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Abstract

If F : Set → Set is a functor which is bounded and preserves weak generalized pullbacks
then a class of F-coalgebras is a covariety, i.e., closed under H (homomorphic images), S
(sub-coalgebras) and

∑
(sums), if and only if it can be de0ned by a set of “coequations”.

Similarly, quasi-covarieties, i.e., classes closed under H and
∑
, can be characterized by impli-

cations of coequations. These results are analogous to the theorems of Birkho4 and of Mal’cev
in classical universal algebra. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The recently developed theory of coalgebras under a functor F provides a highly
attractive framework for describing the semantics and the logic of various types of
transition systems. In contrast to the algebraic semantics of abstract data types where
data objects are constructed recursively and equality is proven by induction, coal-
gebras support de0nitions by co-recursion and de0ne equivalence by co-induction.
This view is appropriate in many contexts, prominently when modelling objects and
classes in object-oriented languages [6, 4] or in0nite data objects such as processes and
streams.

1.1. Transitions and transition systems

A transition � is nothing but a binary relation on a set S, i.e. �⊆ S × S. � is
called image ,nite, if for every s∈ S, the set s�= {t ∈ S | s�t} is 0nite. � is called
deterministic if it is the graph of a function � : S → S, i.e., �= {(s; �(s)) | s∈ S}.
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A transition system is a family T =(�a)a∈ A of transitions on S. Related to this
notion is that of an automaton where additionally one considers a set Q⊆ S of accepting
states, and perhaps an output function � : S → B.
In order to emphasize the dynamical aspect of transitions or transition systems, we

describe them by a map � from S to some structured set. Unary relations are be
modelled by a map into Bool= {true; false} and binary relations R⊆ S × S by a map
from S into the powerset P(S). With Pfin(S) we denote the lattice of 0nite subsets
of S.
In particular, a map � of type

S → S is a deterministic transition,
S → P(S) is a nondeterministic transition (binary relation),
S → Pfin(S) is an image 0nite nondeterministic transition,
S → SA is a deterministic transition system,
S → Pfin(S)A models a nondeterministic transition system

in which all transitions are image 0nite,
S → B× SA is an automaton with output, and
S → Pfin(S)A × Bool models an automaton with bounded

nondeterminism and an acceptance condition.

In all examples we are given a map from a set S into a set F(S) that is somehow
constructed from S. In fact, in each case F is a functor. A coalgebra of type F will
be de0ned as any map �S : S → F(S).
The situation is dual to that of universal algebra, where an algebraic structure is

given by a map fA :F(A) → A, where F(A)=An1 + An2 + · · ·+ Ank , that is a disjoint
union of powers of A. Coalgebras as direct dualizations of universal algebras, to be
precise, universal algebras in the category Setop, have been investigated by Marvan
[5], where special cases of many of the notions and results mentioned in the present
paper can be found. In his case, a coalgebra is just a collection of maps �i : S → ni · S
from a set into its ni-fold disjoint union.
For coalgebras relevant in computer science applications, other functors, such as the

ones listed above, are needed, for which there is no known theory of F-algebras to
be dualized. In particular, the functors P(−) and Pfin(−) are of great importance in
applications, but also nonstandard functors such as the “0lter functor” F(−) are of
interest, whose coalgebras include all topological spaces (see [2]).
In this note, we shall continue the investigation (started in [7] and continued in [3])

of covarieties, that is classes of coalgebras closed under formation of subcoalgebras,
homomorphic images and direct sums. We shall introduce the notion of coequation and
prove a theorem analogous to the well-known theorem of Birkho4, stating that a class
of coalgebras of type F is a covariety i4 it can be de0ned by a set of coequations. In
analogy to a theorem of Mal’cev, we then introduce quasi-covarieties as classes closed
under sums and homomorphic images and we show that quasi-covarieties are precisely
the classes of coalgebras which can be speci0ed by co-implications. Most results of
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this work have been presented at the workshop on Coalgebraic Methods in Computer
Science in Lisbon, in March of 1998.

2. Coalgebras

In this section, we collect de0nitions and basic results of the general theory of
universal coalgebra as developed in the comprehensive exposition of Rutten [7].

