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Abstract. Universal coalgebra is a mathematical theory of state based sys-

tems, which in many respects is dual to universal algebra. Equality must

be replaced by indistinguishability. Coinduction replaces induction as a proof
principle and maps are defined by co-recursion. In this (entirely self-contained)

paper we give a first glimpse at the general theory and focus on some applica-
tions in Computer Science.

1. State based systems

State based systems can be found everywhere in our environment – from simple
appliances like alarm clocks and answering machines to sophisticated computing
devices. Typically, such systems receive some input and, as a result, produce some
output. In contrast to purely algebraic systems, however, the output is not only
determined by the input received, but also by some modifiable “internal state”.
Internal states are usually not directly observable, so there may as well be different
states that cannot be distinguished from the input-output behavior of the system.

A simple example of a state based system is a digital watch with several but-
tons and a display. Clearly, the buttons that are pressed do not by themselves
determine the output - it also depends on the internal state, which might include
the current time, the mode (time/alarm/stopwatch), and perhaps the information
which buttons have been pressed previously.

The user of a system is normally not interested in knowing precisely, what the
internal states of the system are, nor how they are represented. Of course, he
might try to infer all possible states by testing various input-output combinations
and attribute different behaviors to different states.

Some states might not be distinguishable by their outside behavior. It is therefore
natural to define an appropriate indistinguishability relation “∼” on states. One
expects this relation to be an equivalence relation, and that factoring the state set
by ∼ would yield a representation of a system with the same input-output behavior
but with a minimal state set. While this is true for most of the systems that
we shall consider, our definitions will be broad enough to allow for systems where
indistinguishability is not transitive. Indeed, one may imagine situations where a
collection of objects is observed, and it is easy to distinguish two objects that are
far apart, but where objects close to each other remain indistinguishable.

1.1. Black boxes. We begin with the simplest possible example, a “black box”,
having at its front side two buttons, labeled “h” and “t”, and a little display. Let
us assume that the display is normally dark. Only when the button “h” is pressed,
the display will show a natural number. Pressing “h” several times in a row, will
not change the number displayed. However, after pressing “t” one or more times,
when “h” is pressed again, we might see a new number.
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h

t 42

Mathematically, a black box can be modeled by some set S of states together
with two functions

h : S → N
t : S → S.

1.1.1. An Example. Consider a black box with an eight-element state set, where
the state transition function t is indicated in the following figure by arrows, and
the observation function h is indicated by the labels on states.

GFED@ABC33 // GFED@ABC17
++ GFED@ABC42kk GFED@ABC17oo GFED@ABC42oo GFED@ABC33oo GFED@ABC42

++ GFED@ABC17kk

Clearly, states with different output value are immediately distinguishable - we only
have to press h and shall see different results in the display. Similarly, the two states
labeled 33 are distinguishable: After pressing t, followed by h, we see a 17 in one
case, and a 42 in the other case.

In contrast, all states labeled 42 are mutually indistinguishable, as are all states
labeled 17. No sequence of experiments can ever lead to different outputs.

1.1.2. Indistinguishability. Apparently, an indistinguishability relation ϑ for black
boxes must satisfy the following rule, which we indicate by placing the premise
above, and the conclusions, separated by commas, below a horizontal line:

x ϑ y

h(x) = h(y), t(x) ϑ t(y).

It is clear, that there may be several indistinguishability relations; one of them
is always the equality relation “=” on states. Obviously, such indistinguishability
relations are closed under set-union, so there is always a largest one, which we shall
denote by ∼. Hence we call two states s and s′ indistinguishable iff s ∼ s′, which is
the same as saying that the pair (s, s′) belongs to some indistinguishability relation.

1.1.3. Streams. As a second example consider the set Nω of all streams over N. We
define h : Nω → N as the head and t : Nω → Nω as the tail operations, i.e.

h(n0, n1, n2, . . . ) := n0

t(n0, n1, n2, . . . ) := (n1, n2, . . . ) .

This system is special amongst all black boxes, for we can easily verify the follow-
ing proof rule, which states that two streams are equal iff they are indistinguishable:

x ∼ y

x = y.

1.2. Object oriented programs. In object oriented programming, a class is a
collection of data elements, called objects. All objects of one class share a common
interface, consisting of a list of attributes and methods. The user can modify
objects only by using their public functions (aka methods) and he can observe their
properties only via public data fields (aka attributes). We shall give a simple class
definition, written in the language Java, implementing a bank account:
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class Account{
private int amount;
Account(){ amount=0; }
public trans(int n){ amount += n; }
public show(){ return amount; }

}

When an account is created, its integer variable amount is initialized to 0. This
private variable is not directly accessible to the user, he rather has to invoke the
public method show to find the account’s balance. Using trans, he may perform a
transaction, adding or subtracting money from the account.

As far as the specification of such an account is concerned, the user should insist
that the following equation be satisfied for any account x:

x.trans(n1).trans(n2).show() == x.trans(n1 + n2).show()

that is, after making two transactions, one adding an amount of n1 and a second,
adding n2, the user should observe the same balance as if the amount n1 + n2 had
been added at once. Note that == is the equality relation in Java and that the
dot-notation s.m indicates application of method m to state s.

