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GEOMETRICAL REASONING AND ANALOGY IN UNIVERSAL ALGEBRA

H. P. Gumm

Most students of classical algebra will sooner or later appreciate
the close connection between algebraic and geometric concepts.
Geometric concepts are parts of experience in everyday life. They
are easy -o visualize, figures can be drawn, rules and theorems
can actually be seen. Algebraic theorems and formulas are usually
much harder to grasp for the unexperienced. Many textbooks
therefore dwell in geometrical visualizations and proofs for some
simple algebraic theorems 1like the binomial or the Pythagorean
theorem. It takes years of apprenticeship wuntil a familiarity
with the permitted manipulations of abstract strings and formulas
is achieved. Geometric visualization is not restricted to the
segment of geometry that is actually being experienced. It is
easy to invent analogies. As an example consider the
classification of the possible sets of solutions to a system of
linear equations. Even though a many - dimensional space is not a
part of experience it is easy to imagine the different hyperplanes
that intersect to give infinitely many, exactly one, or no
solution. And 1in devising a proof it is very helpful to keep the
geometric pictures in mind to stake out the rough 1lines for a

proof. Later the gaps will have to be filled with calculations.

What is then the geometry, what are the geometric pictures that
can aid in studying universal alqgebras? The experience with
~ classical algebra first gives us the choice between a projective
approach and an affine approach. What should the projective
geometry associated with a universal algebra be? 1In the classical
‘case of modules there 1is a one-to-one correspondence between
subspaces and the congruence relations they induce. So in the
universal algebra case, the subspaces of the projective (pseudo-)
geometry should correspond to the congruence relations of the
algebra A ; thus studying the lattice Con(A) of congruences on A
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would be studying the projective geometry of A. Geometrically
important concepts as e.g. the Desarguesian or the Pappian laws
can be translated into lattice theoretical concepts for Con(A). A
first theorem in this environment is due to B.Jonsson /17/:

Let A have permutable congruences, then Con(A) is arquesian.
Here the arguesian 1law is nothing but the lattice theoretical

phrasing of the Desarguesian 1law, thus the conclusion of the
theorem is:

The projective geometry of A is Desarguesian.

The hypothesis reguires that for any two congruences © andy , the
relational product OeVY is a congruence acain, which is the same.
as saying ‘©OeY = ¥eO. This condition is well known to imply that
Con(A) is a modular lattice, and indeed R.Freese and B.Jonsson
were able to show in / ¢g/:

Let A and all subdirect subalgebras of AxA have modular congruence

lattices. Then Con(A) is arguesian.

Here it is not enough if A has a modular congruence lattice.
Freese and Jonsson use a simple trick which is both easy and well
known but very helpful in what follows:

Trick: Every congruence relation © on an algebra A is a
subalgebra of AxA. g is actually embedded subdirectly in AxA.

It is exactly those subdirect powers of A which Freese and Jonsson
require to have modular congruence lattices.

Other "projective" investigations concern finite algebras whose
projective geometry 1is one-dimensional. It had for a long ﬁime
been open whether the number of nontrivial subspaces would always
have to be one more than a prime power. A counterexample was
given by W.Feit / 5/, resting on work of P.Palfy and P.Pudlak
/1Y .

In the affine approach which was introduced and systematically
studied by R.Wille /21/, we let the points correspond to elements
of the algebra A, and we take as lines the classes of congruence
relations on A. A class of a congruence relation g will be called

a p-line. The collection of classes of a fixed congruence
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relation then will be a class of pairwise parallel lines.

This enables us to draw pictures where points represent elements
of A and lines represent congruence classes of some congruence 0 ,
in which case we sometimes lable the line with the letter 0 and
call them "p-lines". We shall draw two lines parallel if they
represent classes of the same congruence relation.

