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Introduction

If V is a congruence permutable variety then every finite simple algebra A€V
is either functionally complete or A X A has a skew congruence, see Werner [22].
In this case the skew congruence together with the projection congruences
generate a 0-1-sublattice of €(A x A) which is isomorphic to the lattice .

We use a geometric approach to study this situation, which is inspired by the
methods introduced in Wille [24]. Although the geometric structure we obtain is
very elementary it turns out that the geometric approach is very suggestive and
easy to handle to give us interesting algebraic results.

In particular we can coordinatize the geometry by an abelian group so that the
algebra A becomes functionally or even polynomially equivalent to a module over
a ring R.

The interplay between geometry and algebra is developed in Chapters 1

“through 5 and the central result, Theorem 4.7 is then applied in Chapters 6 and 7
to prove theorems classifying various algebras in permutable varieties and to give
unified proofs to a list of known results.

There are also obvious applications to the theory of functionally complete
algebras which have not been included here.

Moreover it is clear from the proofs that in most of the theorems the
assumption that the algebras in question generate a permutable variety can be
weakened to the requirement that certain congruences admit a Mal’cev-function
as defined in 3.1.

§0. Preliminaries

We use standard universal algebra terminology and refer the reader to G.
Gritzer [10] for any undefined notion of universal algebra. As a reference to
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more special algebraic structures appearing in this article we recommend Denes,
Keedwell [8] for the notion and basic properties of loops, quasigroups and nets
and Birkhoff [2] for lattices, rings and modules. |

If A=(A, F) is a universal algebra, A the base set and F the family of
fundamental operations then the operations which can be built up by composition
from the operations of F together with the n-ary projections, n> 0, will be called
the polynomials of A. A* will be the algebra with the same base set as A and with
every element of A added as a O-ary fundamental operation. The algebraic
functions of A are then exactly the polynomials of A*. Equality of polynomials in
the case of polynomials of single algebras will then be equality of maps.

We do not make a distinction between polynomials and polynomial symbols
(see [10]). For a single algebra the maps induced by a polynomial of a variety are
exactly the polynomials as described previously. We think there will be no danger
of confusion as far as this article is concerned. Two algebras will be called
polynomially equivalent if they have (up to isomorphy) the same base set and the
same set of polynomials. Two varieties are polynomially equivalent if their free
algebras F(w) on the countable generation set @ ={x,, X,, . . . } are polynomially

equivalent.
A binary relation O is compatible with an n-ary operation f: A"— A if for all
(X1, V1), - - - » (X, Yu) € @ we have that (f(x,, ..., x,), f(y1, ..., y.)) € 6. We also

say “f is compatible with @ or “@ admits f.”

Congruences are equivalence relations on A which are compatible with all
fundamental operations (equivalently polynomials or algebraic functions) of A.
For (x, y)e @ we frequently write x@y or “x is congruent to y modulo 6.”

o denotes relational product of congruences. The set of all congruenées on an
algebra A forms a lattice €(A) with set-inclusion as ordering. The biggest element
of this lattice is denoted ¢, the smallest w. These two congruences are frequently
called the trivial congruences. If A;x---x A, is the direct product of the family
of algebras (A,);.; then the kernels of the canonical projections

A X XA —>A X XA

where (ky, ..., k,) is a subfamily of (1, .. ., n), will be called factor congruences.

§1. Permutable varieties and functionally complete algebras

Let @ and ¥ be congruences on the universal algebra A = (A, F). The smallest
equivalence relation containing @ and ¥ is itself a congruence relation, denoted
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by @v ¥. A fortiori @ v ¥ is the smallest congruence relation containing @ and
V. This congruence can be described in the following way:
Vx,yeA (x,y)e ®v ¥ iff IneN, x,,.. X, €A sth. x=x,, y=x, Vi<n
x;®x;., if i even, and x,¥x,.,, if i odd.

Or, equivalently, if we deﬁne:

(@¥):=0-V, (@) :=(@- V)o@,
we have:

OvY={(@-¥)"|neN).

DEFINITION 1.1. Let ©® and ¥ be equivalence relations. @ and ¥ permute if
OoV=¥o@. Let A=(A, F) be a universal algebra. A has permutable con-
gruences if for any two congruences ® and ¥ on A ® and ¥ permute. If every
algebra in a variety V has permutable congruences then V will be called a
permutable variety.

Examples: Groups, Rings, Modules, Boolean algebras have permutable con-
gruences.
The following lemma is well known:

LEMMA 1.2. (i) Let ® and ¥ be equivalence relations. @ and ¥ permute if
and only if Ov V¥ =0-V.

(ii) Let the algebra A have permutable congruences. Then &(A), the lattice of
all congruences on A satisfies the modular law.

Proof. (i) follows trivially from the foregoing description of @ v V. (ii) can be
found in Schmidt [21], 11.89, Satz 2.

One of the main tools for the study of permutable varieties is supplied by the
following theorem of A. I. Mal’cev [15].

THEOREM 1.3 (Mal’cev). Let V be a variety of universal algebras. V is a
permutable variety if and only if there exists a ternary polynomial p in the language
of V such that the equations

p(x,y,y)=x, p(x,x,y)=y (*)

hold in every algebra A eV.
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The proof of the only-if-direction of this theorem would require many
definitions we otherwise do not need in the following so we only show the
_if-direction.

Let V be a variety having a ternary polynomial p, satisfying the equations (*)
in every algebra of V. Let ® and ¥ be congruences on an algebra A =(A, F)e V.
We have to show: @V = ¥o@. For (x, z)€ @Y% we have by definition of & ¥
an element ye A such that (x, y)e @ and (y, z) € ¥. Since the polynomial p is
compatible with ® and ¥ we have: x =p(x, y, y)¥p(x, y, 2)Op(x, x, z) = z. Thus
(x,z)e ¥ O whence O@-¥ =V @. Equality now follows by symmetry.

Note that we have not fully made use of the fact that p is a polynomial, we
only needed that p is compatible with all the congruences on A and that p satisfies
the equations (*). This is the form in which we will use the above theorem in the
sequel, so let us state as a corollary:

COROLLARY 1.4. Let © and ¥ be equivalence relations on a set S. Let p be a
ternary operation on S satisfying the equations (*) and let p be compatible with @
and ¥. Then @ and ¥ permute.