In contrast to the first specification, the user can not insist on:

x.transact(n1).transact(n2) == x.transact(n1 + n2)

Both sides yield different internal objects, and these are not distinguishable by ob-
servations using show. However, the bank might later decide to augment an account
object with an additional variable accesses, in order to keep track of how often
a given account has been accessed. In that case the last equation will definitely
be violated – the two sides of the equation yield different states – but for the cus-
tomer, doing transactions and observing his balance, they remain indistinguishable.
Therefore, an indistinguishability relation ϑ for bank accounts should satisfy:

x ϑ y

x.show() == y.show(), x.trans(n) ϑ y.trans()

1.3. Automata. Automata can be considered as black boxes with an additional
input device, say a keyboard, where letters from an alphabet Σ are entered. The
output will only tell, whether the word, consisting of the sequence of letters typed,
has been accepted or not. Automata are important computing and specification
devices in various branches of Computer Science.

Mathematically, a Σ-automaton is defined as a triple A = (S, δ, E) where S is a
set of states, δ : S × Σ → S a transition map and E ⊆ S a set of accepting states.
We write s ↓, if s ∈ E.

A state x is said to accept the empty word ε, just in case x ↓. It accepts a
word e · w with first letter e ∈ Σ and rest w, when δ(x, e) accepts w. Hence, an
indistinguishability relation ϑ for automata should satisfy:

x ϑ y

(x ↓ ⇐⇒ y ↓), ∀e ∈ Σ.( δ(x, e) ϑ δ(y, e) )

Again, there is always a largest such indistinguishability relation ∼. It is known as
the “Nerode congruence”. Starting with a finite automaton, one obtains a minimal
automaton with identical “behavior” by factoring through this Nerode congruence.
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1.4. Nondeterministic systems. In computer applications, non-determinism can
arise when various processes run at the same time under the supervision of a sched-
uler, as is common in all modern operating systems. The scheduler interrupts pro-
cesses at previously undetermined time points and yields the computing resources
to other waiting processes. Additional dimensions of non-determinism originate
in communications between different processes. It can not be foreseen, when and
whether messages or signals will actually arrive.

Nondeterministic systems can be modeled by Kripke systems. These consist
of a set S of states and a binary relation R ⊆ S × S describing all possible state
transitions. If R is clear from the context, one writes s→ t, for (s, t) ∈ R. Moreover,
one has a set Φ of atomic propositions together with a labeling v : S → P(Φ),
assigning to each state s the set v(s) of all atomic propositions valid in this state.

We represent Kripke Structures as graphs, where the atomic propositions are
attached to the nodes at which they are valid. The following picture shows two
Kripke structures over the set Φ = {p, q, r, s} of propositions:

◦ p
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~
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@@
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@@

◦ p

��
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��

◦ q
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◦ q

~~}}
}}

}}
}}
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r ◦ ◦ s r ◦ ◦ s

We shall be concerned with the question whether the top nodes of these two struc-
tures are distinguishable. Both are labeled with p, and they are not distinguishable
by using a single series of observations, since the sequences of atomic properties
encountered on paths from the top points are (p, q, r) and (p, q, s) in both cases.

In spite of this, the top nodes can be distinguished, for we need only make a single
transition to get to points which are mutually distinguishable. This is so, since in
the right system, we are still given a choice of transitions - one to a state labeled r,
and one to a state labeled s. In the left system, there is no choice remaining after
the first transaction.

Thus, in order for two states to be indistinguishable, they must have the same
labels, and each choice of transition of one state must be matched by a transition
of the other state, so that the new states are still indistinguishable:

x ϑ y

v(x) = v(y),
∀x′.x→ x′ =⇒ ∃y′.(y → y′ ∧ x′ϑy′),
∀y′.y → y′ =⇒ ∃x′.(x→ x′ ∧ x′ϑy′).

The latter two symmetric conditions are most easily visualized pictorially:

x
ϑ

��

y

��
and

x
ϑ

��

y

��
x′

ϑ ∃y′ ∃x′
ϑ

y′
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2. Coalgebras

All of the above examples of state based systems, as well as many conceivable
variations and generalizations turn out to be coalgebras. In each case, we have
some set S of states and transitions which may result in one or a group of new
states, or in some combination of states and outputs. In all cases, we can code the
information into a single map

α : S → F (S),

where F (S) is some “set theoretic construction”, depending on S. The following
list shows how to encode the examples discussed so far. We have added topological
spaces as a further, purely mathematical example, in order to show that the concept
of coalgebra which we are going to introduce, extends far beyond variants and
generalizations of automata.

Black Boxes: α : S → N× S, s 7→ (h(s), t(s))
Bank Accounts : α : S → N× SN, s 7→ (show(s), n 7→ s.trans(n))
Automata : α : S → {t, f} × SΣ, s 7→ (s ∈ E, e 7→ δ(s, e))
Φ−Kripke structures: α : S → P(Φ)× P(S), s 7→ (v(s), {t | sR t})
Topological Spaces : α : S → P(P(S)), s 7→ {U ⊆ S | ∃O ∈ τ.s ∈ O ⊆ U}

In the last example, a topological space (S, τ) is encoded by mapping each point to
its filter of neighborhoods.