As a first example of the connections between algebraic and
geometric properties we look at permuting congruence relations 0
and Y. The fact that © and ¥ permute can geometrically be
expressed as follows:

Let 1 be a O-line and g a ¥-line and suppose 1 and g intersect
with y a point of intersection. For any points x on 1 and z on g

there exists a point u making (x,y,2,u) a parallelogram. -
Pictorially:

x e Yy
x Yy
4 yields Y Y
u ] z

z

The case that all congruences in all algebras of some variety
permute is captured in Mal'cevs famous theorem, stating that this
is equivalent to the existence of a ternary term nm(x,y,z)
satisfying the equations m(x,y,y) = x and m(x,x,y) = vy. Since m
is compatible with all congruences, it is easy to see that this is
in turn equivalent to saying that m(x,y.,z) is always a fourth
parallelogram point in the situation of the above figure.

The equations are abtained by 1letting © or V¥ shrink to the
identity congruence. This simple parallelogram principle was
extremely fruitful for further investigations. So it was easy to

conclude that the congruence class geometries of algebras in such

a "permutable" variety obey the Little law of Desargues which is
given pictorially as

implies
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This is to be read as: Given x,y,z,x', connected by Y,a .0, and
©0-lines there exist y' and z' with the relations indicated, where
lines drawn parallel in the figure mean 1lines of the same
congruence relation. Here y' and z' can be constructed as
m(x',x,y) resp. m(x',x,z).

If we 1let x and Yy coincide, i.e. we take Y = 0, the identity
congruence, then we see that the parallelogram principle follows.
In other words, the varieties in which the Little Desarguesian law
holds are precisely the permutable varieties. Unfortunately this
result seems not to fit in with the projective version of Freese
and Jonsson that, projectively, the Desarguesian theoren
characterizes the modular varieties. The resolution of this
problem though will be achieved when we come to slightly.
reformulating the little Desarguesian law.

Affine geometry in modular algebras

To do affine geometry in congruence modular algebras we need some

geometrical substitute for the parallelogram principle. This was
found in the following principle /8 /:

Shifting Lemma: Let o, B and Yy be congruences in a congruence

modular algebra A and x,y,z,u be points of A. Suppose moreover
that aag < y then

x z x z
g \ \ \
‘v \ \
|
a ly ' ’Y
4 4
y u y u
implies

The proof of this lemma 1is extremely simple, nevertheless the
lemma itself 1is probably the most important tool for the
geometrical study of modular varieties. The second tool we need
is the simple trick we have already met, to think of a congruence
©® on A as a subalgebra of AxA.

We shall show now how these two ingredients, or simple

modifications thereof suffice to develop the affine geometry of
congruence modular algebras.
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Let us start with the theorems of Desargues and Pappus. Clearly
we must modify the formulation of Desargues' law slightly to /9/:

The Little Desarguesian law: Let O,a1,a2,W be congruences with

eAa1 < y and Oaaz < ¥ and let x,y,2z,x',y',z' be elements of A then

implies
We note that as in the shifting lemma we require all necessary

points already to exist and we need "dimensionality conditions"”
for the congruences (resp. subspaces) involved. We obtain, 1in.

complete analogy to the Freese - Jonsson result:

Let A and all subdirect subalgebras of AxA have modular
congruences. Then the affine geometry of A satisfies the Little
Desarqguesian law.

The proof becomes more transparent if we restate the theorem in a
slightly more general version, namely:

Given points x,y,z,u,x',y'2',u' and congruences O,a1,a2,W with
Gaa, <Y and Ono, < ¥ then

X x'
. \
\
z \
< s \
Z y Y'
a
2 ®
u ay u

implies

The idea for a proof develops when we imagine this figure as a
three-dimensional configuration and look at it "from the side",

namely along thea1 -lines. The figure we see is

(x',x) o%0 (z',2)
‘\
\
1
]xqz IXuz ’ Y!uz
/
/
V4
',y %6 (u',u)

where now the points are elements of the algebra . If we can
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apply the shifting 1lemma to this situation, showing that
(x',x) yxo (y'.,y) we are done. Well, by hypothesis the algebra
aq again is congruence modular, thus we are left to check that in
this algebra 1x0 »n Oxa, = ¥x0 . This 1is true for elements
(a,b), (c,d) from the algebra O q by a second application of the
shifting lemma. For ((a,b),(c,d)) from the 1left hand side .we
obtain, using the fact that ©ca, = ¥ |, the configuration

a %4 b
\
‘|
(] 2] ! Y
]
_ ’
c a, d

from which by the shifting lemma we may conclude (a,c) ¢ ¥, so.
((a,b), (c,d)) ¢ ¥vxo0 .