De�nition 1. Let F :Set → Set be a functor. A coalgebra of type F is a pair (A; �A)
consisting of a set A and a map �A :A → F(A). A is called the underlying set or carrier
of the coalgebra and �A is called the structure map.

Whenever the structure map is clear from the context, we shall use the same notation
for a coalgebra and for its carrier. For most of this paper, the functor F will be kept
0xed, that is we shall only consider coalgebras of type F .
We shall make use of the axiom of choice, thus in the category Set every epi

has a right inverse and every mono, whose domain is nonempty, has a left inverse.
Consequently, F preserves epis and it preserves all monos whose domain is nonempty.

2.1. Homomorphisms

De�nition 2. A homomorphism between coalgebras (A; �A) and (B; �B) is a structure-
preserving map, that is a map ’ :A → B for which the following diagram commutes.

A
’−−−−−→ B

�A

�
� �B

F(A)
F(’)−−−−−→ F(B)

:

The class of all coalgebras of a 0xed type F together with their homomorphisms
becomes a category SetF . From this a number of standard coalgebraic constructions,
such as subcoalgebras, homomorphic images, and sums are immediately derived.
It turns out [7], that epimorphisms in SetF are surjective and bijective homomor-

phisms are isomorphisms. We say that A and B are isomorphic, in symbols A ∼= B, if
there exists an isomorphism from A to B. A homomorphism from A to A is called an
endomorphism.
If ’ :A� B is an epimorphism then we shall call B a homomorphic image of A. If

A is isomorphic to each of its homomorphic images, then A is called simple.

2.2. Subcoalgebras

De�nition 3. A coalgebra (S; �S) is a subcoalgebra of (A; �A) if S ⊆A and the natural
embedding of S into A is a homomorphism.
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The structure map �S on a subcoalgebra S of A is uniquely determined by its carrier
set, so we write S6A, if the subset S of A is the carrier set of a subcoalgebra of A.
It is straightforward to check that the union of an arbitrary family of subcoalgebras
is again a subcoalgebra, in particular, ∅ is always a subcoalgebra. Given a subset X
of a coalgebra A, we denote by [X ] the union of all subcoalgebras of A which are
contained in X .
Without further assumptions, the set theoretic intersection of subcoalgebras need not

be a subcoalgebra. Nevertheless, the set of all subcoalgebras of a given coalgebra A
forms a complete lattice where the join is given by set union and the meet of a family
(Si)i∈ I is the union of all subcoalgebras contained in their intersection, i.e.,

∧
i∈I

Si =

[⋂
i∈I

Si

]
:

A subcoalgebra S6A is called invariant in A, if it is preserved by every endomorphism
of A, that is ’(S)⊆ S for each homomorphism ’ :A → A.

2.3. Sums

Given a family (Ai; �i)i∈ I of coalgebras, let ei :Ai → ∑
i∈I Ai be the canonical

embedding of Ai into the disjoint union of the family (Ai)i∈I . The coalgebra structure
on

∑
i∈I Ai is given by the canonical map that sends an x∈ ∑

i∈I Ai to F(ei)(�i(x)),
where Ai is the component to which x belongs. This construction yields precisely the
sum of the family (Ai; �i)i∈I in the category SetF .
What we have here is actually an instance of a more general observation of Barr

(see [1]), which states that the forgetful functor U :SetF → Set creates colimits and
every limit which is preserved by F .
A conjunct sum of a family (Ai)i∈I is a homomorphic image under some homomor-

phism ’ of a sum
∑

i∈I Ai for which the compositions ’ ◦ ei are monomorphisms.

2.4. Bisimulations

A bisimulation between coalgebras A and B is a binary relation R⊆A×B on which
a coalgebra structure can be de0ned so that the canonical projections  A :R → A and
 B :R → B are homomorphisms. It is easy to check that ∅ is always a bisimulation
and the union of a collection of bisimulations is a bisimulation, so the set of all
bisimulations between A and B forms a complete lattice.
Typical representatives of bisimulations are the graphs of homomorphisms, where

for f :A → B, its graph is the set G(f)= { (x; f(x)) | x∈A}, in fact, a map f :A → B
is a homomorphism i4 its graph is a bisimulation [7].