2.1. Type functors. The “set theoretic construction”, mentioned above, deter-
mines the type of structure under consideration. To make this notion precise, by a
type, we shall understand a functor F : Set→ Set on the category of Sets. That is,
F associates to every set X a new set F (X), and to each map f : X → Y between
sets X and Y a new map F (f) : F (X) → F (Y ), so that identity maps and function
composition are preserved, i.e. for arbitrary maps f : X → Y and g : Y → Z one
has:

F (g ◦ f) = F (g) ◦ F (f), and F (idX) = idF (X).

2.1.1. Simple properties of set functors. For all nontrivial functors F : Set→ Set,
we may assume that F (X) 6= ∅ whenever X 6= ∅, for it is easy to check, that the
only functor F with F (X) = ∅ for some X 6= ∅ is the constant functor, mapping
each set Y to ∅.

If X 6= ∅, then a map f : X → Y is injective if and only if it has a left inverse, i.e.
some map f− : Y → X with f− ◦ f = idX . Consequently, F (f−) ◦ F (f) = idF (X),
so F (f) is injective, too.

By the axiom of choice, a map g : X → Y is surjective, iff it has a right inverse.
By the same argument as above, F (g) is surjective, whenever g is.

2.1.2. Examples of functors. Kripke structures make use of the power set functor
P(−), which associates to any set X the set P(X) of all subsets of X and to any
map f : X → Y the image map P(f) : P(X) → P(Y ), mapping each U ⊆ X to its
image f [U ] := {f(u) | u ∈ U}.

For Φ-Kripke Structures, we combine the powerset functor with the constant
functor, setting F (X) := P(Φ)× P(X). A map f : X → Y is sent to

idP(Φ) × P(f) : P(Φ)× P(X) → P(Φ)× P(Y ), with (P,U) 7→ (P, f [U ]).
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2.2. Coalgebras and homomorphisms. Given a type functor F , we define a
coalgebra of type F as a pair A = (A,αA), consisting of a set A and a map

αA : A→ F (A).

We refer to A as the base set and to αA as the structure map of A.
A homomorphism between coalgebras A = (A,αA) and B = (B,αB) is a map

ϕ : A→ B with αB ◦ ϕ = F (ϕ) ◦ αA, i.e. with the following diagram commuting:

A

αA

��

ϕ // B

αB

��
F (A)

F (ϕ) // F (B)

By the defining properties of a functor, the identity idA is a homomorphism
on A, and homomorphisms are closed under function composition. Consequently,
F -coalgebras with their homomorphisms form a category, which is denoted by SetF .

2.2.1. Example: Σ-Automata. In the case of Σ-automata, the homomorphism con-
dition says that a map ϕ : A→ B is a coalgebra homomorphism between automata
(A, δA, EA) and (B, δB , EB), coded as coalgebras, iff for all a ∈ A and for all e ∈ Σ:

a ∈ EA ⇐⇒ ϕ(a) ∈ EB ,(1)
ϕ(δA(a, e)) = δB(ϕ(a), e).(2)

2.2.2. Example: Kripke Structures. A map ϕ : A → B between Φ-Kripke Struc-
tures (A,RA, vA) and (B,RB , vB) is easily checked to be a coalgebra homomor-
phism, iff for all a, a′ ∈ A, and all b′ ∈ B:

vA(a) = vB(ϕ(a)),(3)
aRA a

′ =⇒ ϕ(a)RB ϕ(a′),(4)
ϕ(a)RB b′ =⇒ ∃a′ ∈ A.(aRA a′ ∧ ϕ(a′) = b′).(5)

2.3. Isomorphisms, homomorphic images, subcoalgebras, sums. Whenever
ϕ : A → B is a bijective homomorphism, then its inverse map ϕ−1 is a homomor-
phism too, in other words, ϕ is an isomorphism. This can be easily checked by
calculating, using the homomorphism condition for ϕ:

αA ◦ ϕ−1 = F (ϕ−1) ◦ F (ϕ) ◦ αA ◦ ϕ−1 = F (ϕ−1) ◦ αB ◦ ϕ ◦ ϕ−1 = F (ϕ−1) ◦ αB .
If ϕ : A�B is a surjective homomorphism, then the structure map αB on B

is uniquely determined by ϕ and the structure αA on A. Hence B is called the
homomorphic image of A under ϕ.

2.3.1. Subcoalgebras. If for a subset S ⊆ A there exists a structure map αS so that
the canonical embedding ⊆AS : S → A is a homomorphism between S = (S, αS)
and A, then such an αS is uniquely determined. In this case, S = (S, αS) is
called a subcoalgebra of A, and we write S ≤ A. By abuse of notation, the term
“subcoalgebra” is also used for the carrier set S itself. In our diagrams we use
hooked arrows for canonical embeddings and their F -images.

S
� � ⊆ //

αS

���
�
� A

αA

��
F (S) � � F (⊆) // F (A)
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2.3.2. Sums. The disjoint union S := Σi∈IAi of a family of sets (Ai)i∈I , together
with the canonical inclusions ιAi : Ai → Σi∈IAi is the sum of the Ai in the category
Set. This means, that for every “competitor”, i.e. for every set Q with its own
maps qi : Ai → Q, there is exactly one map q : Σi∈IAi → Q with qi = q ◦ ιAi

for
all i ∈ I. (q is obtained as the “disjoint union” of the qi).

