References

1
E. L. Allgower, P. Ashwin, K. Böhmer and Z. Mei. Liapunov-Schmidt reduction for a bifurcation problem with periodic boundary conditions on a square domain. In E.L. Allgower, K. Georg and R. Miranda (Eds.), Exploiting Symmetry in Applied and Numerical Analysis, Lectures in Applied Mathematics 29, pages 11-22. AMS Providence, 1993.

2
E.L. Allgower and K. Böhmer. Resolving singular nonlinear equations. Rocky Mountain J. Math., 18:225-268, 1988.

3
E.L. Allgower, K. Böhmer, K. Georg and R. Miranda. Exploiting symmetry in boundary element methods. SIAM J. Numer. Anal., 29:534-552, 1992.

4
E.L. Allgower, K. Böhmer and M. Golubitsky. Bifurcations and Symmetry: Cross Influences between Mathematics and Applications. ISNM 104. Birkhäuser Verlag, Basel, Boston, 1992.

5
E.L. Allgower, K. Böhmer, A. Hoy and V. Janovsky. Direct methods for computation of singular roots, eingereicht bei ZAMM. Preprint 11/96, Schwerpunktprogramm der DFG, Dynamik: Analysis, effiziente Simulation und Ergodentheorie

6
E.L. Allgower, K. Böhmer and Z. Mei. On new bifurcation results for semilinear elliptic equations with symmetries. In J.R. Whiteman (Ed.), The Mathematics of Finite Elements and Applications VII, pages 487-494. Academic Press Ld., London New York, 1991.

7
E.L. Allgower, K. Böhmer and Z. Mei. Exploiting equivariance in the reduced bifurcation equations. In E.L. Allgower, K. Böhmer and M. Golubitsky (Eds.), Bifurcation and Symmetry: Cross Influence and Application, ISNM 104, pages 1-10. Birkhäuser Verlag, Basel, 1992.

8
E.L. Allgower, K. Böhmer and Z. Mei. An extended equivariant branching theory. Math. Meth. in Appl. Sci., 15:433-451, 1992.

9
E.L. Allgower, K. Böhmer and Z. Mei. Branch switching at a corank-4 bifurcation point of semi-linear elliptic problems with symmetry. IMA J. Numer. Anal. 14:161-182, 1994.

10
P. Ashwin, K. Böhmer and Z. Mei. A numerical Liapunov-Schmidt method for finitely determined problems. In E.L. Allgower, K. Georg and R. Miranda (Eds.), Exploiting Symmetry in Applied and Numerical Analysis, Lectures in Applied Mathematics 29, pp 49-69. AMS, Providence, 1993.

11
P. Ashwin, K. Böhmer and Z. Mei. A numerical Liapunov-Schmidt method with applications to Hopf bifurcation on a square. In Math. Comp., 64:649-670 and S19-S22, 1995.

12
P. Ashwin, K. Böhmer, Z. Mei. Forced symmetry breaking of homoclinic cycles in a PDE with O(2) symmetry. J. Comp. and Appl. Math., 70:297-310, 1996.

13
P. Ashwin and Z. Mei. Liapunov-Schmidt reduction at Hopf bifurcation of the brusselator equations on a square.

Technical report, University of Warwick, 1992.

14
P. Ashwin and Z. Mei. A Hopf bifurcation with Robin boundary conditions. J. Dyn. Differential Equations, 6:487-503, 1993.

15
P. Ashwin, Z. Mei. Normal form for Hopf bifurcation of partial differential equations on the square. In Nonlinearity, 8 (1995), pp. 715-734.

16
P. Ashwin, Z. Mei. A Numerical Bifurcation Function for Homoclinic Orbits, eingereicht SIAM J. Numer. Anal., Preprint 8/96, Schwerpunktprogramm der DFG, Dynamik: Analysis, effiziente Simulation und Ergodentheorie.

17
P. Ashwin, Z. Mei. Approximations of a bifurcation function for homoclinic orbits of large systems. Preprint, 1996.

18
K. Böhmer. On a numerical Lyapunov-Schmidt method for operator equations. Philipps-Universtiät Marburg, Fachbereich Mathematik, Bericht Nr. 2, 1989 Computing, 53:237-269, 1993.

19
K. Böhmer, C. Geiger, J. Rodriguez. On a numerical Liapunov-Schmidt spectral method, Part I: Review of spectral methods. SP-Report 41/96.

20
K. Böhmer, C. Geiger, J. Rodriguez. On a numerical Liapunov-Schmidt spectral method, Part II: The reduction method and its applications. SP-Report 28/97.