Analogously we may formulate a version of the Little Pappian
theorem:

Let 6, ¥ a4, @, be congruences with Ora, £ ¥ gapng @, £ ¥ apg

X,¥s2,u,x',u' points then we obtain with a similar proof:

x! u x! '} z -

z
’
/
’
/
a ¥ Y,
implies /

4 x u' y x u'

Let A and all congruences of A have modular congruence lattices.

Then the affine geometry of A is Pappian.

At this point some interesting questions may be raised: Since the
analogy of projective and affine versions seems perfect in the
case of the Desarguesian law there should be a similar analogy
with the Pappian law. Thus a projective version of the Pappian
law should be discovered for modular varieties. More generally an
interesting question arises: Is there a general translation
between affine and projective properties of congruence modular

algebras?
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Reviewing some known theorems

Once certain principles and ways of reasoning have been applied
successfully one may review known theorems trying to look at them
in a new 1light. We elaborate two examples. Before we go on
though we shall say a few more words about the relationship of
congruence modularity and the shifting lemma. On the level of
varieties the shifting lemma is equivalent to modularity. On the
level of single algebras though, modularity 1lies between the
shifting lemma and a slight generalization thereof, the shifting

principle /10/:

x A 2 x A z
\ ’ \

\ / \

| \

a al Iy YU |a al Iy

,’ \ /

7, \ /
y. A implies Y A u

where O and Y are congruences, but A may be any reflexive,
symmetrical subalgebra of AXA. As in the shifting lemma we assume
aAh<y ., W.l.o.g. Y€O, otherwise replace Y by YA T, Thus to
show modularity, it is enough to show the shifting principle. We
now come to our first example, which is an improvement of a
theorem of J.Hagemann /14/, due to S.Bulman-Fleming, A.Day and
W.Taylor/ 2 /:

Let all subalgebras of AxA have regular congruences, theh A has
modular congruences.

Here A is said to have regular congruences, if congruences are
uniguely determined by any of their classes.

To prove the shifting principle, we look at A, the subalgebra of
AxAlaﬁd need to show that in this algebra we have yxg =yxy .
Since the above version of the shifting principle becomes trivial
for the case a = c:
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it follows that the (a,a)-class of yxa coincides with the
(a,a)-class of yxy, thus yxa = yXy by regularity.

As a second example we consider refinement theorems for direct
products. If AxB & CxD one wants to have canonical refinements
(see / 1/) such that A ¥ E.xE,, B ¥ FyxFp, C & E1XFy and
D ¥ E,xF,. Let AxB be given with the canonical projection kernels
m and “2 and consider the congruences 0 and Y on AxB yielding the
decomposition corresponding to CxD. Then the shifting lemma
yields that a congruence relation GB may be defined on B as
b, O b, & Ix  (x,by) 0 (x,by)
& Vy (y,bq) 0 (y,by)

‘ﬁ——'
@

v

One has canonical refinements if and only if in such a way the
congruences ©Oand Y split in congruence relations OA,GB . WA and
WB, which provide the factors for the refinement.

Here the shifting 1lemma is being applied in a very special
situation and the argument is not restricted to congruence modular
algebras. Even the fact that© and Y split in the desired way may
be formulated as an easy geometrical principle. In this spirit
H.Bauer and R.Wille /1/ have given an elegant proof for
Hashimoto's refinement theorem for products of posets (/16/).

In modular varieties © and Y do generally not split as requested.
So called "skew" congruences have to be introduced, but they too
can be geometrically analysed so that for modular varieties and in
the presence of chain conditions one obtains a cancellation and
refinement theorem "up to isotopy”". In the proof of this result
/13/ , unfortunately affine and projective reasoning 1is being
mixed so a "purer"™ proof of this result using the above methods
would be desirable.
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Using geometry to guide syntactical inferences

The difference between the configuration theorems encountered so
far in permutable and in modular varieties can shortly be subsumed
by:

In permutable varieties points with the desired relations may be

generated, whereas in modular varieties the points already are

supposed to exist satisfying some of the desired relations and the
rest of the relations can be concluded.