Σi∈IAi

q

((
AiιAi

oo
qi

//___ Q

Given a family (Ai)i∈I of coalgebras, the maps qi := F (ιAi)◦αAi : Ai → F (Σi∈IAi),
make the latter set a competitor for the sum. Consequently, there is a unique map
α : Σi∈IAi → F (Σi∈IAi) with α ◦ ιAi

= F (ιAi
) ◦ αAi

. This means that there is a
unique coalgebra structure α on Σi∈IAi, for which the canonical embeddings ιAi

:
Ai → Σi∈IAi are homomorphisms. It is easy to verify that Σi∈IAi = (Σi∈IAi, α)
is in fact the sum in the category SetF , i.e. for every competitor coalgebra Q with
homomorphisms ψi : Ai → Q there is precisely one homomorphism ψ : Σi∈IAi → Q
with ψi = ψ ◦ ιAi

.

Σi∈IAi

α

���
�
�

ψ

++AiιAi

oo

αAi

��

ψi

//____ Q

αQ

���
�
�

F (Σi∈IAi)
F (ψ)

22F (Ai)
F (ιAi

)
oo F (ψi) //___ F (Q)

2.3.3. Pushouts. Given coalgebras A, (Ai)i∈I and homomorphisms ϕi : A → Ai,
the pushout of the (ϕi)i∈I is a coalgebra P with homomorphisms ψi : Ai → P, so
that ψi ◦ ϕi = ψj ◦ ϕj for all i, j ∈ I, and for every “competitor” coalgebra Q with
homomorphisms φi : Ai → Q, also satisfying φi ◦ ϕi = φj ◦ ϕj for all i, j ∈ I, there
is exactly one homomorphism φ : P → Q with φ ◦ ψi = φi for all i ∈ I.

Ai
ψi %%LLLLLL φi

((

] [ Z X V T R
A

ϕi
99rrrrrr

ϕj %%KKKKKK P
φ // Q

Aj

ψj
99ssssss

φj

66

a c e f h j l

Just as with sums, one checks that pushouts exist in SetF , and that they are formed
just as in Set. More generally, this can be said for all colimits in the category SetF .
(In category theoretical language, the forgetful functor U : SetF → Set creates
colimits.)

2.4. Homomorphisms. The first lemma is quite technical, but we can draw from
it quite a number of useful consequences. It indicates how to carry over the coal-
gebra structure from a given coalgebra along a surjective map, and how to restrict
the structure map of a coalgebra to any of its subsets:
Lemma 2.1 (Image Construction, Restriction). (i) Let A = (A,αA) be a coal-

gebra and f : A�S a surjective map. We can define an F -coalgebra struc-
ture αS on S, so that for any coalgebra C = (C,αC) and any map g : S → C
we have: If g ◦ f is a homomorphism, then so is g.
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(ii) Let C = (C,αC) be a coalgebra and g : S�C an injective map. We can
define an F -coalgebra structure on S, so that for any coalgebra A = (A,αA)
and any map f : A→ S we have: If g ◦ f is a homomorphism then so is f .

Proof. We just indicate the proof of (i), similarly one proves (ii). Let f− be a right
inverse map of f and set αS := F (f) ◦ αA ◦ f−. Given a coalgebra C and a map
g : S → C where g ◦ f is a homomorphism, we check:

A

g◦f

%%

αA

��

f // // S
f−

oo_ _ _ _

���
�
� g

// C

αC

��
F (A)

F (g◦f)

99
F (f) // // F (S)

F (g) // C

F (g) ◦ αS = F (g) ◦ F (f) ◦ αA ◦ f−

= F (g ◦ f) ◦ αA ◦ f−

= αC ◦ g ◦ f ◦ f−

= αC ◦ g.
�

2.4.1. Surjective-injective-factorization. Every map f : X → Y can be decomposed
into a surjective map f : X�f [X], followed by the canonical embedding ⊆Yf [X]. The
next proposition states that the same decomposition is valid for homomorphisms,
i.e. in the category SetF :
Proposition 2.2 (Factorization). Every homomorphism ϕ : A → B can be decom-
posed as A�ϕ[A] ↪→ B, so ϕ[A] is a homomorphic image of A and a subcoalgebra
of B.

Proof. If ϕ is a homomorphism between coalgebras A and B, then (i) and (ii) of
the previous lemma yield two structure maps, α(i) and α(ii) on ϕ[A] ⊆ B:

A

ϕ

&&

αA

��

ϕ′
// // ϕ[A]

α(i)

���
�
�

α(ii)

���
�
�

� �

⊆
// B

αB

��
F (A)

F (ϕ)

66
F (ϕ′)// // F (ϕ[A]) � � F (⊆)// F (B)

F (⊆Bϕ[A]) ◦ α(i) ◦ ϕ′ = αB◦ ⊆Bϕ[A] ◦ϕ
′

= αB ◦ ϕ
= F (ϕ) ◦ αA
= F (⊆Bϕ[A]) ◦ F (ϕ′) ◦ αA
= F (⊆Bϕ[A]) ◦ α(ii) ◦ ϕ′.
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We can cancel the surjective map ϕ′ on the right and, after discarding the case
ϕ[A] = ∅, also the injective map F (⊆Bϕ[A]) to the left, to obtain α(i) = α(ii). �

2.4.2. Unions of subcoalgebras. Consider a coalgebra A and a family of subcoalge-
bras Si ≤ A. From their sum Σi∈ISi there is a unique homomorphism ϕ to A with
ϕ ◦ ιSi = ⊆ASi

for all i ∈ I. The image of ϕ is just
⋃
i∈I Si, hence we get with the

help of proposition 2.2:

Lemma 2.3. If (Si)i∈I are subcoalgebras of A, then so is
⋃
i∈I Si.