2.5. Preservation of weak generalized pullbacks

All of the functors mentioned in the introduction satisfy an extra property, which is
an important source of additional coalgebraic structure.
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Recall that a pullback is a limit of two morphisms with a common codomain. By a
generalized pullback we understand the limit of an arbitrary collection (’i)i∈I of maps
with a common codomain.
The notion of weak limit is de0ned analogous to that of a limit, with the exception

that the mediating morphism is not required to be unique. In particular, let (’i :Ai →
C)i∈I be a collection of morphisms with a common codomain C, then a weak general-
ized pullback consists of an object W and a collection of morphisms ( i :W → Ai)i∈I

so that
(i) ∀i; j∈I : ’i ◦  i =’j ◦  j,
(ii) for any object W ′ and morphisms ( ′

i :W
′ → Ai)i∈I with ∀i; j∈I : ’i ◦  ′

i =’j ◦  ′
j,

there is at least one morphism % :W ′ → W satisfying  i ◦ %=  ′
i for all i∈ I .

It turns out that all functors mentioned in the introduction preserve weak generalized
pullbacks, that is, they transform a weak generalized pullback diagram into another
weak generalized pullback diagram. In [2] we give a criterion for checking whether a
given functor preserves weak (generalized) pullbacks.
For the rest of this paper we shall assume that the functor F preserves weak gener-

alized pullbacks. This has a number of consequences. 1

Theorem 4 (Rutten). If F preserves weak generalized pullbacks then:
(i) An arbitrary intersection of subcoalgebras is again a subcoalgebra.
(ii) In SetF ; monomorphisms are injective maps.
(iii) Images and preimages of subcoalgebras under homomorphisms are again sub-

coalgebras.

As a consequence of (i), for any set X ⊆A there is a smallest subcoalgebra of A
containing X . This is called the coalgebra generated by X and denoted 〈X 〉. For a
singleton {x} we write 〈x〉 instead of 〈{x}〉 and call this a one-generated subcoalgebra.
Every coalgebra A then has a canonical representation as a conjunct sum of its one-
generated subcoalgebras.
Correspondingly, the smallest invariant subcoalgebra containing a set X is denoted

by 〈〈X 〉〉, (resp. by 〈〈x〉〉) if X = {x}. Observe that 〈〈X 〉〉= ⋃{’(〈X 〉) |’ :A → A}.

3. Covarieties and Quasi-Covarieties

We will particularly be interested in certain subclasses of SetF which are called
covarieties. Here a covariety is a class of F-coalgebras closed under the operators H

(homomorphic images), S (subcoalgebras), and
∑

(sums). Classes closed under H
and under

∑
will be called quasi-covarieties.

1 At various places in the literature, authors have erroneously assumed that preservation of weak pullbacks
would guarantee existence of 1-generated subcoalgebras. This is false, as we have shown in [4].
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It can be easily veri0ed that a class K of coalgebras is a quasi-covariety, i4 K =
H

∑
(K), and a covariety i4 K =HS

∑
(K) (see [7]). Further descriptions of the

covariety generated by a class K of coalgebras (for instance K =
∑

C HS1(K), where∑
C stands for “conjunct sums”) are given in [3].

3.1. Bounded functors and cofree coalgebras

Let X be a set. We refer to the elements of X as “colors” and and to every set
map from a coalgebra A to X as a “coloring”. A coalgebra CK (X ) together with a
coloring 'X :CK (X ) → X is called cofree over X , with respect to a class K , if for
every coalgebra A in K and for any coloring ’ :A → X there exists exactly one
homomorphism ’̃ :A → CK (X ) such that ’= 'X ◦ ’̃. We write C(X ) for CSetF (X )

There is another way of looking at cofree coalgebras: By an “X -colored F-coalgebra”,
we shall understand a coalgebra A together with a map ’ :A → X . That is, an X -colored
F-coalgebra is a coalgebra for the functor X ×F(−). A cofree coalgebra C(X ) with its
coloring 'X is then nothing but a 0nal object in the category of X × F(−)-coalgebras.
Using this reduction and a result of Barr [1], Rutten [7] shows that cofree coalgebras

exist, provided that there is a bound on the cardinality of one-generated F-coalgebras.
In this case, the functor F is called bounded. It is easily seen that F is bounded if and
only if X ×F(−) is bounded. All of the functors mentioned in the introduction, with
the exception of P(−), are bounded.