The prime example for this distinction is the comparison of the
parallelogram principle versus the shifting lemma.

We shall see in this chapter though, that we do have a version of
the parallelogram principle in modular varieties. The
parallelogram principle holds, provided some auxiliary points are
given. Moreover, the fourth-parallelogram point is provided by a
ternary term t(x,y,z) which does share many properties with a
Mal'cev term /g /:

In every modular variety there exists a ternary term t(x,y,2) such

that t(x,y,y) = x, and, given a configuration
a eo £ b
v e,
d 2] c e

with @0A91§w + t(a,b,c) completes a,b,c to a eo-w-parallelogram.

1 4

lev
[-%
@
)
[a]
o

The proof of this theorem is a prime example of how geometrical
analogy may be used to stake out a proof and fill the gaps later
with calculations. We shall give this geometric idea. 1It is
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noteworthy that the proof implicitly involves multiple
substitutions of terms into other terms.

We start with the terms and equations given by A.Day /4 /,
describing congruence modularity: A variety V is congruence
modular iff there is a number n and quaternary terms My ,Mqseee,Mp
such that the following equations are true in V:

(MO) mo(x,y,z,u) = X
(M1) m,(x,x,y,y) = x for all 0 ¢ i ¢ n,
(M2) mi(x,y,x,y) = mi+1(x,y,x,y) for 0 ¢ i <n, 1i even
(M3) mi(x,y,z,z) = mi+1(x,y,z,z) for 0 i< n, i odd
(M4) mn(x,y,z,u) =Y.
Let us draw the result of applying these terms to the points in
the given configuration. We define mi:=mi(a,d,b,c). " Then the .

equations give wus relations between these points m, . Using (MO),

(M2), (M3), (M4), we obtain a figure which we draw for the case n

=7: n, a=m, eo b

d-g7

Now the rough idea how to construct a ¥-line from a to the bottom
line becomes immediately apparent: The little y-pieces between m
and M for odd i should be shifted to the appropriate positions,
starting at a, to connect to the desired line. Substituting a and
d in the first places of the Day-terms and substituting some of

b,c,e in the last two places, more precisely, setting

t; :=m(a,d,c,e) for i odd, t; := m (a,d,b,c) for i even,
s, = mi(a,d,c,c) for i odd, s; := m (a,d,b,e) for i even
we obtain a configuration as in

a f b
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Now we do have some control about the horizontal position of the
‘little Y-pieces. Consider tq, the first of the resulting peaks,
then it is easy to find a point al on the top line and @' on the
bottom line above , resp. below t4. Applying the terms as
before, but replacing a with al and 4@ with d! we find a new set of
peaks, but in the same horizontal position. Now the second Y-line
of the new set of peaks joins up with the first ¥-line of the old
peaks and it is clear how to walk down diagonally until the bottom
line is reached.

2 a a f b
a :
1 ﬁ
L‘ 1 H 21
t 'S
27 5
3 H
X L3 . =3
/ <44
. e
¢ azd'  a ¢

Since all points are constructed by applying Day's terms to the
original points it is clear that syntactically the above method
results in a continued substitution of terms into other terms,
yielding a final term t(x,y,z) with the required property.

. Coordinatization

We shall start with the simple idea of coordinatizing an affine
line 1 using an abelian group. After embedding 1 into a plane and
using two more mutually non-parallel lines 1' and 1", the addition
x+y may easily be performed as shown in the picture below. Note
that beforehand we must have selected an arbitrary element 0 on 1
to serve as the zero for addition.

o\

x b4 X+y
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We now assume that an algebra A in a modular variety is given. 1In
our analogy then the A will be the line 1 which we embed into the
"plane™ AxA. Note that in AxA we may represent A as {(0,x)| xe A}
or as {(x,0)|x¢A}, both being 1lines corresponding to the
projection congruences Ty o resp. Ty o 0 is chosen arbitrarily in
A. For the third line 1", the choice is not quite as obvious.
Since the geometrical operations we want to perform are parallel
shifts and finding points of intersection, we need a congruence
relation A such that every A-line intersects every v1-1ine and
every nz-line. An obvious candidate for 1" seems to be the
diagonal d ={(x,x)| x ¢A} and therefore A should be at least the
congruence relation generated by 4 in AxA,

A =< {((xlx)l(YIY))| (le)EAxA} >A><A .