Using a result of Trnkovà [Trn69], one can also prove that subcoalgebras are
closed under finite intersections, hence the (carrier sets of) all subcoalgebras of A
are the open sets of a topology on A, see [GS00b]. Conversely, by [Gum01b], every
topology on a set A can be obtained this way.

2.5. Bisimulations. Bisimulations are the compatible relations between coalge-
bras. Their importance for computer science applications had been realized long
before coalgebras were introduced in this field. Intuitively, two states of a sys-
tem are bisimilar, if they show the same behavior. The coalgebraic definition was
introduced by Aczel and Mendler[AM89]:

Definition 2.1. A bisimulation between coalgebras A and B is a binary relation
R ⊆ A × B, on which a coalgebra structure ρ : R → F (R) can be defined, making
the projections πA : R→ A and πB : R→ B into homomorphisms.

A

αA

��

R

ρ

���
�
�

πAoo πB // B

αB

��
F (A) F (R)

F (πA)oo F (πB) // F (B)

Working out this definition for our earlier examples of black boxes, Σ-automata,
and Φ-Kripke structures, the reader may convince himself in each case, that bisim-
ulations are just the indistinguishability relations ϑ which we have defined earlier.

2.5.1. Bisimulations and homomorphisms. Every bisimulation R provides a 2-span,
i.e. a pair of homomorphisms R → A and R → B with a common domain. The
converse is also true, yielding a very useful characterization of bisimulations:

Proposition 2.4. Let ϕ : P → A and ψ : P → B be homomorphisms, then

(ϕ,ψ)[P ] := {(ϕ(p), ψ(p)) | p ∈ P}

is a bisimulation between A and B. Each bisimulation is of this form.

Proof. (ϕ,ψ) : P → (ϕ,ψ)[P ] is a surjective map, πA ◦ (ϕ,ψ) = ϕ and πB ◦ (ϕ,ψ) =
ψ are homomorphisms. By Lemma 2.1(i), we can find a coalgebra structure on
(ϕ,ψ)[P ] ⊆ A×B, so that both πA and πB become homomorphisms, hence (ϕ,ψ)[P ]
is a bisimulation.

Obviously, for every bisimulation R between A and B has the required shape,
since R = (πA, πb)[R]. �

Corollary 2.5. A map ψ : A → B is a homomorphism between coalgebras A and
B if and only if its graph Gr(ψ) := {(a, ψ(a)) | a ∈ A} is a bisimulation.
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Proof. Setting ϕ = idA in the previous proposition yields one direction. The key
to the reverse direction is the observation that the first projection πA, restricted
to the graph Gr(ψ) of any function ψ : A → B, is always a bijection, and that a
bijective homomorphism is an isomorphism (section 2.3). Consequently, π−1

A is a
homomorphism, hence also ψ = πB ◦ π−1

A . �

Given a family (Ri)i∈I of bisimulations between A and B, then we have homo-
morphisms πiA : Ri → A and πiB : Ri → B for each i ∈ I. Consequently, both
A and B are competitors of the sum of the coalgebras Ri, i ∈ I. Thus we get
homomorphisms πA, resp. πB from Σi∈IRi to A, resp. B. It is easy to check that
the image (πA, πB)[Σi∈IRi] is just the set theoretical union

⋃
i∈I Ri, so according

to proposition 2.4 we obtain:
Lemma 2.6. The union of bisimulations is a bisimulation. Consequently, there is
always a largest bisimulation between coalgebras A and B.

In many respects, it seems that bisimulations behave like 2-dimensional ver-
sions of coalgebras. However, bisimulations are not necessarily closed under finite
intersections.
Definition 2.2. The largest bisimulation between coalgebras A and B is called
∼A,B, or just ∼A, when A = B. Elements a and b are called bisimilar, if (a, b) ∈∼A,B.
∼A is always reflexive and symmetric. For most functors F , the largest bisim-

ulation ∼A on an F -coalgebra is also transitive. An exception can be found with
the functor (−)32, sending a set X to

(X)32 := {(x0, x1, x2) | xi ∈ X, (x0 = x1 ∨ x1 = x2 ∨ x0 = x2)}

and a map f : X → Y to (f)32 with (f)32(x0, x1, x2) = (f(x0), f(x1), f(x2)).
In case that ∼A is transitive, we may call it observational equivalence, in all other

cases, we think that the term indistinguishability relation is more appropriate.

3. Terminal coalgebra semantics

For most types of coalgebras there is a prototypical model which somehow em-
bodies all possible behaviors found somewhere in some coalgebra of this type. Its
definition is as follows:
Definition 3.1. A coalgebra T of type F is called terminal, if for every F -coalgebra
A there is precisely one homomorphism τ : A → T .

The following proposition makes precise that the terminal coalgebra, if it exists,
consists exactly of all possible behaviors occurring in F -coalgebras.
Lemma 3.1. If the terminal F -coalgebra T exists, then for every F -coalgebra A
and for every a ∈ A there exists precisely one t ∈ T so that a ∼A,T t.