4. Coequations and coequational classes

In this section, we shall introduce a notion of “coequation” and show that, in analogy
to Birkho4’s theorem of Universal Algebra, a class of coalgebras is a covariety if and
only if it can be de0ned by a set of coequations.
Rutten already shows in [7] that every subcoalgebra S of C(X ) determines a cova-

riety

K(S) = {A ∈ SetF | ∀’ : A → X:’̃(A)⊆ S};

and conversely, every covariety arises in this way. Therefore, he considers S a speci,-
cation of the covariety K(S). In [3] it was shown that S may in fact be chosen as an
invariant subcoalgebra, and that in this case the correspondence is one to one. More
precisely, if F is bounded and preserves weak-generalized pullbacks, then there is a
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set X so that the invariant subcoalgebras of C(X ) are in bijective correspondence with
the varieties of F-coalgebras.

4.1. Coequations

The above discussion shows that in order to check whether a coalgebra A belongs to
the covariety de0ned by S6C(X ), one either has to check that every homomorphism
’ :A → X factors through S, or, alternatively, that every element of C(X ) − S is
avoided. This suggests the following de0nition:

De�nition 5. (i) A coequation is an element of C(X ). More precisely, each e∈C(X )
is called a coequation with colors in X .
(ii) Given any coequation e with colors in X , a coalgebra A, an element a∈A and

a coloring map ’ :A → X , we say e holds at a∈A under ’ and we write A; a |=’ e,
if ’̃(a) �= e.
(iii) If A; a |=’ e for every coloring ’, then we say e holds at a∈A. Finally, we

say e holds in A and write A |= e, if A; a |= e for all a∈A.

If X ⊆Y then the canonical map ⊆◦'X :C(X ) → Y extends uniquely to a homo-
morphism from C(X ) to C(Y ) which is easily seen to be left cancellative, i.e. an
embedding. In fact, C(−) (as well as CK (−)) is a Set-functor.
A concrete representation of C(X ) as a subcoalgebra of C(Y ) can be obtained in

the following way:

C(X ) = ['−1
Y (X )]:

This allows us to speak of “the colors occurring in e” for any coequation e, more
precisely:

Lemma 4.1. For every coequation e with colors in a set Y there is a smallest set
X ⊆Y such that e is a coequation with colors in X; in fact; X = 'Y (〈e〉).

Proof. Let e be a coequation with colors in Y and let X = 'Y (〈e〉). Since e∈ 〈e〉⊆ '−1
Y

(X ), we have e∈ ['−1
Y (X )]=C(X ).

Let now X ′ ⊆Y with e∈C(X ′)= ['−1
Y (X ′)], then there is a subcoalgebra S6C(Y )

with e∈ S ⊆ '−1
Y (X ′). Consequently, 〈e〉⊆ '−1

Y (X ′), so X ⊆X ′.
Also, we can “rename” the colors, in a coequation without a4ecting its validity,

provided, the recoloring is injective. Identifying colors makes the coequation harder to
be satis0ed. That is, given a coequation e with colors in X and any mapping f :X →Y ,
then e′= ](f ◦ 'X )(e) is a coequation with colors in Y and for every a∈A∈SetF we
have

A; a |= e′ implies A; a |= e:
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4.2. Coequational classes

De�nition 6. Let E be a set of coequations and K a class of F-coalgebras.
(i) The coequational class de0ned by E is

Mod(E) := {A ∈ SetF | ∀e ∈ E:A |= e}:
(ii) Let X be a set(of colors). Then the set of all coequations de,ned by K is

CoEq(K) := {e ∈ C(X ) | ∀A ∈ K:A |= e}:

Clearly, any homomorphism  :A→C(X ) arises from a coloring, speci0cally  = ’̃
for ’= 'X ◦  . Thus, for a coequation whose covariables are amongst X , we have
that A |= e i4 there does not exist any homomorphism  :A→C(X ) with e∈  (A).
From this remark it follows immediately that Mod(E) is closed under homomorphic
images and sums. To show that Mod(E) is also closed under subcoalgebras, note that a
coloring of a subcoalgebra can always be extended to a coloring of the whole algebra,
and, as a consequence, a homomorphism from a subcoalgebra B6A to C(X ) can be
extended to the whole coalgebra A, see [3]. These remarks prove the following lemma:

Lemma 4.2. Let E be a set of coequations; then Mod(E) is closed under H; S and∑
; i.e.; a covariety.

