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Typing errors which typically occur when large numbers, e.g. account numbers, personal
numbers or parts numbers, are entered into keypads can be detected using a single check
digit. Our method detects: (a) all one digit errors; and (b) all transpositions of adjacent
digits. With conventional methods at least one type of transposition was undetectable. We
show why this is so and why a non-commutative addition on the digits {0, 1, ..., 9}y as
provided by the ‘dihedral group’ is superior to the familiar ‘addition modulo 10’ for the
computation of a check digit. Thus, apart from the practical use of the check digit algo-
rithm, which is condensed in a short PASCAL program in Section 4, the primary aim
of this paper is to show that there are very practical reasons for studying finite algebraic

structures such as groups.

1. INTRODUCTION

IF A WORD is misspelt within a text, it is usually
easy to detect the error and to correct it. The mis-
spelt word is not in our language or may simply be
unspeakable like ‘SHCOOL’. Such a transposition of
two neighbouring digits is a common mistake in
machine written text. The keys corresponding to the
transposed letters have simply been hit in the wrong
order. If, however, the word ‘FORM’ is encountered,
there is no way of telling whether maybe ‘FROM’ was
meant unless we read the whole sentence containing
the dubious word. It might well be that actually
‘FIRM’ or ‘FARM’ was meant, but accidentally the
wrong key was hit, another common typing mistake.
Again, the context will give us a clue to the intended
word, If a bank clerk makes such a typing mistake
while entering the account number for some transac-
tion, there is at first glance no way of detecting a
typing mistake and one can imagine the trouble if it
goes unnoticed.

A ‘context’ to the account number could be pro-
vided by the owners name, so anytime the account
number is referred to, that name has to be added.
But if the name is as common as, say, SMITH, a
mixup might still occur.

There is too much redundancy in this method and
it is not used efficiently enough. More seriously,
if money is transferred to another bank, a typing
error would only be detected when the invoice
reaches the second bank, for only there a list of
account holders, paired with their correct account
numbers is available.

For these reasons one assigns a check digit to the
original unsecured number and the original number
together with the check digit then becomes the valid
account number,
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A little example will show how such a scheme can
work in principle. Suppose that customer #4813
opens an account at a bank. Instead of receiving the
account number 4813 the bank computes a check
digit p so that 4 + 8 + 1 + 3 +p = 0 (mod 10), that
is p = 4. Now the account number will be 48134
once and for all. If a mistake occurs when at some
later transaction the same number is entered into the
bank’s computer, say 43134 is erroneously entered,
that mistake is immediately detected, since 4 + 3 +
1+ 3+ 4+ 0 (mod 10). It is not intended to auto-
matically correct the erroneous number, the sole
purpose is to request the typist for a new input of
the correct number.

If typing errors would occur randomly, the above
scheme would be optimal, since exactly 90% of all
typing errors would be detected. There are, how-
ever, typical typing errors, as indicated in the intro-
ductory examples. Empirical studies [1, 2] have
shown that the following three types of mistakes
occur most frequently when data is entered into
keypads.

(a) Single digit errors: one digit is mistyped
because either the wrong key is hit or a digit was mis-
read

example:

4711 -4911.

(b) Format errors: one or more digits are erro-
neously inserted or left out
example:

4711 43711
or

4711 > 471.

(¢) Transposition errors: two neighbouring digits
are switched. The key for the second digit is touched
before the key for the first digit was hit. This mistake
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can also have linguistic reasons, since in German, e.g.
two-digit numbers are pronounced ‘backwards’
(72 is read ‘two-and-seventy”’)

example:

4711 = 7411.

There are too many possibilities for format errors to
be detectable by a single check digit. But by requiring
(and checking) that all numbers have the same format
(e.g. account numbers all take eight digits), they can
easily be taken care of. We thus concentrate on the
two other types of errors, single-digit errors and
transposition errors.

2.STANDARD METHODS AND THEIR
LIMITATIONS

We now scan a number of methods for assigning
a check digit to a given number and see how the
above mentioned mistakes are being taken care of.
We always assume that the number n has the digits
Ak, ity - - - 5 da, dy 56 that n = Bd;107". Let p
be the check digit, then the new number will read
dk»dk—l’ S ,dg,d],p.

2.1. Parity check
We compute p so that

ditdyt...+dy+d;+p=0(mod 10).
Example: original number:
n=9014832
p=10—(9+0+1+4+8+3+2)(mod 10)
=3
encoded number: 9014832 3.

An encoded number is correct, if and only if the
sum of its digits is 0 (mod 10). Clearly, one-digit
errors will all be detected, but transposition errors
will never be found since . .. d; +diy ... =...
di—y + d; . .. as aconsequence of the commutative
law for addition modulo 10.