Proof. Given a ∈ A, then a ∼A,T τ(a) by corollary 2.5. Suppose, there is another
t ∈ T with a ∼A,T t. By proposition 2.4, there is a coalgebra P, homomorphisms
ϕ : P → A and ψ : P → T , and an element p ∈ P with ϕ(p) = a and ψ(p) = t. If
t 6= τ(a) then ψ and τ ◦ ϕ would be different homomorphisms from P to T . �

Corollary 3.2. The terminal F -coalgebra satisfies the following “co-inductive”
proof rule:

x ∼ y

x = y.
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The reason for this rule to be called coinductive is that it allows the following
method for proving equality of two elements a and b ∈ T :

• Find some bisimulation R with aR b,
• infer a ∼ b,
• conclude a = b by terminality.

3.1. Programming with terminal coalgebras. Modern functional program-
ming languages permit infinite streams as data objects. The primitives to access
streams are the functions hd (head) for obtaining the first element of a stream and
tl (tail) returning the rest of the stream when the first element is removed. Given
a stream r and an element n, with (n : r), we denote the stream s with hd(s)
= n and tl(s) = r. The following shows an interaction with an interpreter for a
modern functional programming language, such as e.g. Haskell [PH97]. The user
enters his input on the line beginning with the prompt “?”. The other lines contain
system output.

? ones = (1 : ones)
( 1, 1, 1, 1, ... )

? from n = ( n : from n+1)
? nats = from 1

( 1, 2, 3, 4, ... )
? add (n : s) (m : t) = ( n+m : add s t )
? add ones (from 1) == from 2

( true, true, true, true, ... )

The programmer has defined streams ones and nats, and functions returning
streams from, and add. The function add, for instance, accepts two streams as
inputs and returns a stream whose k-th element is the sum of the corresponding
elements of the argument streams.

3.1.1. Co-Recursion. Several questions arise, for instance: Is there always a solu-
tion for (co)-recursive definitions of the above shape, and is it unique? The answer
is contained in the following result:
Proposition 3.3. The coalgebra of streams is the terminal black box.

Proof. Let A be a black box, that is we have maps h : A→ N and t : A→ A. We
need to show that there exists precisely one coalgebra homomorphism ϕ : A → Nω
where Nω is the black box of all N-streams with structure hd : Nω → N and
tl : Nω → Nω. The homomorphism conditions require of ϕ(a) for an arbitrary
a ∈ A:

hd(ϕ(a)) = h(a),(6)
tl(ϕ(a)) = ϕ(t(a)).(7)

By induction one gets tlk(ϕ(a)) = ϕ(tk(a)), so the k-th element of ϕ(a) is just
hd(ϕ(tk(a))) = h(tk(a)), which proves both existence and uniqueness of ϕ. �

Now it is easy to see that all the streams and stream maps defined in the above
program are nothing but homomorphisms from certain black boxes to the terminal
black box of all N-streams. Each one is uniquely specified by the presentation of
one particular black box. Such function definitions are called co-recursive.

In particular, the stream ones is defined by the (unique homomorphism from
the) one-element black box with output 1, the function from is defined by the black
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box (N, idN, succ) to Nω as the following figure demonstrates. We leave it to the
reader to find the black box co-recursively defining add.

N
idN // N

N
idN
OO

succ ��

from // Nω
hd
OO

tl��
N from // Nω

3.2. Proofs by Coinduction. How can we prove a statement about streams such
as e.g. add ones (from 1) == from 2? In our programming exercise, this was
checked only for the first 4 positions. We shall show how to prove such program
properties by coinduction. As an example, we consider the mentioned equality:

add ones (from 1) = from 2.

The first step is to find some bisimulation R containing the two elements. Choose

R := {(add ones (from n) , from (n+1)) | n ∈ N}.
R is a bisimulation, i.e. the heads are equal and the tails are again in R:

hd(add ones (from n)) = hd ones + hd (from n) = 1 + n = hd (from (n + 1))
tl(add ones (from n)) = add (tl ones)(tl (from n)) = add ones (from(n + 1))

tl(from(n + 1)) = from((n + 1) + 1)

In particular, (add ones (from 1), from 2) ∈ R ⊆ ∼. Since we are in the
terminal black box, we may conclude: add ones (from 1) = from 2.

Observe, that in this co-inductive proof we actually had to show a more general
result. Such a phenomenon is, of course, also familiar from inductive proofs.

3.3. Further terminal coalgebras. The reader may be curious as to what ter-
minal Σ-automata or terminal Φ-Kripke Structures might look like.

3.3.1. The terminal Σ-automaton. Given an alphabet Σ, let Σ∗ denote the set of
all finite words with letters from Σ. Any subset L ⊆ Σ∗ is called a language over
Σ. Given e ∈ Σ and L any language, we define its “e-derivative” as

Le := {w ∈ Σ∗ | e · w ∈ L}.
Now we can define an automaton T = (P(Σ∗), δ, E), having as base set the set of
all languages over Σ, and as transition operation the derivative, i.e. δ(L, e) := Le.
A language L is defined to be an accepting state, if it contains the empty word, i.e.

L ∈ E : ⇐⇒ ε ∈ L.
We leave it to the reader to verify that this indeed defines the terminal Σ-automaton.

