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A cancellation theorem for finite algebras

H. Peter Gumm

If A,B and € are finite algebras with AXB==WAXE then Lovasz [3] showed
that B=C in case that A has a one-element subalgebra.

What can be said about the relationship of B and € if 2 does not have
a one-element subalgebra? Trivial examples show that B and € need not be
isomorphic.

The aim of this note is to show that in this case B and € have to be isotopic,
a notion defined as follows:

Definition: Let W=(A, (f);cs) and B=(B, (g);c;) be universal algebras
of the same type (n,);c;. A and B are called isotopic if there exist bijective mappings
Y., i€l and a bijection ¢ such that

qli(f;‘(xla ttrs xn,-)) = gi(é(xl)a tres ¢(xn,~))

for all i€/ and x, ..., x, €A.

To visualize the cohcept let us give an equivalent definition: Algebras
A=(4, (f)icr) and B=(B, (g);c;) are isotopic iff there exists a family (o,);c,
of permutations of B such that U is isomorphic to B°:=(B, (5;08));¢ 1)-

Obviously isotopy is an equivalence relation on the class of all algebras of
a given type, and is a generalization of isomorphy. We write A2=%B if A and B
are isotopic.

A weaker version of isotopy has been studied to a great extent in the theory
of quasigroups, see [1]. Our definition has the advantage that it is closer to isomorphy,
such that, for example, isotopic universal algebras with idempotent fundamental
operations are isomorphic, see the corollary below. The concept of isotopy arises
very naturally at the study of algebras in permutable varieties, as we have shown
in [2]. Namely if W=(4, (f;);c;) is an algebra (of arbitrary cardinality) in a per-
mutable variety and if 6 is a congruence relation on 2 XA which is a complement
of the factor-congruences 6, and 0., then for B:=AXA/0 we have A X B =
=WXA. 0 can always be chosen so that B has a one-element subalgebra. More-
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over we have that 2% and B are affine, i.e. there is an abelian group & both
defined on A and on B such that any n-ary polynomial p satisfies:

p(xl’ R xn)+p(y1’ AR yn) = p(x1+y1$ LR xn+yn)+p(09 sy 0)

Then there are two cases:

If A has a one-element subalgebra then A=W, giving an infinite version
of Lovasz’s theorem in this special case. Moreover the isomorphism can be given
explicitly.

If A has no one-element subalgebra then if we define AV :=(4, (f;¥);¢;) with

Fi9(x1, ey Xn) = [i(X1, -0y X)) —£i (0, ..., 0),

we have that Y is isomorphic to B, hence A is isotopic to B.

Similarly under the hypothesis that 2, B and € are finite and are contained
in a permutable variety it has been shown by Smith [4] that B and ¢ are isotopic
in case AXB=AXCE.

For arbitrary finite algebras one cannot expect a structure theory to yield
us the desired isotopy. So our proof does not explicitly produce the isotopy, it only
shows the existence. It is based on the observation that Lovasz’s proof of his cited
result can be carried out in every category satisfying some special conditions which
can be easily extracted from his proof. So after choosing a category suitable for our
problem we will simply imitate Lovész’s proof in this new category and interpret the
results back into the category of all finite algebras of a given type.

We choose as objects of our category H certain “heterogeneous” algebras:
An H-algebra of type (n)ic; will be a triple W=(4, (4)icr> (f)ier) Where each
f, is a map f;: A%—~4;. A morphism between H-algebras A and B is a pair
(D, (¥);e;) where @ and ¥; are maps such that the following diagram of mappings
commutes for every i€l and k=n;. (m, denotes the k-th canonical projection
from the n;-th power A™ of A onto A.)

A A A
l ® l " iq),
B Tk Bni 9i ' B;

For every universal algebra W =(4, (f));c ) weobtaina corresponding H-algebra
ﬂ::(A, (ADicrs (ﬁ)i61)~ ' '
Thus we get that two universal algebras 2 and B are isotopic if and only
if A and B are H-isomorphic. Moreover U gives a functor which preserves pro-
ducts, 1.e.
JIA; and [JJW: are H-isomorphic.

icl iel
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A last fact to be easily verified is that in H every morphism A can be written as
a composition A oh, where h; is mono and h, is epi.

Let from now on I be finite and consider the subcategory of finite H-algebras.
i.e. those A=(4, (4)icr> (f)icr) where the disjoint union of 4 and the 4; has
finite cardinality, denoted by |¥|. We procede now as in [3] and choose a family
(;Q)jes of finite H-algebras such that every finite H-algebra is H-isomorphic to
exactly one ;Q.

For t€J,:={jeJ|n=|;Q|} and for arbitrary finite H-algebras A we get:

_ [Epi (0, )1
[Hom (0, 2] = [Mono (0, [+ 3 - Mono (0, ).

Lemma 1. If W and B are finite H-algebras and for all jeJ |Hom (;Q, W)|=
=|Hom (;Q, B)| then W is H-isomorphic to B.

Proof. Using the above formula show by induction on the cardinality of the
;jO’s that [Mono (;Q, A)|=|Mono (;Q, B)| for all jeJ. It follows that there is
a monomorphism from A to B and one from B to A. This clearly implies that
A is H-isomorphic to B since both are finite.

Lemma 2. Let N and B be H-algebras then |Hom (A, B)|=0.

Proof. For an arbitrary b€B define & (x):=b for all x€4 and ¥;(x):=
:=g;(b, ..., b) for all i€l and x€A4;. Now we are ready to prove our cancellation
theorem:

Theorem. Let U, B and € be finite universal algebras of the same finite type.
If AXB and WXE are isotopic then B and € are isotopic.

Proof. AXB2UXE implies that AXB and WUXE are H-isomorphic.
Hence AXB and WAUXE are H-isomorphic. Hence for all jéJ we have:
[Hom (;@, AX B)| =|Hom (;Q, AXE)|. Thus

[Hom (;Q, 20| - [Hom (;Q, B)| = |Hom (;@, AX B)|
= |[Hom (;Q, AX )|
= |Hom (;Q, )| - |[Hom (;@, ©)|.

By Lemma 2 we can cancel yielding |Hom (;Q, B)|=|Hom (;Q, ¢)|, so by virtue
of Lemma 1 B and € are H-isomorphic. Hence B and ¢ are isotopic.

Corollary. Let W, B and & be finite universal algebras of the same finite
type with WXB and NXCE isotopic. If the fundamental operations of B and
€ are idempotent, then B and & are isomorphic. '
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Proof. By the theorem B and € are isotopic. For arbitrary xEB we get
by idempotency:

¥:(x) = Pi(fi(x, ..., ¥) = fi(D(X), ..., D(x)) = D(x).

Hence @=VY¥; and ¢ is an isomorphism.
We can sharpen our theorem in some cases to shorten the list of mappmgs

¥; which are needed to establish isotopy. »
In particular let A and B be principally isotopic if there ex1st two bljectlons

¥ and ®: A—B such that for all i€l we get
Tf;(xla LR xni) = gi((p(xl), ceey Q(xm))'
Then a slight modification of our category H yields:

Corollary. Let U, B, be finite algebras with UXB=AXE. .If - tbefe extsts«:
an element a€A such that for all i, j¢I we have fi(@)=fya) then B. and-C are
principally isotopic. :

In the same fashion one may define n-isotopic, meaning that there a.re only n
different ¥; needed to get a correspondmg condition on the algebra ﬂ.
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