2.2, Weighted parity check

We impose a weight w; on every digit position.
Each digit is first multiplied with the weight corre-
sponding to its position and then added. Let the
sequence of weights be (wy, wy, wa, . . .) then we
choose p so that

Widg T Wi dg—y + ... F wady +widy +wep
=0 (mod 10).

Example: with the weights (wp, Wy, Wy, . . ) =
(1, 3, 7,9,1,3,7,...) and the original number
n=9014832 3 we find

9 01 4 8 3 2 3
1 9 7 3 L 9 T 3

p digits
1 weights

9+04+7+124+84+27+14+94p
=6+ p (mod 10).

In order for this to add up to 0 (mod 10) we find p = 4,
so the encoded number becomes 90148323 4. An
encoded number is considered correct, if its weighted
sum is equal to 0 (mod 10).

With the weights in the example, all single digit
errors will be detected, but notice that a transposi-
tion error like . . .83 ...—...38 ... cannot be
detected.

At first glance one might want to choose a different
sequence of weights, but it is immediately clear, that
1, 3, 7, 9 are the only possible weights if single
digit errors are to be detected. w; cannot be even,
because then w;+d; = w;d; whenever (d; — dj) =
5 (mod 10) so a mistake changing d; into d; would
not be detected. With a similar argument, w; cannot
be 5. (Mathematically speaking, w; must be relatively
prime to 10.) Turning to transposition errors
coodidiy o0 =L o digd; .. . we see that these
errors cannot be detected if (d; —d;—1) = 5 (mod 10).
The reason is that w; — w;_; is even, so

(W; — w1 d; —di—1) = (W; —w;—1)*5 = 0(mod 10),
SO
G w widi + Wi—ldi—l PR gy Wfdf_l + wi—ldi % e

In spite of its shortcomings, the weighted parity
check was an improvement over the simple parity
check, since it detects all single digit errors and all
those transposition errors where (d; —d;—;) # 5 (mod
10). The key was, to transform a digit x occurring at
position 7 into wgx. The generalization is obvious
now, we choose transformations 7; for every digit
position, where a transformation is simply a map
from D ={0,1,...,9}toitself.

So a transformation method modulo 10 would
consist of a sequence of transformations 7; such that
the check digit p is computed so that

Te(d) + ...+ 711(dy) + 1o(p) = 0 (mod 10).

Usually one would choose 74 = id, the identity, so
this equation can be trivially solved for p. Clearly for
every x # y and every position i we need 74{x) #
7i( ), since otherwise a single digit error at position
i, changing x to y or vice versa, would be undetect-
able. Thus each 7; has to be one to one and therefore
a permutation of the digits {0, ..., 9}

2.3. The EKONS system
As an example of such a transformation system we
consider the EKONS system which is used by the
West German ‘Sparkassen’ (Savings banks). The
transformations used are 7; = identity if i is even and
74x) = 7(x) = checksum (2x) when 7 is odd.
Example: (EKONS system)

0 7 8 6

:[z‘izi lfdl‘r Jid lf }d; I]id

0+5+8+3+2+6+p=T7+p  (mod10)

In order to add to 0 (mod 10), p = 3, so the encoded
numberis49078623 3.
Since the transformations used are permutations,
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we know that single digit errors will be detected.
What about transposition errors? It is easy to see that
almost all transposition errors will be detected,
except for the error . . . 09 .. .—...90.... 1If
digits @ and b appear in neighbouring places in the
number . . . ab . .. with, say, g at an odd numbered
place, then the contribution to the final sum is 7(z) +
id(b) = 7(a) + b. If @ and b are transposed their
contribution is 7(d) + a, instead. This is not detected
when 7(¢) + b = 7(b) + a,ie. 1(@) —a = 7(b) — b.
With 7(x) = checksum (2x) we find that 7(9) — 9 =
7(0) — 0 is the only solution with a # b.

So the question remains whether the transforma-
tions can be chosen in some clever way so that
actually all transposition errors are detected. The
tollowing proposition shows that no transformation
method modulo 10 can perform better than the
EKONS system.

2.4. Proposition
Every transformation method modulo 10 leaves

some transposition error . . .ab .. .= ... .ba...
undetected.
Proof. If a transposition . . .ab ...~ ... ba...

at positions 7, i + 1 is to be noticed, we need
Ti+1(@) + 74b) # 7441 (b) + 7(a) (wod 10),
thus
Ti+1(@) — 7(@) # T441(b) — 74(b) (mod 10).

Denoting the transformation x b 7;41(x) — 7;(x) by 7,
we find that 7(z) # 7(b) (mod 10). Requiring this for
all @ # b we conclude that r must be a permutation of
the digits {0, . . ., 9}. The following Lemma shows
that a 7 defined as above can never be a permutation,
thus finishing the proof.