A bisimulation of automata is exactly an indistinguishability relation as intro-
duced earlier. For the terminal automata this can be restated as:

L ϑ M

(ε ∈ L ⇐⇒ ε ∈M), ∀e ∈ Σ. (Le ϑ Me)
Hence in order to show that two languages L1 and L2 are equal, we need to find

a relation R, containing (L1, L2), and satisfying the above condition.
J. Rutten [Rut98] demonstrates how to prove regular language equations by

coinduction. For instance, in order to show that for each language L,

(1 + L · L∗) = L∗,
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it suffices to show that ϑ := {(1 + L · L∗, L∗) | L ⊆ Σ∗} ∪ {(L,L) | L ⊆ Σ∗} is a
bisimulation. Here, +, ·, and ∗ stand for union, concatenation and “Kleene-Star”
operations on languages; 0 denotes the empty language and 1 denotes the language
{ε} containing only the empty word. Checking that the above relation is in fact a
bisimulation is made easy with the following rules of derivative:

(L+M)e = Le +Me,

(L ·M)e =

{
Le ·M, if ε /∈ L
Le ·M +Me, if ε ∈ L,

(L∗)e = Le · L∗,
1e = 0e = 0.

The relevant calculation in checking that ϑ is a bisimulation consists of:

(1 + L · L∗)e = 0 + (L · L∗)e =

{
Le · L∗, if ε /∈ L
Le · L∗ + Le · L∗, if ε ∈ L,

= Le · L∗ = (L∗)e.

3.4. Existence of terminal coalgebras. The terminal Φ-Kripke structure cannot
exist due to the following lemma of Lambek [Lam68]. Its base set T would have to
be in bijective correspondence with P(Φ) × P(T ), which is impossible, since P(T )
has strictly larger cardinality than T for any set T :
Lemma 3.4. If the terminal coalgebra exists, then its structure map is bijective.

Proof. Suppose that T = (T, α) is the terminal F -coalgebra, we shall construct an
inverse to α. Applying F , we obtain a coalgebra F (T ) on the base set F (T ) with
structure map F (α). Observe that α is at the same time a homomorphism from T
to F(T ). Since T is terminal, there must also be homomorphism β : F (T ) → T .
Now β ◦ α and idT are two homomorphisms from T to T , hence idT = β ◦ α.

T

α

��

α // F (T )
β //

F (α)

��

T

α

��
F (T )

F (α)// F (F (T ))
F (β) // F (T )

Applying F to this equation, and using that β is a homomorphism, we also find:

idF (T ) = F (idT ) = F (β ◦ α) = F (β) ◦ F (α) = α ◦ β.

�

3.5. Bounded Functors. The reason why there is no terminal Kripke structure
lies in the uncontrolled growth of the powerset functor. Indeed, as this chapter
will show, we can have a terminal Kripke Structure, if we impose a bound on the
number of successors a given state is allowed to have. Mathematically, we replace
the powerset functor in the definition of Kripke structures by Pκ(−), where Pκ(X),
for any set X, is the set of all subsets of X with cardinality less than the cardinality
κ. Of practical relevance is the case of “image finite” Φ-Kripke structures, which
are coalgebras of type P(Φ)× Pω(−).
Definition 3.2. A functor F is called bounded by some cardinal κ, if for every
F -coalgebra A and every a ∈ A there is a subcoalgebra S of A with a ∈ S and
|S| < κ.
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This criterion is easy to check for the examples encountered so far. For black
boxes, automata, programs, and Kripke Structures, we find that the set of all states
reachable from a given state a in finitely many steps, forms a subcoalgebra. Thus
(the type functor of) black boxes, programs, image finite Kripke Structures, and
Σ-automata are bounded by ω, resp. |Σ∗|. In all these cases, we can construct the
terminal coalgebra using the following theorem:
Theorem 3.5. If the type F is bounded, then the terminal F -coalgebra exists.

Proof. Let us a start with a functor F , bounded by κ, and let (Ui)i∈I be the family
of (up to isomorphism) all F -coalgebras of cardinality at most κ. Take their sum
S = Σi∈IUi and let T be its smallest homomorphic image (the pushout of all
homomorphisms with domain S). We claim that T is terminal.

To check this, let A = (A,α) be any F -coalgebra. Since F is bounded, we
can find for every a ∈ A some subcoalgebra Va ≤ A with a ∈ Va and |Va| < κ.
Now each Va is isomorphic to an appropriate Ui, so we get both a homomorphism
ψ : Σa∈AVa → S and a surjective homomorphism ϕ : Σa∈AVa�A.

We form the pushout (W, ϕ′, ψ′) of ϕ with ψ, then ϕ′ is onto, i.e. W is a
homomorphic image of S. It follows that there exists a homomorphism φ : W → T .
Now φ ◦ ψ′ is a homomorphism from A to T . It is routine to check uniqueness.

A
ψ′ //____ W

φ // T

Σa∈AVa
ϕ
OOOO

ψ // S
ϕ′
OOOO�
�

::vvvvvvv

Va

99

88ppppppp

77

�

4. A Birkhoff style result

If the functor F is bounded, we can take a fixed set C (the members of which
we call “co-variables” or “colors”) and consider the functor FC : Set → Set with
X 7→ C × F (X). It is bounded, too, so its terminal coalgebra TC exists.

