn
j=1 H(D̃j , F̃ )

·
P

u∈U si(u)|fuser(u)

|U |
1if the qualitative feedback is not available in this mode, the
corresponding conversion functions are applied



Using the common factor k the new weights are fitted so that
the square deviation between the relevances under the new
weighting wi and the feedback in mode candidate, absolute
is minimized. Accordingly, k is determined by a extremal
value computation so that the following sum is minimized:

X
u∈U

„ Pn
i=1 ŵi(k) · fi(u)Pn

i=1 ŵi(k)
− fCA

user(u)

«2

4. EVALUATION
4.1 Underlying model
We used an automated evaluation method in order to mea-
sure the quality and performance of the developed algo-
rithms. The following algorithm describes the steps taken
to evaluate the feedback analysis algorithms:

Let

• nuser be the number of virtual users of the matchmak-
ing system

• q ∈ Q be a fixed centroid

• C with ncand := |C| be the set of available candidates

• M ⊂ F × A be the set of tuples (fi, ai) ∈ F × A with

F = the set of feedback generator algorithms

and

A = set of analysis algorithms

Then the evaluation algorithms consists of the following
steps:

FOR i := 1 TO nuser DO

1. For the current user generate a configuration confuser

with randomly chosen dimension weights and perform
the matchmaking between the candidates from C and
the centroid q using that configuration.

2. Generate a configuration confsystem with equally
weighted dimensions.

3. ∀(fi, ai) ∈ M perform the following steps:

(a) Generate the feedback using algorithm fi and cre-
ate the instances of the analysis algorithms ai

(b) Perform the analysis in the application server

(c) Change confsystem according to the analysis re-
sults

(d) Perform the matchmaking using the adapted con-
figuration confsystem

(e) Compute the deviations between the relevances
computed by the matchmaking system using the
configurations confuser and confsystem

END FOR

Since the User Adaptability Frameworks supports arbitrary
combinations of the algorithms which do not all make sense
and to keep the evaluation effort in a sensible range, we
restricted the evaluation to a selected number of algorithm
combinations:

• The UserRatingFeedbackAnalyzer, RankingOrderFeed-
backAnalyzer, MutualInformationFeedbackAnalyzer al-
gorithms separately

• UserRatingFeedbackAnalyzer + RankingOrderFeedback-
Analyzer

4.2 Experimental results
The following graphs present the results obtained in the au-
tomated evaluation. We measured the change in the devia-
tion between the computed relevances (continuous line) and
the dimension weights (dashed line). To gain better com-
parability, the deviations were normalized on the maximum
deviation, i.e. the deviation before the analysis (1.0 = devi-
ation from the weights without analysis; 0.0 = no deviation
between computed weights and given weights).

The results show that the qualitative feedback analysis yields
the best results, the genetic algorithm User Rating Feedback
Analyzer being the most promising method (fig. 1 and fig.
4).

The Ranking Order Feedback Analyzer algorithms appears
to be the worst analysis algorithm (fig. 2). However, regard-
ing its functioning, the result is not at all surprising. This al-
gorithm optimizes the configuration that all user-given rank-
ing orders are preserved and the generated configuration has
the minimum deviation from the original configuration. In
other words, it assumes that the original configuration is
already usable and may need only slight improvements.

Combining the User Rating Feedback Analyzer and the Rank-
ing Order Feedback Analyzer algorithms shows that the re-
sults of the first algorithm improve after the application of
the ranking order analysis (fig. 3).

5. CONCLUSION AND OUTLOOK
In the preceding chapters we introduced the User Adaptabil-
ity Framework which is able to adapt the configuration of an
arbitrary matchmaking system to the preferences concern-
ing the dimension weighting and selection of k.o.-criteria of
the user. This adaption is done by the analysis of implicit
feedback which has been recorded by observing the user’s
interaction with the application and by feedback which has
been given directly by the user.

