E. L. Allgower, P. Ashwin, K. Böhmer and Z. Mei.
Liapunov-Schmidt reduction for a bifurcation problem with periodic
boundary conditions on a square domain.
In E.L. Allgower, K. Georg and R. Miranda (Eds.), Exploiting
Symmetry in Applied and Numerical Analysis, Lectures in Applied Mathematics 29,
pages 11-22. AMS Providence, 1993.
E.L. Allgower, K. Böhmer and M. Golubitsky.
Bifurcations and Symmetry: Cross Influences between Mathematics
and Applications.
ISNM 104. Birkhäuser Verlag, Basel, Boston, 1992.
E.L. Allgower, K. Böhmer, A. Hoy and V. Janovsky.
Direct methods for computation of singular roots,
eingereicht bei ZAMM. Preprint 11/96, Schwerpunktprogramm der DFG,
Dynamik: Analysis, effiziente Simulation und Ergodentheorie
E.L. Allgower, K. Böhmer and Z. Mei.
On new bifurcation results for semilinear elliptic equations with
symmetries.
In J.R. Whiteman (Ed.), The Mathematics of Finite Elements and
Applications VII, pages 487-494. Academic Press Ld., London New
York, 1991.
E.L. Allgower, K. Böhmer and Z. Mei.
Exploiting equivariance in the reduced bifurcation equations.
In E.L. Allgower, K. Böhmer and M. Golubitsky (Eds.),
Bifurcation and Symmetry: Cross Influence and Application, ISNM 104, pages
1-10. Birkhäuser Verlag, Basel, 1992.
E.L. Allgower, K. Böhmer and Z. Mei.
Branch switching at a corank-4 bifurcation point of semi-linear
elliptic problems with symmetry.
IMA J. Numer. Anal. 14:161-182, 1994.
P. Ashwin, K. Böhmer and Z. Mei.
A numerical Liapunov-Schmidt method for finitely determined problems.
In E.L. Allgower, K. Georg and R. Miranda (Eds.), Exploiting
Symmetry in Applied and Numerical Analysis, Lectures in Applied Mathematics 29,
pp 49-69. AMS, Providence, 1993.
P. Ashwin, K. Böhmer and Z. Mei.
A numerical Liapunov-Schmidt method with applications to Hopf
bifurcation on a square.
In Math. Comp., 64:649-670
and S19-S22, 1995.
P. Ashwin, Z. Mei.
A Numerical Bifurcation Function for Homoclinic Orbits,
eingereicht SIAM J. Numer. Anal., Preprint 8/96, Schwerpunktprogramm der DFG,
Dynamik: Analysis, effiziente Simulation und
Ergodentheorie.
K. Böhmer.
On a numerical Lyapunov-Schmidt method for operator equations.
Philipps-Universtiät Marburg, Fachbereich Mathematik,
Bericht Nr. 2, 1989
Computing, 53:237-269, 1993.
K. Böhmer, C. Geiger, J. Rodriguez.
On a numerical Liapunov-Schmidt spectral method, Part II:
The reduction method and its applications.
SP-Report 28/97.
K. Böhmer, W. Govaerts, V. Janovsky.
Numerical detection of symmetry breaking bifurcation points with
nonlinear degeneracies.
Preprint 18/96, Schwerpunktprogramm der DFG,
Dynamik: Analysis, effiziente Simulation und Ergodentheorie.
K. Böhmer, D. Janovska, V. Janovsky.
Computer aided analysis of imperfect bifurcation diagrams, II
Pitchfork bifurcation,
eingereicht bei Bifurcation and
Chaos, Preprint 7/96, SP-Danse.
K. Böhmer and Z. Mei.
On a numerical Lyapunov-Schmidt method.
In E.L. Allgower and K. Georg (Eds.), Computational Solutions
of Nonlinear Systems of Equations, Lectures in Applied Mathematics 26, pages
79-98. AMS, Providence, 1990.
K. Böhmer and Z. Mei.
Mode interactions of an elliptic system on the square.
In E.L. Allgower, K. Böhmer and M. Golubitsky (Eds.),
Bifurcation and Symmetry, ISNM 104, pages 49-58. Birkhäuser Verlag,
Basel, 1992.
M. Büttner, B. A. Schmitt and R. Weiner.
W-methods with automatic partitioning by Krylov techniques for large
stiff systems.
Tech. Rep. 25, University of Marburg, 1992.
M. Büttner, B. A. Schmitt and R. Weiner.
W-methods with automatic partitioning by Krylov techniques for large
stiff systems.
SIAM J. Numer. Anal., 32:260-284, 1995.
Z. Mei.
Utilization of scaling laws and symmetries in the path following of a
semilinear elliptic problem.
In E.L. Allgower, K. Böhmer and M. Golubitsky (Eds.),
Bifurcation and Symmetry, ISNM 104, pages 263-173. Birkhäuser Verlag,
Basel, 1992.
Z. Mei
Solution branches of a semilinear elliptic problem at corank-2
bifurcation points with Neumann boundary conditions,
In The royal society of Edinburgh proceedings A, 1993,
123A, pp. 479-495.
Z. Mei.
Numerical bifurcation analysis for reaction-diffusions
equations.
PhD thesis, vorgelegt als Habilitationsschrift am Fachbereich
Mathematik der Philipps-Universität Marburg, 1997.
Z. Mei, A. J. Roberts
Equations for turbulent flood waves.
In Proc. Of IUTAM/ISIMM Symposium on Structure and Dynamics
of Nonlinear Waves, 1994, A. Mielke, K. Kirchgässner (Eds.),
pp. 242-352. World Scientific.
A. Schwarzer
Iterationsmethoden für grose, dünn besetzte
Eigenwertproblemeskalierungstechniken für k-bestimmte
Verzweigungsprobleme und Iterationsmethoden.
Philipps-Universität Marburg, Dissertation, 1997.
R. Sebastian.
A version of Gmres for nearly symmetric linear systems.
In E.L. Allgower, K. Böhmer and M. Golubitsky (Eds.),
Bifurcation and Symmetry, ISNM 104, pages 295-304. Birkhäuser Verlag,
Basel, 1992.
R. Sebastian.
Anwendung von Krylov-Verfahren auf Verzweigungs- und
Fortsetzungsprobleme.
Dissertation am Fachbereich Mathematik, Philipps-Universität
Marburg, 1995.