2.5. Lemma

If « and B are permutations of the digits {0, ..., 9}
then their difference, 7 = @ — f (mod 10) is never a
permutation,

Proof. Since « and § are one to one, we have
D={0,...,9}={c(x)|x €D}={B(x)|x €D}
If 7 is a permutation the same holds for 7, so
D = {1(x) |x €D} = {a(x) — B(x) |x €ED}.

But taking the sum (mod 10) over all elements of the
above sets we obtain the contradiction

5=2x= 2 1x)= X a(x)—B(x)

x€ED x€ED xED

= X a(@)— Z f(x)=0.

x&D x€D
3. A DIFFERENT KIND OF ADDITION

After the negative results of the last section it is
clear now that in order to construct a check digit
method detecting all single digit errors as well as all
transposition errors we have to modify more than
only the digit transformations. We will also have to

exchange the ‘addition modulo 10° for a different
kind of operation, call it 0. With such a new ‘addi-
tion” we plan to compute the check digit as before
to be the number p with

Tr(dr) O Ty (dp—1) O ... O074(d)) BTe(p)=0. (1)

Which requirements do 7; and which does O have to
satisfy?

For the 7; this is easily answered as before, they
have to be one to one and therefore permutations of
the digits {0, . .., 9}. Suppose now thatgob=g0¢
for some digits a, b, ¢ €{0, ..., 9}. Then, given a
position i, we let &' = 17%(a), b’ = 774(D), ¢’ =
Ti24(c), so

71(a") 071 (B") = 7i(@’) 8 T (e7)

which means, that an error, changing " to ¢’ would
not be detected. Thus we must have »' = ¢’, hence
b = c. So the first requirement for O is

aob=goe=b=c (2)
and symmetrically
bog=cug=h=c, 3)

If we write down the operation 0 ina 10 X 10 table,
where the entry in the ith row and the jth column is
the product 7 O j, then the above requirements mean:
(a) the entries of every row are mutually different;
and (b) the entries of every column are mutually
different. Such a table, or the operation it represents
is called a ‘latin square’,

There is a large supply of 10 X 10 latin squares,
yet to be able to ‘add’ more than two numbers with-
out specifying the order in which this has to be done
we require that the associative law should hold

ab(boc)=(gDb)0c. (4)

This law enables us to leave out brackets when ‘add-
ing’ a large expression like eqn (1).

Equations (2)-(4) taken together imply thatoisa
group operation, thus there must be a neutral element
0 with 0 0 x = x 0 0 = x for all x and an inverse

x  toevery x €{0,...,9}such that x” ox =
x O0x~ = 0. It is well known that there exist exactly
two groups on {0, . . ., 9}. The first is given by

addition modulo 10 and the second is the so-called
‘dihedral group’ (Fig. 1). Note that the operation is
not commutative, e.g. 3 0 6 ¥ 6 0 3. For the detec-
tion of transposition errors though, this should not be
a disadvantage!

Now that ‘addition’ is fixed, let us turn to the

o 10123456789
0 |0123456789
1 (1234067895
2 12340178956
3 |3401289567
4 14012395678
5 (5987604321
6 16598710432
7 17659821043
8 |8765932104
9 19876543210
Fig. 1. The ‘addition table’ for the dihedral group.
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permutations 7; that are needed. We have to fix them
so that transposition errors are also detected. This
means, that for all ¢, b and every digit position 7 we
have

T@0T 4 b=1b01; 5a=a=0. (5)
Wesetu:=7,a,v:=1,band 7 :=177}, 50
TUOYy=Tvou=u=y, (6)

Thus detection of transposition errors is guaranteed
if we can find a sequence 7; of permutations such that
each 7 := r;77! satisfies eqn (6).

On the other hand, once we have found one per-
mutation satisfying eqn (6), then we may simply
set 7o =idand 7; :=7 =707,_4,since then 7; 0 77}, =
7 o (¢ = 770D = ¢ which satisfies eqn (6).

Let us collect what we know.

3.1. Theorem

Let 0 be the operation of the dihedral group on
the digits D = {0, ., ., 9} and 7 a permutation on D
satisfying 7u O v = 7v Dy = u = v, then choosing p
so that

"d, 01" 'd,_0... 07%d,01d,0p=0

yields a check digit method detecting all single digit
errors and all transposition errors.

Note that nothing special about © was used so far.
The theorem is also true (but worthless) if we
exchange O for +, since Lemma 2.5 implies that an
appropriate 7 for + does not exist.

In Ref. [3] we showed that check digit methods
exist for arbitrary number systems, except in base 2,
so 7 and O according to eqn (6) had to be constructed
abstractly without reference to the number system.

type digit
position
bignumber

0 oa P4

function add(x,y:digit):digit;

Since here we are only concerned with decimal
numbers, it suffices to present one such 7 concretely
and show that it has the desired property.