Now, however, d need not be a line by itself, but the class of A

containing d might be some @ properly containing d. Such a d will
certainly intersect each U and each nz—line, and if A is
contained in a modular variety, it follows from the modified
parallelogram principle that so will each other 1line of A .
Finally, to construct x+y as above, points of intersections ought
to be unique. This is the only hypothesis which is not guaranteed
by modularity, but we shall see soon how to handle this case. Let
us now for a moment assume that points of intersection are unigue.
It is easy to see with the shifting lemma that this is eguivalent
to requiring that 4 itself is a 1line, i.e. da = d. Now the
familiar definition of x+y may be given and its properties
developed. Proving associativity, commutativity and
cancellativity 1leads to versions of exactly the geometrical

configuration theorems which we met earlier. Since addition is

defined via congruence relations and each such congruence relation
is preserved by all polynomials of A it is not surprising that
every polynomial of A is a homomorphism with respect to the
ternary operation x-y+z. ( Considering x-y+z instead of the group
operations x+y and -x is preferable in any case, since it removes
the discussion about choosing some arbitrary element for a zero.)
Thus A is polynomially eguivalent to a module over some ring R.

Moreover all the algebras A in a fixed modular variety where 4 is

a congruence class do form a subvariety of modules, the variety of
"abelian algebras".
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In the case that d by itself is not a line, intuitively d becomes
too "thick"™ so that d intersects horizontal and vertical lines in
more than one point, and as a consequence x+y cannot be defined
uniguely. The obvious idea is to factor A by this "thickness" of
d. The idea indeed works thanks to the shifting 1lemma. The
definition

b [1,1) ¢ <& Ix (x,b) 1 (x.¢)
yields a congruence relation [l,i] on A so that the
coordinatization of A/lﬁrf] wgrks as described above, and Ay[1,ﬂ
is an abelian algebra.

More generally, given two congruences g and Yy, we may reuse our
trick of replacing AxA by its subalgebra 0 and we may replace d by
those pieces of the diagonal which are congruent ’modulo Y to
obtain:

A‘é 2= U)o (YY) | (Xe¥)e ¥ D
This is a congruence relation on the algebra g. Then, just as

before we set

b [orv] ¢ & Ix (x,0) &Y (x,0)
and get that Bj,w] becomes a congruence relation on A, which is
called the commutator of 0 and¥. This congruence multiplication
was invented by J.D.H.Smith /j¢9/, J.Hagemann and C.Herrmann /15/
and further completed and reinterpreted in /12/ and /7 /. 1t

reduces precisely to the familiar notion of commutators in groups

and to the notion of ideal multiplication in rings. In
distributive varieties the commutator of © and VY equals their
intersection. All the notions and analogies from those theories,
like primeness, nilpotency and solvability become available in
general for modular varieties. They have provided a wealth of new
insight into their structure theory. As an example we mention the
following theorem which generalizes the famous Jonsson-lemma /8.
The essential idea for such a generalization is due to
Hrushovskii, the present form is from /10/. We define fZ‘ as the
intersection of all prime congruences of A, and assume that A is

in the (modular) variety generated by some class K. Then

A/ﬁ is in PqHSPn(K).
In a distributive variety, primeness reduces to finitely subdirect
irreducibility, so here 7A = 0. Clearly, if A is abelian then no
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congruence relation will be prime, since [o,{] = 0 for all
congruences o andy. Thus 1X1= l. In this way we have identified
two "ends"™ of any modular variety and indeed, if certain
restrictions are placed on the variety, it frequently will split
into those two ends. Numerous results have been obtained in this
direction, we only mention /q11/ and the work of R.Freese and
R.McKenzie /7/ and S.Burris and R.McKenzie /3 /, but a general
decomposition theory still has to be found.
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