But the converse turns out to be true too. This is the coequational version of
Birkho4’s theorem:

Theorem 4.3. Covarieties are the same as coequational classes; speci,cally; for any
class K of coalgebras;

Mod(CoEq(K)) = HS
∑

(K):

Proof. Clearly, K ⊆Mod(CoEq(K)), hence HS
∑
(K)⊆Mod(CoEq(K)) by Lemma

4.2.
For the converse inclusion, suppose A∈Mod(CoEq(K)). Let X be a bound for F

and a∈A. Let + : A → X be a map that is injective on 〈a〉·+ extends to a homomorphism
+̃ :A→C(X ). Let e= +̃(a), then 〈a〉 is isomorphic to 〈e〉.
Obviously, A �|= e, hence there is some Be ∈K so that Be �|= e, i.e., there is a homo-

morphism ’e :Be →C(X ) with e∈’e(Be). ’−1
e (〈e〉) is a subcoalgebra of Be whose ho-

momorphic image 〈e〉 is isomorphic to 〈a〉. Hence, 〈a〉 ∈HS(K). Since A is a conjunct
sum of its 1-generated subcoalgebras, it follows that A∈H

∑
HS(K)⊆HS

∑
(K).

4.3. A consequence relation

Let A be a coalgebra and f∈C(X ) a coequation. Instantly from the de0nition of
“ |=” we have
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(i) A �|=f implies A �|= g for all g∈ 〈f〉,
(ii) A �|=f implies A �|=’(f) for every endomorphism ’ of C(X ).
These two properties can be combined, referring to the notion of “invariant” subcoal-
gebra, introduced in Section 2.2:

A �|= f implies A �|= g for all g ∈ 〈〈f〉〉:

We now rede0ne “|=” as a consequence relation on equations

E |= f :⇔ ∀A∈SetF : (∀e∈E: A |= e) ⇒ A |= f:

An algebraic characterization of this relation can be given as follows:

Theorem 4.4. E |=f if and only if 〈〈f〉〉 ∩E �= ∅.

Proof. Clearly, 〈f〉 �|=f, so

(E |= f) ⇒ ∃e∈E:〈f〉 �|= e

⇒ ∃e∈E:∃’:〈f〉→C(X ):e ∈ ’(〈f〉)
⇒ ∃e∈E:∃ N’:C(X )→C(X ):e ∈ N’(〈f〉)
⇒ 〈〈f〉〉 ∩ E �= ∅:

Conversely, assume 〈〈f〉〉 ∩E �= ∅, then for some e∈E and some endomorphism
 :C(X )→C(X ) we have e∈  (〈f〉). To show E |=f, consider a coalgebra A with
A �|=f, then there is a homomorphism ’ :A→C(X ) with f∈’(A). It follows 〈f〉6
’(A) and e∈  (〈f〉)6 (’(A)), hence A �|= e∈E.

For the special case E= {e} we obtain

Corollary 7. e |=f⇔ e∈ 〈〈f〉〉.

5. Co-implications

De�nition 8. If E is a set of coequations and f a single coequation then the expression
(E⇒f) is called a co-implication. Let X be the set of colors occurring in E or in
f. We say that (E⇒f) holds in some coalgebra A if for all colorings ’ :A→X we
have

(∀e∈E :A |=’ e) ⇒ A |=’ f:

Again, it is easy to check from this de0nition:

Lemma 5.1. Let Q be a set of co-implications; then Mod(Q) is closed under H and∑
; i.e.; a quasi-covariety.
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In fact, we shall see that quasi-covarieties are precisely the classes de0nable by co-
implications. To this end, de0ne for any set Q of co-implications Mod(Q) as the class
of all coalgebras satisfying all co-implications in Q. Similarly, let CoImp(K) be the
set of all co-implications satis0ed in all members of K , then we have:

Theorem 5.2. Let K be any class of F-coalgebras; then

H
∑

(K) = Mod(CoImp(K)):