Theorem 1.3 now tells us immediately that the foregoing examples of varieties
are permutable varieties. We only have to find a ternary polynomial satisfying ().
For groups take p(x, y, z) := xy 'z, for rings and modules: p(x,y,z):=x—y+z
and for Boolean algebras: p(x, y, z):=x"y'z+xy'z'+ xyz.

Of course we may find many more polynomials in Boolean algebras satisfying
- the equations (*). The reason for this is that the 2-element Boolean algebra 2 is
primal which means that every function f:2"—2 can be expressed by a polyno-
mial. Algebras with a similar “sufficiently rich” structure have been investigated
by several authors. Those algebras will be called ‘functionally complete.’

DEFINITION 1.5. A finite algebra A =(A, F) is functionally complete if for
every ne N every map f: A" — A is an algebraic function.

DEFINITION 1.6. Let S be a set. The discriminator on S is the ternary
operation d:S*— S with

z, ifx=y

d(x,y,z):={x if x#y

For an algebra A = (A, F) define a new algebra A*:=(A, FUA) which has the
same underlying set as A and the same fundamental operations but additionally
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has a nullary operation with value a for every element a € A. We quote a theorem
which is due to Pixley [18] and Werner [23]:

THEOREM 1.7. For a finite algebra A the following conditions are equivalent:
(i) A is functionally complete.
(i) The discriminator on A is an algebraic function of A.
(iii) A is simple and A" generates a permutable and congruence distributive
variety.

If we actually want to find all functionally complete algebras in familiar varieties
such as groups, rings or modules another theorem is more useful. We first state a
lemma which is an immediate consequence of Corollary 1 in [2], Chapter VII, §4:

LEMMA 1.8. Let A be an algebra in a permutable variety. If A is a subdirect
product of finitely many simple algebras A,, ..., A, then A is already isomorphic
to a direct product of some of those factors. '

Using this lemma, Quackenbush and Werner proved in [22]:

THEOREM 1.9. Let A be a finite simple algebra in a permutable variety. If
A X A has only factor congruences then A is functionally complete.

For the proof we refer to [22]. A shorter pfoof than is actually given there can be
obtained by combining Theorem 1 of [22] with a lattice theoretical result of
Burris [3], Theorem 1.2. ‘

Now suppose A is a finite simple algebra in a permutable variety and A is not
functionally complete. Then by the above theorem A XA has a congruence @
which is not a factor congruence. Since A is simple and since (AXA), =
(AxA),,. =A, the intervals [, ] and [m,,¢] in €(AXA) are prime intervals.
Since (A x A) is modular we conclude that the sublattice generated by ,, m,
~and @ in C(AxA) is isomorphic to the lattice #, given in Fig. 1.

Since the biggest (resp. smallest) element of the lattice #(; coincides with the
biggest (resp. smallest) element of (A x A) we say that A, is a 0-1-sublattice of

Fig. 1
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C(AxA). Thus AxA has three congruences a;, a,, a; satisfying:

aeca; =t and oAe=w, for 1=i<j=3.

This situation will be studied more closely in the following chapter.

§2. Geometric 3-nets and S-3-systems

Let S be a set with more than 3 elements; ©,, @,, @, equivalence relations on
S such that

6,0,=1, for i%] (1)
O A0 =w, for i#] ' (2)

]
Then the quadruple S:=(S, @,, 0,, @,) will be called an S-3-System.

It will be useful and more illustrative to introduce a geometrical interpretation
as “Aquivalenzklassengeometrie” as introduced in Werner [23].

Call the elements of S points and the equivalence classes of @,, @,, @, lines.
Two lines will be called parallel if they are classes of the same equivalence
relation. An incidence relation is defined naturally by the membership relation €.
We will say “a lies on [” for a€l, where a is a point and [ is a line.

LEMMA 2.1. The Aquivalenzklassengeometrie of an S-3-system has the fol-
" lowing properties:

(S1) There are 3 parallel-classes of lines.

(82) Each point lies on exactly one line of each parallel-class.

(S3) Ifl, and 1, are two non-parallel lines then there is exactly one point which
lies both on |, and on 1,.

Proof. (S1) and (S2) are immediately clear. For (S3) let I, and I, be lines of
different parallel-classes. Without loss of generality [, (resp. l,) is a parallel class
of @, (resp. @,). Let x and y be arbitrary with x € [, and y € [,. Then by definition
1,=[x]O, (={se S| x0O,s}) and I,=[y]@,. Since ©,°O,=. there is an element
z€ S with x0,26,y, i.e. zel, and zel,. Now suppose there is another point u
lying on [, and on I,. Then we have u®,z and u@,z, thus u®, A @,z. Since by (2)
.7 0,=w we must have u=z.

A geometrical structure with the above properties is called a geometric 3-net
in combinatorics. More precisely, a geometric 3-net is a triple N:=(N, L, IT)
where N is a set with more than 3 elements, L < P(N) and I is an equivalence
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relation on L such that (S1), (S2) and (S3) are fulfilled with N as the set of
points, L the set of lines and II the relation of parallelism. € is understood to be
the incidence relation.

LEMMA 2.2. Every geometrical 3-net is the Aquivalenzklassengeometrie of an
S-3-system.

The proof is obvious.

The importance of nets in combinatorics arises from the fact that they give rise
to latin squares and thus to quasigroups. More precisely a net defines a class of
quasigroups all of which are isotopic and among which there is always a loop, i.e.
a quasigroup with a unit element. A quasigroup in turn defines a geometrical
3-net in a very natural way. We are mainly interested in the loop arising from a
net, thus by lemmas 2.1 and 2.2 also from an S-3-system, so we will demonstrate
this interchanging process in the sequel. For nets this construction can be found in
books on combinatorics, we only mention Denes-Keedwell [8].

