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0. The purpose of this note is to present an elementary approach to the com-
mutator in modular varieties and to derive some new results connected with this con-
cept.

The theory of commutators in universal algebra was introduced and thoroughly
studied in the framework of permutable varieties by J.D. H. Smith [8]. Then
J. Hagemann and C. Herrmann in [6] studied this concept in modular varieties
and were able to prove many of its important properties. Their results were used
by R. Freese and R. McKenzie [1] to derive some deep results about modular vari-
eties, also solving some longstanding problems.

Since we feel that not only the definitions and the proofs in [6] are unusually
difficult but also the geometrical meaning and intuition still inherent in [8] is lost,
we feel that a simplification of this concept is needed.

Our new approach was possible due to the translation of congruence modularity
(a projective notion) into the affine geometries of the algebras involved, which is
given mainly in [2].

1. Basie notions and prerequisites. We denote universal algebras with gothic letters
and congruences with greek letters. Note that a congruence « on an algebra U may
be viewed as a special subalgebra of U x A. If D is a subalgebra of A X B then the
kernels of the canonical projections will be denoted with 7; and 7z. € () denotes
the lattice of congruences on . For (z, y) € « we frequently write zay.

For a subset S of A X A we denote with (S)y the smallest congruence relation
on A containing 8. A description of (8¢ is given by Mal’cev in [7].

If p: A — B is a homomorphism and « is a congruence on U then pa denotes the
induced congruence on B, i.e. pa = {(¢ X @)ady. If B is a congruence on B then
B = {(z,y) e U X Al (p(x), p(y)) € B} is a congruence on A. Note that for ¢ onto
we have ¢gpf = f and ppa = a v ker .

Now for the main (conceptual) tools we use: The first one is a simgle observation,
see [3]:

1.1. Shifting Lemma. Let A be an algebra with a modular congruence lattice. Let
o, 01 and ¥ be congruences on N and x, y, z, u elements of A. Then
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X 8 2 x z
8, iy o ¥
y ‘u implies y

with @ = (Ogr O1) v V.
(In the pictures we frequently use, points denote elements of % and two points
are joined with a line if they are congruent modulo a congruence o, in which case

the line is labelled with the letter «. Parallel lines are always supposed to be equally
labelled.)

Secondly we recall from [2] the

1.2. Cube Lemma. Let Y be an algebra in a modular variety (i.e. all subalgebras of
powers of W have modular congruence lattices). Let x,y, z, u, «', y', 2', u’ be elements of
W and Oy, @1, ¥ congruences on N with Ogr Oy < ¥. Then

X’T 02 X0 0z’
L
1 ] /// 1
y'o u y 9 u

implies

X po— z X Jz
y & U yo© Ju

8,

2. The Commutator: Definition and simple properties. Let « and 8 be congruences
on Y. Define a congruence AL on « (viewed as a subalgebra of A X ) by

A5 = {((, ), 4, 9) | 2BY} e -
- and
[“’ ﬂ] = {(x’ ?/) l (xs x) Ag (:L‘, y)}

[, B] is called the commutator of « and B.
It is a simple exercise to show that this concept coincides with the well known
commutator for groups, via the translation of congruences into normal subgroups.

2.1. Properties of A°.

Q C
Q) (@ b)A(c,d) implies a@a,
b d

p
(ii) (@, b) A%(c,d) implies (b, a)A?(d, c)
(i) apBb implies (a, a) A5 (b, b).’

Proof. (iii) being part of the definition, (ii) follows immediately from the sym-
metry of «, or fancier, note that (z, y) — (y, x) yields an automorphism of «, leav-



222 H.P.GuMmm ARCH, MATH.

ing invariant the generating set of A%. For (i) note that 45 < f X f|« Where f X fl|«
is the congruence on « given by (x,y)8 X B|a(z, u) iff (x,2) € § and (y, u) € B.

2.2. Properties of [«, f].

() [a Bl ={(y)| @ ) 2. )},
(i) [o Bl = {2, 9)] 3( (z2) Af’ () )}
= {(z,9)| 3( (&, 2) 45y, 2) )}
(iii) [a, B] ts @ congruence relation on U.
(iv) [o fl=anp.
Proof. (i) follows from 2.1 (ii).
(i) follows with the Shifting lemma applied to

(x,x) (z,x)
(x,y) 1z,y)

(iv) is immediate from the definition and from 2.1(i). For (iii): All properties of
a congruence relation are immediate with 2.1. For transitivity we use 2.2, namely
z[a, Bly[o, fl2 implies (z, ) A8 (y, y) A8 (2, y) hence xz[«, ]z with 2.2.