Proof. Let A∈Mod(CoImp(K)), choose a set X with |X |¿|A| and an injective map
+ :A→X . Then A is isomorphic to +̃(A)6C(X ) Put E=C(X ) − +̃(A), then for every
e∈ +̃(A) the co-implication (E⇒ e) fails to hold in A. Hence, there must be some
Be ∈K with Be �|=(E⇒ e). This means that for every e∈ +̃(A) there is some Be ∈K
and a homomorphism ’e :Be → +̃(A) with e∈’e(Be). We now obtain a surjective ho-
momorphism  :

∑
e∈+̃(A) Be → +̃(A), so A∼= +̃(A)∈H

∑
(K).

6. Coequations, patterns, and two examples

We do not know of any “syntactical” representation for coequations that would work
for arbitrary functors. However, we can think of coequations as patterns that are to
be avoided. To be precise let us de0ne an X -pattern as a triple (u; U; ’) consisting
of a coalgebra U generated by the element u∈U , i.e., U = 〈u〉, and a (coloring) map
’ :U →X so that U with coloring ’ is simple, considered as X × F(−)-coalgebra.
Given a coalgebra A and a∈A, we say that A matches the X -pattern p=(u; U; ’)

at a, if there exists a coloring  : 〈a〉→X so that as X -colored coalgebras we have
(〈a〉;  )= ∼X

∼=(U;’), and the isomorphism associates a with u. Here ∼X is the largest
bisimulation on 〈a〉, that respects the coloring. Otherwise, we say that A avoids p at a.

Lemma 6.1. Let e be a coequation with colors in X . Let A be a coalgebra and a∈A.
Then

A; a |= e ⇔ A avoids the pattern (e; 〈e〉; 'X ):

Proof. Let e be a coequation and a∈A∈SetF . First note that p=(e; 〈e〉; 'X ) is indeed
a pattern. This follows from the fact that C(X ) as X -colored coalgebra is 0nal, hence
simple. Subcoalgebras of simple coalgebras are simple, so 〈e〉 with coloring 'X is
simple as X -colored coalgebra.
If A; a �|= e then there is a homomorphism ’ :A→C(X ) with ’(a)= e. It follows that

’(〈a〉)= 〈e〉. The kernel of ’ is a bisimulation on 〈a〉, which also respects the coloring
if this is de0ned as 'X ◦’. The image of ’ is simple as an X -colored coalgebra, hence,
the kernel of ’ is the largest bisimulation ∼X on the X -colored coalgebra 〈a〉. Hence,
as X -colored coalgebras, 〈a〉=∼X

∼= 〈e〉. Obviously, the isomorphism carries a to e, so
A matches p at a.
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Conversely, assume that A matches p at a, then we have a color-preserving homo-
morphism  ∼ : 〈a〉→ 〈e〉 with  ∼(a)= e. This can be extended to a homomorphism
N ∼ :A→C(X ), since C(X ) has the extension property [3]. It follows that A; a �|= e.
Thus, a coequation gives rise to a pattern. Conversely, of course, each pattern arises

from a coequation. That is, given a pattern p=(a; 〈a〉; ’), we obtain a homomorphism
’̃ : 〈a〉→C(X ) which is color preserving and injective, since 〈a〉 with coloring ’ is
simple.
This gives us a method to represent equations and to check a given equation on a

coalgebra A. For any a we need to check all colorings of 〈a〉, each time factoring by
the largest bisimulation and comparing the resulting pattern with (e; 〈e〉; 'X ).

6.1. A coequation

First, we elaborate a simple example of a covariety. Let I be the identity functor on
Set. An I-coalgebra is a map � : S → S. Consider the subclass K of SetI consisting of
all (S; �S) such that ∀s∈ S: ∃ n∈N: �n(s)= s. It is easy to check that K is a covariety,
i.e., it is closed under H; S, and

∑
.