First let Q be a quasigroup. Let M, be its multiplication table. M, can be
considered as a |Q|x|Q|-matrix, M, = (a,). (We allow |Q| to be infinite.) Let us
define now: S:=Q X Q and define O,, O, and @, by

(x, y)O,(x,y) iff x=x'
(x, y)O,(x',y) iff y=y ()
(x, y)O5(x',y) iff x-y=x"-y,

where - denotes multiplication in the quasigroup Q. Then S: =(S, 0,, 0,, 0,) is

an S-3-system. The corresponding geometrical 3-net is then easily exhibited.
An example will demonstrate what we do:
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For the inverse process start with an S-3-system S=(S, @,, ©,, 0,). The
conditions @;°@; = and O, A O, = w for i# j implies that S is isomorphic as a set
to S, X S, for i# j. The isomorphisms

Sie. XS0, S/6,%XS/0,=S5,6,%X S,

tell us that S5 =S, = S,e,. In other words there is a set Q and bijections f,, f,,
f5 such that f;: S, — Q and a bijection g:S— Q X Q given by

g(s) = (f((s10,), £>((516,)).

Now pick an arbitrary element e€ S and an arbitrary element 1€ Q. We may
suppose we have chosen f; and f, so that f,([e]®,)=f,([e]®,) =1 and g (1, x)
0,87 '(x, 1). Define a multiplication - on Q by setting:

1) x-1=x

() x-y=2z if and only if g '(x, y)®:g" (2, 1).

Now it can be readily checked that (Q,-) is a quasigroup satisfying x - 1=
1:x=x, thus Q:=(Q, -, 1) is a loop. Since the map g is an isomorphism we will in
the sequel identify QX Q and S, so we say that the “multiplication table of
(Q,-, 1) is defined on S.” By this identification we have then:

(x,y)O,(x",y") iff x=x,
(%, y)O,(x',y) iff y=y,
(x,y)05(x',y") iff x-y=x"-y,

for all x, y, x', y'e Q.

This guarantees us (compare with condition (f) of the last page) that the
S-3-system we obtain by Q from the previous construction is the same as the
S-3-system we started out with to construct our loop.

Again we demonstrate this with an example:

- 3 5 4 2 5 1
4 4 5 1 2 3
2 2 1 5 3 4
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In Fig. 2.3 the labels of the points of the net shall denote their image under g, and
Q has been chosen as {1, 2, 3, 4, 5}.
Let us write down as a result of this chapter:

LEMMA 2.3. Let S=(S, 0,, 0,, 0,) be an S-3-system. Let e by an arbitrary
element of S. Then there exists a loop L= (L -, 1) and a bijection g: L X L— S such
that e = g(1, 1) and for arbitrary x, y, x', y' € L we have

(x, y)O,(x',y) iff x=x'
(x, y)O,(x',y") iff y=y
(x, y)O5(x',y") iff x-y=x"-y/,

if we are identifying L X L with S via the bijection g.

Note at this point that @; need not be a congruence on L xL.

§3. Compatible functions on S-3-systems

The remarks at the end of §1 together with Theorem 1.9 suggest us to study
S-3-systems in the case where S is the underlying set of an algebra A in a
permutable variety and @,, ©, and @, are congruence relations on A. According
to Theorem 1.3 A has a polynomial p satisfying the equations

p(x, x,y)=y,p(x,y,y)=x (*)

If ©,, 6,, O, are congruences on A the polynomial p has to be compatible with
@], @2’ @3-

DEFINITION 3.1. A ternary operation p satisfying the equations (*) will be
called a Mal’cev-function.

One key observation for the sequel is given by:

THEOREM 3.2. Let S=(S, 0,, O,, @;) be an S-3-system. Let p: S*— S be a
Mal’ cev-function compatible with @,, @, and ©;. Then p is uniquely determined.

Proof. We will prove this theorem in 3 steps. Let us use the description of the"
net associated with the given S-3-system as introduced in Lemma 2.1. If x =1y or
y = z then p(x, y, z) is uniquely determined by the equations (*). So we may sup-
pose for now that x#y and y# z.
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—XJ‘ p(xv.z)

y e

Fig. 3.1

Step 1: x and y lie on a line /,, y and z lie on a line I, and [, # L,. Then for
some i# k we have I, =[y]®, and [, =[y]®,. Therefore x6,y and z6,y hence by
compatibility:

p(x’ Y, Z)@ip(x’ X, Z) =2z
p(x, v, 2)Op(x,y,y)=x

Thus p(x, y, z) lies on the ©;-line through z and on the @, -line through x. By
condition (S3) in §2 there is exactly one point with this locus.

Step 2: x, y and z lie on a @, -line L. Say k =1. Take a @, line through y and a
O,-line through x. They have exactly one point in common, say x'. Applying the
result of step 1, we know that p(x', y, z) is uniquely determined as the ““fourth
parallelogram-point” for x', y, z. Since y and z are congruent to x modulo @, and
since p is idempotent by (*), we have x=p(x, x, x)O,p(x,y, z). Therefore
p(x, y, z2)€[x]O, = I Since xO;x" we get that p(x, y, z) lies on a @;-line through
p(x',y, z) and on the @,-line L. Thus by (S3) and the fact that p(x',y, z) is
uniquely determined we know that p(x, y, z) is uniquely determined.

Step 3: x,y and z are arbitrary. Let [, be a 6,-line and [, a @,-line. The
©,-lines through x,y and z meet [, in the points x', y', and z'. The ©,-lines
through x, y, and z meet [, in the points x", y", and z". p(x',y',z") and
p(x",y", z") are uniquely determined by step 2 and the equations (*). Since

X’ J{_D(X'.y,z)

X y p(xy.z) z

Fig. 3.2
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p(x”.y“.Z")ﬂL plxy.z)
Y 4
74 z
x'lc—Tx
1y T e ¢ 1’ o
I X y' z p(x.y'z)
Fig. 3.3

x0,x', yO,y', and z0,z' as well as x@,x", y@,y", and z0,z" we have:

p(x, y, 2)O,p(x', y', z') and p(x, y, z)O,p(x", y", z")

thus p(x, y, z) lies on the @,-line through p(x”, y”, z"”) and on the ©,-line through
p(x',y', z'). p(x, y, z) is uniquely determined since p(x’, y’, z') and p(x”, y", z") are
and since (S3) holds.

Notice that in step 3 we could have started taking, for example, [, and [, being O,
and 0, lines respectively. The result, since it is unique, must be the same.