From Mal’cevs description of congruences generated by a binary (symmetric)
relation on an algebra [7] we obtain

92.3. An alternative deseription of the commutator. The statement “(x, y) € [«, f]”
in equivalent to ‘‘there exist unary algebraic functions To, ..., Tn ON & and (89, to),
. (Sn,tn) € B with
1,’0(80, 80) = (x, x) ’
Tite, t) = Tir1 (841, 8i1), 0 =i <m,
Tu(tn, tn) = (z, ).

With the foregoing description at hand, the verification of the following proposition
is routine:

2.4. Proposition. Let ¢: A — B be a homomorphism and «, B congruences on U.
Then @la, Bl < [pa, pBl.

Proof. Consider the homomorphism @ X @: « — pa and apply it to the equa-
tions of 2.3. Each 74, which is an algebraic function of (the algebra) a will be trans-
formed by @ X ¢ into an algebraic function 7; of (the algebra) @a. Thus we get

7o (@ (s0), @ (s0)) = (@ (2), (),
Ti(@ (), @(t) = Tir1(@(sir1), @(si+1)), for 0=1<m,

Tn (@ (), @ (ta)) = (@ (2), (¥)).

Hence with 2.3 we have (p(2), ¢ (%)) € [pa, ¢S]
The following corollary is well known for groups:
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2.5. Corollary. The commutator of fully invariant congruences is again fully invariant.

As we go on we need the following technical result:

2.6. Theorem. Let D be a subalgebra of U X U (with € (D) ‘modular). Let x;, i I
be a family of congruence relations on D with the property:

(x: y) g (z: u) implws (xa x) i (z: z) .
Then for all z,y,zc WA we have:
(@, %) V xi(y,2) implies (y,y) V (i A1) (g, 2).

Proof. If (z,z) \/ #:(y, 2) then there exist w.l.o.g. %0, ..., #p-1 and (up, vp),...,
(un, vy) € D with

(’uo, ’UO) = (x: x) ) (un ’ 'Un) == (y, z)

_ and

(us, vi) g (w11, vi41) for 0=Zi<m.
By induction we show that
(ue, us) V (30 A 701) (g, 0g) .
Indeed this is trivial for ¢ = 0. In passing from ¢ to ¢ + 1 we note that
(%, %) 266 (Ua41, Us41)

and, using the induction hypothesis we have the situation:

(Uj+1,Ujsy)
/
(Ui lui)l

1

m

VIKjATy)

(Ujsq,Viey)
\‘ K|
(uyj,v)

Thus the induction step is achieved with the Shifting lemma. Setting now ¢ = n
the theorem is proved.

]

'

1]
] .
|
117G
)
]

\

1

1]

1

2.9, Corollary ([6]). [«, V fi]l = V [a, Bil-

Proof. = is clear since f; <V f;. Trivially AY# = \/ A% Hence supposing
(@, y) € [a, VB, ie (x, x) VA5 (x, y) we conclude with 2.6 the relation
(, 2) \/ (4% A 71) (2, y) which clearly means (z, %) € \ [«, Bil. A second application

of 2.6 yields a result of R. Freese and R. McKenzie:



224 H.P. Gumm ARCH, MATH.

9.8, Theorem ([1]). Let @: A - B be an onto homomorphism and a, f congruences
on B. Then pla, f] = [pa, BV ker ¢.

Proof. Using 2.4 we get that (x, ) € [pa, @] implies
(p(2), () € [pg, B] = [a, ]

because ¢ is onto. For the reverse inclusion suppose (a, b) € @la, B, 1.e. (z, ¥) € [, f]
with # = @(a) and y = @(b). The last relation can be written down as in 2.3. Since
@ is onto there exist (3, )eo ﬁ with @(8) = s; and ¢(#;) = £ and there are sim-
ilarly algebraic functions 7; on @o which arise from the given 7; by substituting
any constant (i.e. an element of «) by an arbitrary preimage under ¢ X @ (i.e. an

element of <poc) Since @ X @ is a homomorphism we obtain:
7o (50, S0) ker ¢ X ¢(a, a),
T i, &) ker o X @ Ti1(Si1, §iv1) for 0 =0 < m,
Tn(n, In) ker ¢ X ¢(a, b).
Hence (a,a)4 ‘E’S vker ¢ X ¢(a,b). Application of 2.6 yields
Qo
(a,a) (4 7% A my) v (ker @ X @ A7) (a,b)
Qo

which immediately gives the missing inclusion.
Another important property of the commutator is commutativity. To prove it
we use for the first time the Cube lemma.