The User Adaptability Framework provides the infrastruc-
ture for adaption solutions by offering reusable components
such as preference and profile management and a frame-
work for analysis algorithms. Although this paper focuses on
the matchmaking-based application of the User Adaptabil-
ity Framework, its universal applicability is demonstrated in
[3] which contains an completely matchmaking-independent
example that uses the framework.

We introduced several feedback analysis algorithms suited
for various purposes and presented evaluation results which



Figure 1: Reduction of the deviation between the
relevances and the dimension weights (User Rating
Feedback Analyzer)

show that these algorithms work satisfactory. These results
also show that the combination of feedback analysis algo-
rithms which process different kinds of feedback (e.g. qual-
itative feedback and ranking orders), which is a main func-
tionality of the User Adaptability Framework, yields a result
which is better than the application of only one analysis al-
gorithm.

These algorithms have to be regarded as sample implemen-
tations of feedback analysis algorithms as the User Adapt-
ability Framework was designed in such a way that new
algorithms can easily be plugged in.

Integrating the User Adaptability Framework into match-
making-based applications promises a broader user accep-
tance as the framework offers the possibility for the user
to optimize the matchmaking behavior of the application
according to his preferences. This optimization eventually
leads to an improved matchmaking quality perceived by the
user.

However, a few aspects have not yet been covered which may
yet lead to interesting applications of the User Adaptability
Framework. These aspects will in the following be shortly
presented.

• Automated selection of a configuration for a centroid:
The current version of the SieMatch Framework uses a
common configuration for all queries of a user in a do-
main (e.g. human resources). There are, of course, sit-
uations when several configurations in one application
are necessary. As for example in a human resources
scenario when openings for a secretary and a depart-
ment manager have to be assigned. Obviously, most
personnel consultants would consider different aspects
for the candidates for those openings. An interesting
extension of the adaption idea would be to support the
automated selection of the correct specialized configu-

Figure 2: Reduction of the deviation between the
relevances and the dimension weights (Ranking Or-
der Feedback Analyzer)

ration for a given centroid.

• Learning of alternate aggregate functions: This work
assumes that the total relevance of candidate is com-
posed of a weighted sum of all distance results. Giving
up this assumption eventually leads to new possibili-
ties for feedback analysis. With the help of appropriate
algorithms, the complete aggregate function could be
designed adaptive, so that more elaborate aggregate
functions can evolve.

• Learning of alternate distance functions: The previ-
ously discussed case of adaptive aggregate functions
can of course be transferred to the distance functions
themselves. This work assumes that the distance func-
tions return correct values for the aspects between
candidate and centroid and offers method to optimize
the weightings of these aspects. There may be situ-
ations when either the existing distance function do
not return satisfactory results or no distance function
is available at all. In this situation, there are at least
two ways of learning the distance functions by analyz-
ing user feedback:

1. Composing the distance functions of base distance
functions: As proposed in [11] if a specialized dis-
tance function for a dimension is not available, the
system might try to break that dimension down
into sub-dimensions and apply base distance func-
tions available in the matchmaking system (e.g.
free-text or number range comparisons). Thus,
a dimension obtains a substructure with several
sub-dimensions that produce, with the help of an
aggregate function, the overall result.

2. Learning of general distance functions: If the above
approach is not applicable, this more general method
tries to learn the complete distance function by
analyzing the user feedback. This general prob-
lem of classifying data belongs to the field of in-
formation retrieval.



Figure 3: Reduction of the deviation between the
relevances and the dimension weights (User Rat-
ing Feedback Analyzer and Ranking Order Feedback
Analyzer)

• Adaptive transformation of the results of a distance
function: Assuming that a distance function produces
correct results for the dimensions between candidate
and centroid, one could ask the question if the distri-
bution of that values is always correct for every user.
A conservative user might tend to devaluate a candi-
date in a specific dimension much faster than a less
conservative user. A user-adaptive system can try to
automate this process for the user by selecting the ap-
propriate transformation function (e.g. threshold or
distribution functions).
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