COROLLARY 3.3. Let S=(S, 0,, 0,, ®;) be an S-3-system. Let p be a.
Mal’cev-function on S which is compatible with ©,, ©,, and O@5. Then for all x, y,
z € S we have: :

p(x,y, z)=p(z,y, x).

Proof. Define p: S*— S by p(x,y,z):=p(z,y,x). Then p is a compatible
Mal’cev-function on S since p was. By theorem 3.2 p is unique, so we must have:
p=p.

LEMMA 3.4. Let S=(S, 0,,0,,05) be an S-3-system and p a compatible
Mal’cev-function on S. Then the loop L associated with S satisfies:

VXi, X0 X35 Xas V1o Yoo Yas Ya (X" Y= X0 ¥2 & X1 y3=% "y, &

(R) _ v =
X3' Y1 =X4" Y2 X3 Y37 X4 ° Ya).

Proof. Recall that by construction of the loop and by Lemma 2.3 we have:

x-y=x"-y" iff (x,y)O5(x,y").
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Y1 Y2 y3 Y4
b a
X! AN\ . N Jﬁ‘
|
: \ N\
b .
Xa1 —
| B D
r
|
|
|
X3l XS — p(a,b,c)\\ -
| \ \\
| .
X4l AN
JT Y A ?\-p(a‘b'c)
Fig. 3.4

Thus the hypothesis of the statement (R) says: (x,,y,)0:(x,, y,),
(x1, ¥3)O5(x,, y4) and (x5, y;)O5(x4, y,). This implies: (x5, y;) = p((x1, y3), (x1, y1),
(x3, Y1) O3p((x2, Ya), (X2, ¥2), (X4, ¥2)) = (x4, y4). Hence x5 - y;=1x, y,4. Note that p
can be computed componentwise since p is compatible with @, and 6,.

The proof is illustrated by the following figure, noting that by step 1 of the
proof of Theorem 3.2 p is an operation assigning the fourth parallelogram-point
to x, y, z if x, y and y, z lies on two different lines.

The next lemma is well known, compare [8]:

LEMMA 3.5. A loop L satisfying the condition (R) of Lemma 3.4 is associa-
tive, i.e. a group.
Proof. For arbitrary x, y, zeL set x:=y,:=1, x,:=y, X3:=X, X;:=x"Y,

Yii=Y, V31T Yz, yai= 2.

LEMMA 3.6. Let the S-3-system S admit the Mal’cev-function p. Let L=
(L, -, 1) be the associated loop (which, by the above lemma is a group). Then for
arbitrary elements (x1, y,), (x5, y2), (x5, y3) € LXL we have:

p((x1, y1), (x5, y2), (X3, y3)) =(x; - xEI' X3, Y1 ° )’51 * Ya).

Proof. By step 3 in the proof of Theorem 3.2 we have for x:=(x,,y,),
y:=(xp, ¥2), z:=(x3,y3) and [, :=[(x,, y)]O, and L,:=[(x,, y,)]0,:

x'=(xy, y1), ¥ = (x1, ¥2), 2 = (x4, y3)

and

x"=(xy, y1), ' = (x5, y1), 2" = (x3, y1)
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thus
p(x',y', 2') = p((x1, y1), (x1, y2), (X1, ¥3))
= (p(xy, X1, X1), (Y15 Y25 ¥3))
= (x1, P(¥15 ¥2, ¥3))
:=(xy, P)
and similarly

p(x", y", 2"y = (p(x1, x5, X3), ¥1) := (P, y1).

For the computation of p(x’, y’, z') we use step 2 in the proof of 3.2:

(uyz) (uys)

5
(x1.y1) (x1.y2) (x1.p) (x1.y3)

Fig. 3.5

From the above picture we immediately get the equations x, - y; =u - y, since
(x4, y1)0a(u, y,) and x,-p=u-y; since (x,, p)03(u, y;), which has as solution
p=v,-y3' y; and similarly p=x, - x;"' - x5 thus p(x’,y’,2")=(x1, y1-y2' * ¥3)
and p(x", y", z")=(x; - x3" - X3, y;) then step 3 yields p((x;, y1), (x2, ¥2), (X3, y3)) =
(Xy - X3 X3, ¥1° Y2 " Ya)-

COROLLARY 3.7. Under the conditions as above, L is an abelian group.
Proof. Lemma 3.6 and Corollary 3.3.

Since L is an abelian group we will from now on write + for multiplication
and O for the neutral element. So let us formulate the result of the last chapter:

THEOREM 3.8. Let S be an S-3-system and p a compatible Mal’ cev-function
on S. Then the associated loop is an abelian group G. p is uniquely determined and

p(x,y,z)=x—y+z in GXG.
§4. Algebras and affine functions

Suppose now, we have a Mal’cev-function on an S-3-system S which is
compatible with @,, @,, ;. We will from now on always assume that the
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underlying set S of S is G X G where G is the abelian group associated with S by
2.3 and 3.8.

Let f:S"— § be an n-ary operation on S which is compatible with 0,, 0,, ;.
Then f is a map f:(G X G)"— G X G. Since f is compatible with @, and 6., f can
be written as a direct product f, X f, of maps f,,f,:G"— G, i.e.

(P):f((xl’ YI)a cees (xm yn)) :(fl(xl’ MR xn)’ f2(yls LR yn))

Since f is compatible with @; and by the description of @, in Lemma 2.3 we have
for x:=(xy,. .., %), yi=(yi, ..., ), X :=(x, ..., x0), ¥ =¥, ..., y.)e G":

LEMMA 4.1. (i) x+y=x"+y' implies f,(x)+f,(y) = f,(x") + £,(y").
(i) fi(x)+£,(0)=£,(0)+ f,(x)
(iii) f,(x)+fo(y)=fi(x +y)+£,(0).

Proof. x+y=x"+y’ says: For all 1<=k=<n x, +y, =x,+ y%- Thus by Lemma
2.3 (X, Yi) O5(xg, yi) and f((xy, y1), - - ., (%, ¥ ))Osf((x4, Y1), ..., (x4, ¥)) hence

(fl(xb LRI xn)) fZ(YI’ AR ] Yn))@3(fl(x,1’ MR | x:;), fz()’ﬁ, ] Yﬁ))

so by Lemma 2.3 f,(x)+f,(y) = f,(x") + fo(y'). (ii) follows trivially from (i).
For (iii) set x":=x+y and y':=0 (=(0,...,0)) and apply (i).