The structure map of TC combines an F -coalgebra structure α : TC → F (TC)
with a “coloring” map ε : TC → C. Being terminal as an FC-coalgebra is the same
as saying that TC , as an F -coalgebra, is “co-free over C” as follows:
Definition 4.1. An F coalgebra TC = (TC , α) together with a map ε : TC → C is
called cofree over the color set C, if for every F -coalgebra A and every set map
g : A→ C there is a unique homomorphic extension, i.e. a unique homomorphism
g̃ : A → TC with g = ε ◦ g̃.

C

A

g
>>}}}}}}}} g̃ // TC

ε

OO�
�
�

If the elements of the terminal coalgebra are interpreted as behaviors, we can
think of the elements of TC as “behavior patterns”. In fact, they turn out to play
the same role that equations play in the dual theory of universal algebra, so we
shall also use the term “co-equation”.
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For t ∈ TC and A any F -coalgebra, we say that A satisfies t, in symbols

A |= t,

if for every map g : A→ C we have t /∈ g̃[A], i.e. if every homomorphism ϕ : A →
TC avoids t. Such a definition of satisfaction by “avoidance” is not uncommon in
many fields of mathematics, such as e.g. graph theory or lattice theory.

Any set E of behavior patterns, i.e. any set of co-equations, defines a class of
coalgebras, namely those, satisfying each t ∈ E:

Mod(E) = {A ∈ SetF | ∀t ∈ E.A |= t}.
This is called the co-equational class defined by E.

Each co-equational class is a covariety, i.e. closed under taking subcoalgebras
(S), homomorphic images (H) and sums (Σ). It is easy to see that a class K is a
covariety, iff K = SHΣ(K), but, more importantly, for each covariety K one can
find a set E of co-equations defining K. This is the coalgebraic analog to the famous
theorem of Birkhoff:
Theorem 4.1. If F is bounded, then a class K of F -coalgebras is a covariety if
and only if it is a co-equational class.

Proof. It is straightforward to check that a co-equational class is closed under ho-
momorphic images and under sums. To show closure under subcoalgebras, one
needs to check that every homomorphism ϕ : S → TC from a subcoalgebra S ≤ A
can be extended to a homomorphism ψ : A → TC . For this, we first extend the set
map ε◦ϕ : S → C to some set map g : A→ C with g ◦ ⊆AS= ε◦ϕ, and then choose
ψ := g̃, the homomorphic extension g.

For the other direction, choose a color set C which is at least as large as the
bound κ of the functor F . Given a covariety K, let

E := {t ∈ TC | ∀A ∈ K.A |= t}
be the set of all co-equations with color set C, that are true in all of K. Clearly,
K ⊆Mod(E), so it remains to show Mod(E) ⊆ K.

For every t ∈ (TC − E) there is a coalgebra At ∈ K and a homomorphism
ϕt : At → TC so that t ∈ ϕt[At]. Hence (TC −E) is a homomorphic image of a sum
of coalgebras from K, in particular, it is a subcoalgebra of TC , belonging to K.

Let now any B ∈ Mod(E) be given. For any b ∈ B, we find a subcoalgebra
Sb ≤ B with b ∈ Sb and |Sb| < κ. Choose an injective mapping gb : Sb → C, then
its homomorphic extension g̃b : Sb → TC will be injective, too. Consequently, Sb is
isomorphic to a subcoalgebra of TC . Since Sb ∈Mod(E), it follows Sb ⊆ (TC −E).
Hence every Sb, and, consequently, B is in K. �

This version of Birkhoff’s theorem is still lacking any syntactical component.
Bounded functors F can be characterized by means of surjective natural transfor-
mations η from a functor of the form D × (−)M with appropriate fixed sets D
and M(see [GS00b]). The elements of the final D× (−)M -coalgebra can be under-
stood as infinite M -branching and D-labeled trees, so co-equations can actually be
represented as equivalence classes of such trees (see [Gum01a]).

Whether these further mathematical investigations will bear fruit in computer
science, remains to be seen. So far, it is well recognized that many data types are
coalgebraic in nature and that co-recursive specification and verification methods
and tools (see [HHJT98]) are appropriate to deal with them.
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4.1. Historical note. The earliest papers on coalgebras defined them as straight-
forward dualizations of classical universal algebras [Drb69], i.e. a coalgebra was
a set A with a collection of maps αi : A → ni · A into the ni-fold direct sum of
A. However, this notion was too simple minded and, most of all, it was lacking
any reasonable applications. The more useful category theoretical notion, using
arbitrary Set-functors as types, was considered by Aczel and Mendler[AM89] and
Barr[Bar93].

A comprehensive structure theory of universal coalgebra was formulated by
J. Rutten in [Rut00] for type functors “weakly preserving pullbacks”. In [Gum99a]
the theory was generalized and extended to work with arbitrary type functors.
The structure theoretic effect of the (weak) preservation conditions, as assumed in
[AM89] and [Rut00], was characterized in [GS00a].

L. Moss has introduced in [Mos99a], see also [Mos99b], a modal logic for coal-
gebras whose type functor weakly preserve pullbacks. The first Birkhoff character-
ization was given in [Gum99b] – the syntactical side was added in [Gum01a].
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