K can be described by the coequation given by the following pattern:

The 0gure represents a simple 2-colored one-generated I-coalgebra which cannot be
obtained as a color preserving homomorphic image of any 2-colored coalgebra in
K . Conversely, if A =∈K , there exists a∈A such that a =∈Ba where Ba is de0ned as
{�n(a) | 0¡n∈N}. For a coloring ’, painting every element in Ba black and painting
a white, we shall obtain the coequation as ’̃(a):

6.2. A co-implicational class

Again, consider coalgebras of the identity functor I. Let K consist of all coalge-
bras (S; �S) where �S : S → S is surjective. It is easy to check that K is closed under
homomorphic images and sums. However, K is not closed under subcoalgebras. This
is shown by the following example: Consider � :N→N de0ned by

�(n) =
{

n− 1 if n ¿ 0;
0 if n = 0:

� is onto, but for every k ∈N, the set { 0; : : : ; k } is the carrier of a subcoalgebra of
(N; �) in which the coalgebra operation is not surjective.
Given that K is a closed under homomorphic images and sums, Theorem 5.2 tells

us that it must be de0nable by a set of co-implications. In general, such a set might
become rather large and unwieldy, so that the proof is not constructive in any practical
sense. However, in the current example we are lucky, for we can actually exhibit a
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single co-implication, de0ning K . Let f be the coequation from the previous example
and let e1 and e2 be de0ned as

then we have:

Proposition 6.2. The class of all I-coalgebras whose structure map is surjective is
de,ned by the co-implication

{e1; e2} ⇒ f:

Before entering the proof, let us give the intuition behind this co-implication and
the patterns occurring therein. Clearly, an I-coalgebra excluding the pattern f is a
member of the covariety K from the previous example, hence its structure map is
onto. Otherwise, if pattern f does appear, then surjectivity of � requires its generating
element to have an �-preimage which leads to the occurrence of one of the patterns
e1 or e2.

Proof. First notice that e1; e2, and f are elements of the cofree 2-colored I-coalgebra
(using the colors black and white). Denote this coalgebra by C and its structure map
by �C , then �C(e1)= �C(e2)=f and there is no other x∈C with �C(x)=f.
Let now �A :A→A be surjective and let ’ be a {black; white}-coloring of A. Assume

that A; a �|=’f, that is ’̃(a)=f. Since �A is onto, there must be some b∈A with
�A(b)= a, hence �C(’̃(b))= ’̃(�A(b))= ’̃(a)=f. Depending on the color of b we
either have ’̃(b) equal to e1 or to e2, hence, one of the premises e1 or e2 was violated
under the coloring ’.
For the other direction, assume that A |= {e1; e2}⇒f. Given any a∈A we have

to 0nd some b∈A with �A(b)= a. If there exists n∈N with �n
A(a)= a then we are

done; otherwise, let ’ be the coloring painting a white and every other element of
A black. Then ’̃(a)=f, hence A; a �|=’f. Consequently, there must be an element
b∈A such that A; b �|=’e1 or A; b �|=’e2, that is ’̃(b)= e1 or ’̃(b)= e2. In any case,
’̃(�A(b))= �C(’̃(b))=f. Since ’̃ is not only an I-homomorphism, but also color
preserving, we conclude that �A(b) is white, hence equal to a.

References

[1] M. Barr, Terminal coalgebras in well-founded set theory, Theor. Comput. Sci. 114 (2) (1993) 299–315.
[2] H.P. Gumm, Functors for coalgebras, Algebra Universalis to appear.



H.P. Gumm / Theoretical Computer Science 260 (2001) 57–69 69

[3] H.P. Gumm, T. SchrPoder, Covarieties and complete covarieties, in: B. Jacobs, et al., (Eds.), Coalgebraic
Methods in Computer Science, Electronic Notes in Theoretical Computer Science, Vol. 11, Elsevier,
Amsterdam, 1998, pp. 43–56.

[4] B. Jacobs, Objects and classes, co-algebraically, in: B. Freitag, et al., (Eds.), Object-Orientation with
Parallelism and Persistence, Kluwer Academic Publishers, Dordrecht, 1996, pp. 83–103.

[5] M. Marvan, On covarieties of coalgebras, Arch. Math. (Brno) 21 (1) (1985) 51–64.
[6] H. Reichel, An approach to object semantics based on terminal co-algebras, Math. Struct. Comp. Sci.

(5) (1995) 129–152.
[7] J.J.M.M. Rutten, Universal coalgebra: a theory of systems, Theoret. Comput. Sci. 249 (2000) 3–80.