DEFINITION 4.2. An operation f: A" — A is affine with respect to an abelian
~ group G if there is a bijective map i: A— G such that for all x =(X1,...,%,),
y=(y¥1,...,y,)€A we have:

iof(x)+ief(y)=iecfoi ' (i(x)+i(y))+icfoi™"(0)
We can always assume that i is the identity map, so we write:
f(x)+f(y) = f(x +y) + f(0). (A)

An élgebra A is affine with respect to an abelian group G if every fundamental
operation is affine with respect to G (where i is the identity map).

It is immediate that affine functions also satisfy:
f(x)=f(y) = f(x—y)—f(0) (A')

LEMMA 4.3. Let S be an S-3-system with a compatible Mal’cev-function.
Then every map which is compatible with @,, @, and O, is affine.
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Proof. Suppose f:S"— S is compatible. Let G be the abelian group associated
with S. For x:=(xy,...,%,), y:=(y1,..., y.)ES™ we can write:

x=(x', x")=((x%, x1), ..., (xh, %))

and

y=0U,Ly) =y, YD, - s (Vi ¥2)

both elements of (G X G)" and by (P) we find f,, f, with f,, f,: G" — G so that by
Lemma 4.1 we can compute:

f)+£(y) = (fi(x)), LD+ (F(y), £(y"))
= (L(x)+f1(y), L")+ ("))
= (fi(x") + £1(0)+ £2(y") — 2(0), f2(x") + £2(0) + fi(y") = £1(0))
= (fi(x'+y)+£1(0), f,(x" +y") +£,(0))
= (fi(x"+y"), f(x"+y") +(f1(0), £(0))
= f(x +y)+£(0).

DEFINITION 4.4. Let f and g be n-ary (resp. k-ary) operations on the set A.
f and g commute if

f(g(xU’ st xlk)’ R g(xnl’ AR xnk)) = g(f(xll, MR xnl)’ et f(xlk’ cee xnk))°

LEMMA 4.5. Under the same hypothesis as in Lemma 4.3 every compatible
operation commutes with the Mal’ cev-function.

Proof. For simplicity we give the proof only for unary compatible operations.
For x, y, z€ S we know that p(x, y, z)=x —y+z in the abelian group G xG.

flp(x,y,2)=f(x—y+2)
=f(x—y)+£f(z)—f(0) by (A)
= f(x)—f(y) +f(0)+f(z)—f(0) by (A"
= f(x)—f(y) +f(2)
= p(f(x), f(y), f(2)).

Now we are able to formulate our main results:

THEOREM 4.6. Let A= (A, F) be an algebra in a permutable variety V. Let p
be the Mal’cev-polynomial for permutability. Then the following conditions are
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equivalent:

(i) M5 is a 0-1-sublattice of €(A)

(ii) There is an abelian group G such that GXG can be defined on A with an
arbitrary choice of (0,0)e A and with p(x, y, z) = x —y + z. Moreover every
algebraic function on A is affine w.r. to GX G and of the form f, X f, with
fl’ f2: Gn_)G

THEOREM 4.7. Let A be an algebra in a permutable variety. Let p be the
Mal’cev-polynomial. Let @, and @, be the kernels of the canonical projections 7,
m,: AXA— A. Then the following conditions are equivalent:

(i) There is a congruence ® on A X A such that @ is a complement of O, and
of @, in C(AxA).

(ii) A is affine w.r. to an abelian group G.

(iii) Every fundamental operation of A commutes with p.

(iv) D:={(x,x)| x€ A} is a class of a congruence on AXA.

(v) Vx,y,z€e A (p(x,y,z)=2z&x=y) and D is a class of a congruence on
AXA.

Proof of Theorem 4.6. (i)— (ii): Since #; as a 0-1-sublattice of €(A) defines
an S-3-system, (i)— (ii) is done in the last two chapters and in Lemmas 4.1 and
4.3.

(i))— (i): Since every algebraic function, thus also every algebraic operation is
of the form f, Xf,, the kernels @, and @_ of the projection maps m, m,: G X
- G— G are congruences on A, so A is isomorphic to a direct product.

Define a congruence @, on A by

((x, y),(x',y)e®p iff x—y=x"—y"

Since all algebraic functions of A are affine, @, is immediately seen to be a
congruence, even a congruence of the abelian group G X G and it is immediately
checked that @ together with @, and @, form a 0-1-#; in the congruence
lattice €(G x G) thus also in C(A).

Proof of Theorem 4.7. (i)— (ii): (i) states that 6, 0. and @, generate a
0-1-#; in €(A x A). By the last Theorem and by construction of G xG, 0, and
@, are congruences on G X G with (GXG)6. =G, so A is affine w.r. to G.

(i1)— (iii) is Lemma 4.5 '

(i)—(@v): D is a class of @, as defined in the proof of Theorem 4.6

(iv)—(v): Let ¥}, be the congruence having D as a congruence class. Suppose
p(x,y, z2)=z.
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Then in AX A we have:

(z, 2) =p((x, 2), (y, 2), (2, 2)) ¥pp((x, 2), (y, 2), (y, y)) = (x, y)

Since D is a congruence class, we conclude that (x, y)e D from where it follows
that x = y.
(v)—(i): For @ := ¥, we have for arbitrary elements (x, y), (x, y)e AXA:

(x, y)=p((x, x), (y, x), (y, ¥)O,_p((x', x), (', x), (v, )

and

p((x’, x), (y', x), (y, Y) ¥pp((x', ), (y', %), (y', y)) = (x, y)

yielding: @, ¥, =. Correspondingly we obtain O, °¥Y,=1 Suppose
(x, y)O, A¥p5(x',y"). Then x =x" whence (x, y)¥,(x, y') so

(. p(y, ¥, x)) = p((x, y), (x, ), (x, X)) ¥p (x, x)

so by definition of ¥y, p(y, y', x)=x and therefore y=y'. Hence O, A ¥, =0
and similarly O, A ¥, = w.

