Aufgaben zur Vorlesung Algebra

Blatt 5

Abgabe am Freitag, den 22.11.2013 vor der Vorlesung

Aufgabe 21: Äquivalenzrelationen

(4 Punkte)

Wir betrachten folgende Relation auf der Menge \mathbb{R}^2 :

$$(a,b) \sim (x,y)$$
 : \iff $b(1+x^2) = y(1+a^2)$.

- (i) Zeigen Sie, dass \sim eine Äquivalenzrelation auf der Menge \mathbb{R}^2 ist.
- (ii) Beschreiben Sie die Äquivalenzklassen $[(x_0, y_0)]$ als Teilmengen der Ebene jeweils geometrisch.
- (iii) Zeigen Sie, dass N := [(0,0)] ein Normalteiler in der Gruppe $(\mathbb{R}^2,+)$ ist.
- (iv) Erläutern Sie, ob $\mathbb{R}^2/N = \mathbb{R}^2/\sim$ gilt, oder ob nicht.

Aufgabe 22: Kongruenzrelationen

(6 Punkte)

Im Folgenden ist jeweils eine Gruppe G und eine Relation \sim auf G gegeben. Prüfen Sie, ob \sim eine Kongruenzrelation auf G ist und geben Sie gegebenenfalls den zugehörigen Normalteiler $N \subset G$ an.

- (1) $G = GL_n(\mathbb{R}), A \sim B :\Leftrightarrow Spur(A) = Spur(B).$
- (2) $G = GL_n(\mathbb{R}), A \sim B :\Leftrightarrow A = \lambda \cdot B \text{ für ein } \lambda \in \mathbb{R} \setminus \{0\}.$
- (3) $G = \{\text{Cauchyfolgen in } \mathbb{Q}\}$ mit komponentenweiser Addition, $(a_n)_{n \in \mathbb{N}} \sim (b_n)_{n \in \mathbb{N}} : \Leftrightarrow (a_n b_n)_{n \in \mathbb{N}} \text{ ist Nullfolge.}$
- (4) $G = M_n(\mathbb{R})$ mit Addition, $A \sim B : \Leftrightarrow A B$ hat keine negativen Eigenwerte.
- (5) $G = S_n, \ \sigma \sim \tau :\Leftrightarrow \ \sigma(1) = \tau(1).$
- (6) $G = \mathbb{R}^n$ mit Addition, $(x_1, \dots, x_n) \sim (y_1, \dots, y_n) :\Leftrightarrow x_n = y_n$.

Aufgabe 23: Faktorgruppen

(4 Punkte)

Für reelle Zahlen $a, b \in \mathbb{R}$ sei $t_{a,b} : \mathbb{R} \longrightarrow \mathbb{R}$ definiert durch $t_{a,b}(x) = ax + b$. Es sei $G := \{t_{a,b} \mid a, b \in \mathbb{R}, a \neq 0\}$. Zeigen Sie:

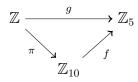
- (i) Die Menge G bildet mit der Komposition von Abbildungen eine Gruppe.
- (ii) Es ist $N := \{t_{1,b} \mid b \in \mathbb{R}\}$ ein Normalteiler in G.
- (iii) Es ist G/N isomorph zu $(\mathbb{R} \setminus \{0\}, \cdot)$.

Hinweis: Können Sie einen Homomorphismus angeben, dessen Kern N ist?

Aufgabe 24: Universelle Eigenschaft der Faktorgruppe

(2 Punkte)

Faktorisiert die kanonische Restklassenabbildung $g: \mathbb{Z} \longrightarrow \mathbb{Z}_5$, welche durch g(k) = [k] definiert ist, durch \mathbb{Z}_{10} , d.h. gibt es einen Gruppenhomomorphismus $f: \mathbb{Z}_{10} \longrightarrow \mathbb{Z}_5$, so dass das Diagramm



kommutiert?