21
K. Böhmer, W. Govaerts, V. Janovsky. Numerical detection of symmetry breaking bifurcation points with nonlinear degeneracies. Preprint 18/96, Schwerpunktprogramm der DFG, Dynamik: Analysis, effiziente Simulation und Ergodentheorie.

22
K. Böhmer, D. Janovska, V. Janovsky. Computer aided analysis of imperfect bifurcation diagrams, II Pitchfork bifurcation, eingereicht bei Bifurcation and Chaos, Preprint 7/96, SP-Danse.

23
K. Böhmer and Z. Mei. On a numerical Lyapunov-Schmidt method. In E.L. Allgower and K. Georg (Eds.), Computational Solutions of Nonlinear Systems of Equations, Lectures in Applied Mathematics 26, pages 79-98. AMS, Providence, 1990.

24
K. Böhmer and Z. Mei. Mode interactions of an elliptic system on the square. In E.L. Allgower, K. Böhmer and M. Golubitsky (Eds.), Bifurcation and Symmetry, ISNM 104, pages 49-58. Birkhäuser Verlag, Basel, 1992.

25
M. Büttner, B. A. Schmitt and R. Weiner. W-methods with automatic partitioning by Krylov techniques for large stiff systems. Tech. Rep. 25, University of Marburg, 1992.

26
M. Büttner, B. A. Schmitt and R. Weiner. Automatic partitioning in linearly-implicit Runge-Kutta methods. Appl. Numer. Math., 13:41-55, 1993.

27
M. Büttner, B. A. Schmitt and R. Weiner. W-methods with automatic partitioning by Krylov techniques for large stiff systems. SIAM J. Numer. Anal., 32:260-284, 1995.

28
U. Garbotz. Numerische Verfahren zur Untersuchung der Dynamik der Kuramoto-Sivashinsky Gleichung. Diplomarbeit, Philipps-Universität Marburg, 1997.

29
V. Janovský and J. Bošek A note on the recursive projection method ZAMM, (1996).

30
K.T. Li and Z. Mei. A splitting iterative method for computation of TB-points Chinese J. Contemporary Mathematics, 15 (1994), 37-48.

31
Z. Mei. Utilization of scaling laws and symmetries in the path following of a semilinear elliptic problem. In E.L. Allgower, K. Böhmer and M. Golubitsky (Eds.), Bifurcation and Symmetry, ISNM 104, pages 263-173. Birkhäuser Verlag, Basel, 1992.

32
Z. Mei Solution branches of a semilinear elliptic problem at corank-2 bifurcation points with Neumann boundary conditions, In The royal society of Edinburgh proceedings A, 1993, 123A, pp. 479-495.

33
Z. Mei. Numerical bifurcation analysis for reaction-diffusions equations. PhD thesis, vorgelegt als Habilitationsschrift am Fachbereich Mathematik der Philipps-Universität Marburg, 1997.

34
Z. Mei, A. J. Roberts Equations for turbulent flood waves. In Proc. Of IUTAM/ISIMM Symposium on Structure and Dynamics of Nonlinear Waves, 1994, A. Mielke, K. Kirchgässner (Eds.), pp. 242-352. World Scientific.

35
B. A. Schmitt, Z. Mei. Construction of higher order algebraic one-step schemes in stiff BVPs. In Appl. Numer. Math., 13 (1993), pp. 199-208.

36
B. A. Schmitt and R. Weiner. Matrix-free W-methods using a multiple Arnoldi iteration. Appl. Numer. Math., 18:307-320, 1995.

37
A. Schwarzer Iterationsmethoden für grose, dünn besetzte Eigenwertproblemeskalierungstechniken für k-bestimmte Verzweigungsprobleme und Iterationsmethoden. Philipps-Universität Marburg, Dissertation, 1997.

38
A. Schwarzer Adaptive scaling of solution branches of one parameter bifurcation problems. eingereicht bei Math. of Comp.,SP-Report 04/98.

39
A. Schwarzer A new class of polynomial preconditioners for large sparse eigenvalue problems. eingereicht bei SIAM J. Numer. Anal., SP-Report 05/98.

40
R. Sebastian. A version of Gmres for nearly symmetric linear systems. In E.L. Allgower, K. Böhmer and M. Golubitsky (Eds.), Bifurcation and Symmetry, ISNM 104, pages 295-304. Birkhäuser Verlag, Basel, 1992.

41
R. Sebastian. Anwendung von Krylov-Verfahren auf Verzweigungs- und Fortsetzungsprobleme. Dissertation am Fachbereich Mathematik, Philipps-Universität Marburg, 1995.

42
R. Weiner and B. A. Schmitt. Consistency of Krylov-W-methods in initial value problems. Tech. Rep. 14, University of Halle, 1995.


Stand:Okt.98