It remains to prove the implication (iii)— (i), we will do this with the following
lemma:

LEMMA 4.8. Let A be an arbitrary algebra and let p be any Mal’ cev-function
defined on A. Define a binary relation A on A X A by

(x, A, y) iff x=p',y,y)
and y=p(y, x’,x)
and x'=p(x, v,y
and y'=p(y, x, x').

Then
(i) if the equation (5):

p(p(x,y, 2), u,v) = p(x, y, p(z, u, v))

holds for all elements x, y, z, u, ve A then A is an equivalence relation,
(ii) if every fundamental operation of A commutes with p then A is a compati-
ble relation
(i) if p commutes with itself, (£) holds.
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Proof. (i): Clearly A is reflexive and symmetric. If (x, y)A(x’,y) and
(x’, y)A(x", y") we have
x=p(x',y’,y)
=pp&",y", ¥, ¥, y)
=p(x", y", p(y',y',y)) by (&)
= p(x”’ y”’ y)
Similarly we get the other three equations establishing (x, y)A(x”, y") and thus
transitivity.

For (ii): Let f be a k-ary fundamental operation on A and suppose
(x;, y)A(x!, y!) for 1=isk.

f(xl’ AR ] xk) =f(p(x’1’ y’b YI)a ] p(x:u YZ, yn.))

=p(f(xt, .. x0), FVhs - v f(yns s W)

and three more equations give us:

f((xb yl)a LI (xm Yn))Af((x§9 y’1)9 sy (x:n )’ﬁ))

For (iii): Let p commute with p. Then by the equations (*) of p (see 1.3) we
get

p(x, y, p(z, u, v)) = p(p(x, u, u), p(y, u, u), p(z, u, v))
=p(p(x,y, z), p(u, u, u), p(u, u, v))
=p(p(x, y, 2), u, v) |

Now for the proof of (iii)— (i) in Theorem 4.7 note that since p is a polynomial
. and every fundamental operation, (thus every polynomial) commutes with p we
have a fortiori that p commutes with itself, so the above lemma yields the
congruence A on A X A. It is easy to check (much like in (v)— (i) that A forms a
0-1-4#5 in C(A X A) together with the projection congruences.

Let now A be affine w.r. to an abelian group G. Let p be a Mal’cev-
polynomial on A. Since

p(x,y, z)=p(x,0,0)+ p(0, y, 0)+p(0, 0, z)
=X+Z+p(0, Y, y)+p(09 0, _)’)
=x—y+tz
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we have by Theorems 3.2 and 3.8 that G is actually isomorphic to the group
constructed in 3.8. For arbitrary n e N let us define congruences 4, on A XA by

(x, y)A.(x',y) iff n(x—x)=y-y" (2)

LEMMA 4.9. A, is a congruence on AXA for every n € N. Every congruence
on A (resp. on AXA) is a congruence on G (resp. GXG).

Proof. For an arbitrary fundamental operation f on A and for (x;, )4, (x1, y!)
we have:

n(f(xy, ..., x)—f(x4, ..., xk)=
=n(f(x,—x%, ..., % —x)—f0,...,0)
= n(f(x,— x4, ..., 5 —xi)—n(fO,...,0))
= f(n(x;—x}), ..., n{x—x)—f0,...,0)
=f(y1= Y15+ os Ve =¥ —f(0,..., 0)
= f(y1, > )= YL, 5 V)

Let @ be a congruence on A (resp. AXA) then ¢ must be compatible with
p(x,y,z)=x—y+z and therefore a congruence of G (resp. GXG).

§5. More about affine algebras

Affine algebras are in many respects similar to modules, but the only thing
which is often inconvenient is that the zero-element of the underlying abelian
group is not a subalgebra of the affine algebra. Therefore the following definition,
which can be found in McKenzie [16], will prove useful:

DEFINITION 5.1. Let A=(A, F) be an affine algebra. For fe F, k-ary,
define f':A*—>A by (.o %) =f(xq, ..., %)—f0,...,0) and
FY:={f"|feF}. A¥:=(A, F") is then called the linearization of A.

Note that by this definition {0} becomes a subalgebra of AY and moreover
every constant of AY coincides with 0.

Throughout this chapter A will be an affine algebra in a permutable variety.
Since for the Mal’cev-polynomial p we have p(x, y, z)=x—y+z we conclude that
x—y and x+y are algebraic functions on A and on AY. Immediately we get:

LEMMA 5.2. A and AY have exactly the same algebraic functions and exactly
the same congruences.
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From A" we now define an algebra Aj by adding a nullary operation with
value 0, denoted by 0. If A already had some nullary operation then AY and AJ
are polynomially equivalent and will therefore be considered as equal for our
purposes.

THEOREM 5.3. A§ is polynomially equivalent to a module over a unitary ring.
Proof. Let p be an n-ary polynomial of Aj. Then

p(xyy...,%,)=p(x,0,...,0)+---+p(0,...,0,x,) (£2)

by condition (A) and Lemma 4.3 and because p(0,...,0)=01in A". Let R be the
set of all unary polynomials of Aj. Addition and composition of functions endows
R with a ring-structure, in fact R becomes a subring of the ring of endomorph-
isms of the underlying group G. The identity map i:A,— A, makes R=
(R,+,°,1i) a unitary ring. Since every polynomial of Aj keeps O fixed, we have
that every polynomial of A§ is a group homomorphism of G"— G. The above
equation shows that every polynomial of AJ is a polynomial of the module G.
On the other hand every polynomial of gG is a polynomial of AJ because
x+y=p(x,0,y) is a polynomial of Ay and because the polynomials of every
algebra are closed under composition. This module which we can always obtain,
starting out with any affine algebra A, will be denoted by M(A).

Observing that the algebraic functions of A and AJ coincide we can get M(A)
"in a more direct way:

COROLLARY 5.4. The algebraic functions of A with 0 as only constant are
the polynomials of a module over a unitary ring R.

Remark. It should be noted here that we consider two polynomials (resp.
algebraic functions) of a single universal algebra as equal if they are equal as
mappings. This means particularly that M(A) operates faithfully on A.