2.9. Theorem ([6]). [«, 8] = [f,a].

Proof. Our proof uses the Cube lemma to imitate Smith’s proof in the permutable
case. We define
A% 2= {((x, ), (u,0)) | (z, ) A5 (y,v)} .
Clearly (z, y) € [«, f] implies (z, ) A% (x, y), hence we are done if we can show that
A5 = A5,
Obv10usly A% is a binary relation on f containing ((x, x), (y, y)) whenever (z, y) € .
Reflexivity and Symmetry are precisely properties 2.1 (iii) and 2.1(ii).

For transitivity suppose (x, %) A8 (y, v) A% (2, w) which means (, y) AP (u, v) and
(y, 2) A8 (v, w). Further the relations (z, y) A8 (w, v) and (2, 2) A% (w, w) come from 2.1.

We thus have the following situation

olw,w)

A /
(X'Z)T/ (z,2)

N2 1

LS|

\(u/M /(w,v)
(x,y)< (z,y)
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The Cube lemma thus yields (z, 2) A8 (w, w) i.e. (z, w48 (z, w). Compatibility of A°
is trivially seen, hence A° is a congruence relation on B, containing ((, ), (y, y))
whenever z fy.

Hence A5 = A%. We conclude A% = 7% = A5 = A% and therefore A% = A8,
We note as a corollary another result from [6]:

2.10. Corollary ([6]). Suppose ¢: U - B is an onto homomorphism and ke B,y are
congruences on B. If there are congruences o and v on A with o AT < @y, oV oy

= (poc, ‘L‘V(py = (pﬂ then [a, B] < .

Proof. [o’V(py,rvEy] < [o, 7] v?y_py <py applying 2.7, 2.9 and 2.2. Hence

lpa, <p,3] < py. From 2.8 we get (p[oc, Bl = [pa, pBlvker ¢ < @y, and after ap-
plying @ the result follows.

2.11. Corollary For congruences a, 8, y of the algebra U we have [«, ] < y if and
only if [pa, pBl = O where ¢ is the canonical homomorphism from U onto Ujy.

Proof. [pa, pf] = O implies with 2.4 that @[a, f] = 0 which is equivalent to
[, B] =< ker ¢ < ». On the other hand

ploa, 9Bl = [poa, ppBlvker ¢ = [a v ker ¢, B v ker @] v ker ¢
= [o, ] vEkerg.
Assuming [«, 8] < y = ker ¢ we get that [gpa, pf] = 0.

With 2.11 in mind we may be interested in

2.12. A syntactical deseription of [«, ] = 0. The statement “[a, f] = 07 is equiv- -
alent to “for all term functions p(x1, ..., x,) on W and (az, bs), ..., (@, by) € x and
(x,y) e B we have

p(x7 az, ---a“n) :P(x:b% '°'>bn)
implies
p(y; asz, ---,“n) :P(% b2, °'-=bn)”°
Proof. According to Mal’cev [7], the right hand side states precisely, that
&= {(y,) | 2By} is a class of some congruence on the algebra « for any arbitrary
z e U.If so it is certainly a class of A2, hence [«, ] = 0. On the other hand, if it

were not a class of any congruence we might assume (x, z)4°(u, v), yielding
(u, u) A% (u, v) with 2.6 and hence (u, v) € [«, S].

3. Groups connected with the commutator. We recall from [3] that in every modular
variety V there exists a 6-ary polynomial ¢(x, ..., z¢) with the following property:
Let @y, @1, ¥ be congruences on the algebra U with @gr @) < V. Let ay, ..., ag
be elements of . Then

Archiv der Mathematik 34 15
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Q az as ay az Qs
8, 8,
¥ | v v |8
implies & by
a4 as Qg q Qs as ag

with ¢:=q(a1, ..., as).
We define a new polynomial p(z, y, 2) by
p(x, Y, Z) = Q(xa 2,2,%,Y, ?/) .

Then p(x, y, y) = x is an equation valid in V (see [3]). Suppose now we have con-
gruences «, B with « = f and elements z, y, z with x a y f z.

Then clearly (y,y)A%(z,2) and with y:= 4% we may apply the polynomial
q(x1, ..., xe) to the situation

(x,y) (z,y) (y,y)

(x,2) (z,2) (y,2)

and consequently find that

($) (2, 9) A5 (p (@, 9, 2),2) .

Setting x = y we obtain
px,x,2) [, flz.