Proposition. Let 7 be the permutation on D with
cycle representation (14) (23) (58697), then 7 satis-
fies eqn (6).

Proof. For every pair &, v € D this can of course be
easily checked; to see the claim at a glance, we write
down the table for 7(u) O v in matrix form. It simply
arises from the table for O by applying the permuta-
tion 7 to the rows of O, Now this new table has entry
7(x) O y in position (x, »). One sees at a glance that
the entries in position (x, y) are always different from
the entries in position (y, x), unlessx =y sorx Oy #
7y OX unlessx =y,

Summing up we obtain

Theorem. Let T be the permutation (14) (23)
(58697) on the digits D = {0, ..., 9} and let O be
the operation of the dihedral group on D as given in
Fig. 1. Computing the check digit p for a number
having digits dy, ... ,d; asp = [+*d, 0. . .0 7d;]”
yields a check digit detecting all single digit errors
and all errors arising from transposition of adjacent
digits. (Here [...]” denotes the inverse with respect
tood.)

Note finally that 7 has been chosen so that 7(0) =
0. Thus, when computing a check digit for a number,
leading zeros do not change the check digit.

4. IMPLEMENTATION

The implementation of the described method
turns out to be extremely simple and efficient. For
aesthetic reasons we introduce types for digits and

0O .. maxlengths;

array (0 .. maxlenguﬂ of digitg

begin
if ®* < § then
begin
if v < 5 then add := (x+y) mad S5
else add := ((x+y) mod 5) + S
end
else
begin
if vy < § then add := ((x-y) mod S) + 5
else add := (x-y+5) mod 5
end
ends;
function inv(x:digit):digits
begin
if x € 5 then inv := (5-x) mod S
else inv 1= x
end;

function tau(i:position;x:digit):digits;

begin
if x = 0 then tau 1= 0
else if x < § then if ((i mod 2) = O)
then tau 1= x
else tau = S5-x
else tau 1= ((3%i + %) mod S) + 5
end;

Fig. 2. Types and auxiliary functions.

-
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function checkdigit (number:bignumber):digits:

var dig,sum,aux digitj
k : positiong
begin
sum = O3
for k := 1 to maxlength do
begin
dig := number[k];
aux = tau(k,dig);
sum = add(aux,sum);
and;
checkdigit := inv{(sum):
ends;

(# initialize *)
(# for all digits .. ¥*)
(# take next digit *)
(* apply tau-to-the-k *)
(* add up *)
(* take inverse *)

function gg[;egg(number:bignumber):bonlean;

(* for all digits in-— *)
(* cluding checkdigit *)

(* same *)
(* as *)
(€] before *)

(# if sum = O then o.k. *)

Fig. 3. The main functions checkdigit and correct.

var dig,sum,aux : digit;
k : positions
begin
sum 1= O3
for k := 0 to maxlength do
begin
dig := number [K] ;
aux := tau(k,dig);
sum := add (aux,sum)j
end;
correct := (sum = 0);
end;
000 011 022 033 044
104 110 121 132 143
203 214 220 231 242
302 313 324 330 341
401 412 423 434 440
S04 517 528 539 545
607 618 429 635 646
708 719 725 736 747
809 815 B82& 837 848
05 Q16 927 938 949

038 0469 075 08& 097
159 165 176 187 198
255 266 277 288 299
356 367 378 389 395
457 468 479 485 494
352 563 574 580 591
651 &62 673 LB 650
750 761 772 783 794
854 860 871 8B2 893
?533 9464 70 9B1 992

Fig. 4. The first 100 secured numbers.

digit positions. Maxlength is initialized as a constant,
describing the maximum number of digits an un-
secured number may have. Since the numbers could
exceed the largest machine number we store them as
‘bignumbers’.

The auxiliary functions add (for ©), tau (for 7) and
inv (for 7) could simply be tabulated as matrices and
initialized with a DATA statement by a FORTRAN
programmer (Fig. 2). Note that zeu has become
binary, tau(i, x) is 7'(x), which certainly saves a lot of
computational steps. Furthermore note from the
definition of 7 that 7'° = id, hence tau(i + 10, x)

= tau(f, x), which is important if tau should be
tabulated.

 The functions we are interested in are checkdigit
and correct (Fig. 3). Checkdigit computes a check-
digit for a bignumber and correct checks a bignumber
for correctness. Note the similarity between both
functions.

Figure 4 displays a list of the first 100 numbers
together with their correct checkdigit. Try it out and
check that transposing any two digits will never yield
a number in the table again. The same holds for
changing any digit to a different one.
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