For a cardinal « let #, denote the modular lattice of length 2 with a atoms.

LEMMA 5.5. Let A be a simple affine algebra in a permutable variety. Then
the underlying group G is either torsion-free or an elementary abelian p-group.

Proof. The congruence lattice of A X A is modular since A is contained in a
permutable variety. Since A is simple, €(A X A) has to be of length 2. Thus
-G(AxA) is isomorphic to M, for some cardinal a. Suppose G is not torsion-free.
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Then there exists a smallest number g such that for some 0#ae G we have
qa =0. g obviously is prime.

Claim. For all xe G we have gx =0.

The congruence 4, as defined in Lemma 4.9 is nontrivial if A has more than
one element. Moreover, since (a,0)4,(0,0) we have that A, A O, # w. Since
C(A X A) =AM, we see that A, = @, from where it readily follows that gx = 0 for all
xeG.

§6. Applications to single algebras

The applications of Theorems 4.6, 4.7 and 5.4 will, for the purpose of this
note be divided into two classes. First we will describe certain single algebras in
permutable varieties, and in a later chapter we will characterize some hamiltonian
varieties of universal algebras, simplifying and at the same time sharpening some
known results.

The first application generalizes a result of Quackenbush and a theorem of
McKenzie.

THEOREM 6.1. Let A be a simple algebra in a permutable variety. If
C(A X A) is isomorphic to M,, for some a =3, then A is affine w.r. to a torsion-free
abelian group or w.r. to an elementary abelian p-group.

Proof. Follows from 4.7 and 5.5.

COROLLARY 6.2. (Quackenbush [20]). If A is a finite algebra in a permut-
able variety and if €(A X A)=M, then

(a) n=p*+1 where p is a prime

(b) If p>1 then |A|=p™.

Proof. (b): (A x A)= M, obviously implies that A is simple. Since |A| is finite,

applying Theorem 6.1 we know that A is affine with respect to an elementary
abelian p-group. In particular, the cardinality of A must be a prime power, say
p™.
(a). 5.4 implies that C(A)=C(M(A)) and (A x A)=C(M(A)x M(A)), hence
M(A) is a simple module and the nontrivial congruences of AXA are in a
canonical correspondence with the one-generated subspaces of M(A)X M(A).
Those one-generated subspaces are therefore lines of a geometric net given by 4,
and must be of the same cardinality as A. By part (b) this is p™ and we are left
with counting the one-generated subspaces of M(A)x M(A) which immediately
yields p™+1. Hence we even get m = k.
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Note that using elementary theory of modules, we can prove that R is a ring of
matrices over a field and obtain the same result in a different way, compare
Behrens [1], II, §1.

COROLLARY 6.3. (McKenzie [16]). Every finite simple algebra in a permut-
able variety is either functionally complete or affine with respect to an elementary
abelian p-group.

Proof. (A x A) is isomorphic to M, for some n e N. If n is equal to 2 then the
result follows from 1.9, otherwise 6.1 applies.

There is also an infinite analogue to Corollary 6.3 which follows from 6.1. This
was pointed out to me by A. F. Pixley.

We define an algebra A to be locally functionally complete if every partial
function from A" to A with a finite domain is equal to an algebraic function on this
finite domain. See [19] for a precise definition and equivalent formulations.

THEOREM 6.4. An infinite simple algebra in a permutable variety is either
locally functionally complete or affine with respect to an abelian group which is
either torsion free or an elementary abelian p-group.

Proof. It remains only to prove that if C(AXA)=/, then A is locally
functionally complete, i.e. A" is locally primal [19]. Hence by Theorem 4.3 of
[19] and by the characterization of local varieties by Hu [11] it only remains to
~show that the local variety L(A):=DHSP(A™) is arithmetical. Here D, resp. P,
are the operators of taking direct limits, resp. products of finitely many factors.
Since A" has no subalgebras we get by Lemma 1.8 that L(A*)=DHP,(A").
Again by [3] or [22] we conclude that finite powers of A* have no skew
congruences hence HP.(A™) is a class of arithmetical algebras. It is straight-
forward to see that direct limits of arithmetical algebras are arithmetical hence
L(A™) is arithmetical.

Another field where the results of Chapter 4 can be applied is given by the
para-primal algebras. According to Krauss we define:

DEFINITION 6.5. A finite algebra A is para-primal if every subalgebra is
simple and the variety generated by A has permutable congruences.

Para-primal algebras are generalizations of quasi-primal algebras which have
been widely investigated. For the definition of quasi-primal algebras see Pixley
[19]. We will use a characterization of quasi-primal algebras due to Pixley as our
definition:
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DEFINITION 6.5. A finite algebra A is quasi-primal iff A is para-primal and
the variety generated by A is congruence distributive.

Para-primal algebras have been investigated by Clark and Krauss in [4] and
[5] and recently by McKenzie [17].

The following characterization theorem was also found mdependently by
McKenzie [17]:

THEOREM 6.6. A para-primal algebra A = (A, F) is quasi-primal if and only
if no non-trivial subalgebra is affine.

Proof. If some subalgebra B of A is affine then by Theorem 4.7 #; is a
sublattice of €(B xB) thus the variety generated by B is not congruence distribu-
tive. For the other direction let V(A) be the variety generated by A and let
Fya)(3) be the free algebra on 3 generators in V(A). It follows from Jonsson [12]
that V(A) is congruence distributive if and only if the congruence lattice of
Fya)(3) is distributive.

Since F:= Fy,(4)(3) can be embedded in a finite direct power of A we have that
F is a subdirect product of finitely many subalgebras of A. Since every subalgebra
of A is simple we may apply Lemna 1.8 to see that F is a direct product of
subalgebras of A. If for any two subalgebras B and C of A their product B X C has
only factor-congruences then by Burris [3] or Werner [22] €(F) is distributive and
hence A is quasiprimal. Since this cannot occur we conclude that #; is a
0-1-sublattice of €(B xC). Then Theorem 4.6 yields that B and C are affine.

For the case of loops we get a sharper result:

COROLLARY 6.7. A para-primal loop L=(L,-,1) is quasi-primal if and
only if no nontrivial subloop is an elementary abelian p-group.