Moreover since A? is a congruence we find for % := (%1, ..., %x), ¥ := (Y1, ..., ¥n),
Z:=(21,...,2,) With z;ay; f2; and any n-ary operation f

(f@), f@) A5(H (P (1, Y15 21); -+ s P (@ns Y, 20)), [(2)).
Using (§) again we get

(=), 1) 250 (f (=), (), 1(2)), 1 (2))
and hence
(§3) f@ @1, 41, 21)s -o0s D (@ns Y, 20) [0 B0 (), F§), 1(2))-

This yields one direction of

3.1. An equational description of [«, 8] = 0 with « = 8. Suppose « = f then
[, B]1 =0 if and only if for all xioy; fz; with i, yi, 2 € U the equations p (Ys, Y1, 2i) = 24
and
f(p(xla Y1, zl): ...,p(xn, Yn, Zn)) =p(.f(‘_£): f(§)> f(z))
hold.
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For the proof of the missing direction we define a congruence 0 on « by
(z,y) 0 (u,2) :<>2zayfz and p(z,y,2)=u.

To show symmetry we suppose p(z, y,2) = u and zayfz and compute

P, 2,y) =p(p,¥,2), 2(¥,9,2), 2%, ¥, Y))
=@ 99,2499, 0(22Y) =29,y ==.

For transitivity suppose xaé/ Bz, uazfs, p(x,y,2) = u, p(u,z,8) =r and compute:

P, y,8)=p@@4,9), 2.9, 9), p(2,2,9))
=p(p(x,4,2), (¥, ¥, 2), (¥, 4,8) = p(u,2,8) =r.

Using that p(z, z, y) = y for By we find (2, z)0(y, y) for xfy and hence § = A5.
Hence suppose z[a, 8]y, then (z, z) Ag (x,y), therefore (z, z) 0 (x, ¥) hence p(x, x,y)==
which implies x = y. Thus [«, 8] =0.
We pause for a simple application.

3.2. Definition (Nilpotency, Solvability). Starting with 1, the universal congruence
on U we define:

11=1, 1ntl:=[171] and 1®:=1, 10+ :=[10) 1®)],

We say that U is nilpotent (solvable) of degree <k, if and only if 1% = 0 (1%¥) = 0).
A is called nilpotent (solvable) if for some natural number £ U is nilpotent (solvable)
of degree <k.

It is a simple exercise to convince oneself that within a given modular variety
the class of algebras nilpotent (resp. solvable) of degree <k forms a subvariety V¥
(resp. V®).

Now 3.1 allows us to give an equational description of the varieties V¥ and V),
Namely, define sets of equations:

.911:=./V‘1:={x=y}.

Ay = {f(p(y1, 01, 1), .-, (V0> On> Ta)) = P(f (Y15 .-, V),
f(o1, ..., 00), f(T1,...,Ta)) | f is m-ary operation and
Mil—ykEO’kE‘L’k for 0<k§’n}U
{p(o,0,7) = t| i o=r1}.

‘/V'i+1 = {f(_p(xly o1, Tl):---:p(xn;o'n; Tn))—_-:p(f(xl,-u,xn),

f(o1, ..., Tn), f(01,..., Ta)) | f is m-ary operation and
Nibor=t for 0k <n}uU
{p(o,0,7) = 1| Nil0o=1}.
Then the equations 7 (resp. A7) together with the equations of V describe the
algebras in ¥V which are solvable (resp. nilpotent) of degree <k.

After this interlude we keep on supposing [«, f] = 0 with « = . Then from 3.1
we conclude that on every class of 8 p(z, y, 2) is a Mal’cev polynomial, commuting

15*
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with itself. Hence on every class of 8 an abelian group ¥ is defined (use 4.7 (iii) of
[4]) with p(x,y,2) =« — y + 2. In fact, § is an affine congruence, see [5]. For
a € U let us denote the algebra ([a]f, * — y + z) by %[a]. Then we claim:

3.3. For (u,v)€ea, Y[u] and Y[v] are isomorphic.

Proof. Define a map ¥, » by ¥y,r(x):= p(v, u, z). Clearly ¥, , is a map from
4[u] to %[v]. Next we claim that ¥, , 0 ¥, 4 = id for (u, v) € «. Namely for z8v
we have (v, u) A8 (x, p(u, v, x)) since (u, p(u, v, x)) € B and hence

(v, u) A (p (v, w, p(u, v, 2)), P (%, v, ).

Thus we find that p (v, u, p (%, v, %)) [, B]2. Thus the mappings ¥y, are bijective.
Moreover

Pu,v(@—y +2) = ¥u,o(p(,9,2) = p(v, %, p(,9,2))
= p(p©,v,9), p(u, u, u), p(2, Y, 2))
=p(p@,u, ), p(V, u, y), p(v, u,2))
= Yu,v(®) — Pu, o) + Pu,0(2).
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