Proof. The proof is the same as that of Theorem 6.6, with some additional
conclusions. If for the constructed subloops B and C we have #; as a 0-1-
sublattice of €(B x C) then, since loops have one-element subalgebras we can use
a theorem of Lovasz [14] to conclude that B=C. Then by 4.7 B X B is affine over
GxG and the Mal’cev-polynomial p is nothing else than x—y+z in GXG.
Moreover the zero-element (0, 0) of G X G can be chosen arbitrarily so we choose
(0,0):=(1, 1), where 1 is the unit of L. Then we get:

(x/y)-z=p(x,y,2)=x—ytz
and by our choice of (0, 0):

x-z=(x1z=x—-0+z=x+z
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Thus the multiplication of the loop coincides with the addition of our abelian
group. It follows that B is an abelian group and moreover an elementary abelian
p-group by Theorem 6.1 since B is simple.

§7. Applications to hamiltonian algebras and varieties

DEFINITION 7.1. An algebra is hamiltonian if every subalgebra is a class of
a congruence.

The following generalizes a theorem of Evans [9]:

THEOREM 7.2. A loop L is an abelian group if and only if LXL is
hamiltonian.

Proof. Certainly abelian groups are hamiltonian so one direction is clear.

For the other direction note that D:={(x, x)| xe L} is a subalgebra of L XL
and therefore has to be a congruence class. Theorem 4.7 applies and we get that L
is affine w.r. to an abelian group G and as in the proof of 6.7 we may choose the
zero of the group as the unit of the loop to get that x-y=x+y, ie. the
multiplication of the loop L and the abelian group G coincide.

COROLLARY 7.3. (Evans [9]). A variety of hamiltonian loop is a variety of
abelian groups.

Another field of applications leads to the characterization of varieties of
modules and affine modules, due to Csdkany and Klukovits.

DEFINITION 7.4. An affine module is the full idempotent reduct of a
module.

THEOREM 7.5. (Csakéany [6]). Let V be a variety such that for every algebra
AinV:

(i) Every subalgebra is a class of a unique congruence

(i) Every congruence class is a subalgebra
Then V is polynomially equivalent to the variety of all affine modules over a fixed
unitary ring R.

THEOREM 7.6. (Csakany [7]). Let V be a variety such that for every algebra
AinV:
(i) Every subalgebra is a class of a unique congruence



32 H. PETER GUMM ALGEBRA UNIV.

(i) Every congruence has a unique class which is a subalgebra

Then V is polynomially equivalent to the variety of all modules over a fixed unitary
ring R.

THEOREM 7.7. (Csadkany [6]). Let V be a variety such that
(i) V has permutable congruences
(i) Any two polynomials of V commute
(ili) There is a nullary operation 0 forming a one-element subalgebra in every
AeV.
Then V is polynomially equivalent to the variety of all modules over a fixed
commutative unitary ring R.

Let us add another theorem:

THEOREM 7.8. Let V be a variety such that
(1) V has permutable congruences
(i1) There is a nullary constant 0 forming a one-element subalgebra in every
AeV
(iii) V is hamiltonian
Then V is polynomially equivalent to the variety of all modules over a fixed unitary
ring R.

Proofs. To obtain a common proof for all those four theorems let us first note
that the conditions of 7.5 and of 7.6 both imply that V has permutable congru-
ences. In the case of 7.5 we prove this as follows: Let @ and ¥ be congruences on
an algebra A€V and let x, y, z be elements of A with x@y¥z. Then
B:=[z]@:={aec A | a®z} is a subalgebra of A by (ii), therefore [B]¥:= | [b]¥

beB

is another subalgebra of A and by 7.5(i) is a class of a unique congruence a. Thus
[B]¥ is a class of @ and on the other hand [B]Y¥ is contained in [z](® v V). It
follows from the uniqueness (i) that a =@ v ¥. Since x@v ¥z we conclude
x €[ B]¥ but this implies that there exists an element c€ A with zOc¥x. Thus @
and ¥ permute. In the case of 7.6 we refer to Csakany [6] for the proof that V
has permutable congruences.

Let now F(w) denote the free algebra in V with countably many generators.
We will apply Theorem 4.7 to show that F(w) is affine w.r. to an abelian group:

In Theorem 7.7 every polynomial commutes with the Mal’cev-polynomial for
permutability, thus Theorem 4.7 (iii) applies.

In the other theorems the hamiltonian properties imply that D, the diagonal
subalgebra of F(w)X F(w) is a congruence class, thus we can apply Theorem 4.7
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(iv). Now consider F(w)j where the 0 has been chosen as the one-element
subalgebra which is easily seen to exist in 7.6 and obviously in 7.7 and 7.8. Thus
in 7.6, 7.7 and 7.8 we have that F(w) is polynomially equivalent to F(w)y and
thus to a module by Theorem 5.3. Since F(w) determines the variety V uniquely
the Theorems 7.6, 7.7, 7.8 follow. Note that in 7.7 because of (ii) the ring R is
commutative.

For Theorem 7.5 we do not have a distinguished constant 0 but (ii) implies
that every polynomial is idempotent, i.e. every element is a one-element sub-
algebra. Obviously F(w)= F(w)’ so as in 5.3 we get a ring R such that every
polynomial of F(w) is a module polynomial. On the other hand let q(z,,..., z,)
be an idempotent module polynomial, i.e.

Z a=1 in the ring R. (o)
=1

We have to show that g is a polynomial of F(w). Certainly g is an algebraic
function of F(w). Every algebraic function of a free algebra however is a
polynomial of this free algebra with possibly some variables added. hence it
remains to show that

q(x,, ..., x)eU={x, ..., x}),

the subalgebra of F(w) generated by {x,,...,x }, see [7]. Then we will have
~established that q(x;, ..., x; ) itself is a polynomial, i.e. no variables have been
added as constants. Let us take the congruence @, which has U as a class. 6,
exists by 7.5(i). Then by (o) we get

X, =ax;t: -+ anxil@Ualxh t+:- t+ax, = q(xils cees xi,,)
In particular q(x,, ..., x;, )e U hence q(x,, ..., x; ) is a polynomial in x, , . . ., X; .
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