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1. Abstract
In [3] we announced the following result:

1.1. THEOREM. Let E be a nontrivial equality in the terms o, A, and v . There
exist varieties K{ and K; such that E is congruence-valid in KE and in KY but not in
Kf+K;.

In this paper we are going to generalize this result to a greater class of Mal’cev
conditions. Also we characterize the Mal’cev condition C:=3, (p(x, y)=p(», X))
and show that C holds in K, + K, whenever C holds in K, and in K.

We use standard universal algebra terminology, see e.g. [1]. For varieties K; and
K, of the same type 4 we define

K1 +K2 :=HSP(K] UKz).

For a set X of equations, Cn(2) denotes the set of all equations which follow from 2,
and Mod,(Z) denotes the class of all algebras of type 4 in which all equations from
2 hold. If K,=Mod,(Z;) and K,=Mod,(Z,) we know by a classical result of
Birkhoff that

K] +K2=MOdA (Cn (21)('\ Cn (22)).

For the sequel we find it more natural to speak of ‘properties of varieties’ instead of
classes of varieties.

Let S be a set, aeS and 4:=(n; | iel) a type with the corresponding family of
function symbols F:=(f; | iel). Let S4 be the algebra of type 4 having S as under-
lying set where f;(sy,..., S,,)=a holds for each iel and s,,..., 5,,€S. Clearly for a,
beS S4 is isomorphic to S5, so we write S without specifying *€S.

We list some obvious properties of S} :

(i) Each equivalence relation on S * is a congruence relation.

(i) A map :S— S is an endomorphism of Sy iff Y (x)==.

(iii) U<S is a subalgebra of S; iff xe U. (If F does not contain any nullary func-
tion symbol the empty set will also be a subalgebra).

For a given type 4 let Q, be the class of all algebras S ¥ where S is a set. Obviously
Q , is an equational class. For two polynomial symbols p and g we write p=q iff p and
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q are equal in the absolutely free algebra of the considered type 4 on countably many
generators Xy,..., X, ....
The following lemma will be helpful:

1.2. LEMMA. Let V:=Mod,(Z) be a variety of type 4. Then the following are
equivalent:
(i) 2%eV (where 2:={o, *} is a two-element set)
(ii)) eV
(iii) For all polynomial symbols p over V

(p=x)eX implies p=x.

Proof. (i)— (iii): Assume 25€V and p a polynomial symbol over V with (p=
=x)eX and p# x. Then p cannot be a variable y # x, because V contains a two-element
algebra. So p has the form f;(qy, ..., g,,) for a certain iel and polynomials ¢,..., gy,
over V. Thus

p(o,....,0)=f;(qys-» qn,) (0,..., 0)=%F#o0.

Therefore p=x cannot hold in 2, so (p=x)¢Z.

(iii) = (ii): Assuming (iii) each equation in X is of the form x=x or of the form
fi(@1> > Gn)=f;(r1 ..., 7s,). This implies that each algebra S ¥ satisfies all equations
of X, thus Q V.

The following easy lemma should motivate why in the sequel we want to restrict
our attention to properties which do not apply to Q,.

Let us first introduce the notion of congruence-equality:

DEFINITION. A congruence-equality E is an equation in variables x,..., x,, ...
and binary function symbols o, A, and v. We say that E is congruence-valid in a
variety V, or in short E holds in V, iff for every algebra .2/ € V' the equality holds when-
ever the variables are interpreted as congruences on %7 and o, A, and v, respectively,
are interpreted as relational product, meet and join of congruences, resp. E is called
nontrivial, iff E does not hold in every variety and there is a variety ¥V, which is not
the trivial variety containing only the one-element algebra, and E holds in V, see [7].

1.3. LEMMA. Let V=Mod,(X) be a variety and Q= V. Then:

(i) There is no nontrivial congruence-equality holding in V. If a lattice-equality
holds in the congruence lattice of every algebra S/ €V, then it already holds in every
lattice.

(ii) There is no nontrivial monoid-equality holding in the monoid of endomorphisms
of every algebra SZ€V.
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Proof. (i): Whitman has shown in [6] that each lattice equality holding in every
partition lattice already holds in every lattice, and we have already noticed that each
partition on a set S is a congruence on S,

(ii): For each monoid M there is an embedding  into the endomorphism monoid
of My where M*:=MU {x} and *¢ M. For ac M define:

A% * L Jarx, if x#£x
Y(a):Mi->MF by lﬁ(a)(x).—{*, i oxes
DEFINITION. A property « of varieties is called essential, iff there is a variety
V for which « holds and if for all varieties V'’

if o holds in ¥’ then QiEV’.

Now let ¥'=Mod, (%) be an equational class of type 4 and let A’ be a type containing
4. The extension A’ (V) of V to the type 4 shall be the class of all algebras of type 4’
whose reducts to the type of 4 are from V. Obviously we have 4’ (V)=Mod,,, (2), so0
4" (V) is again an equational class. A property a of varieties is called hereditary, iff
for each variety ¥ of a type 4 and for each type 4’24

if a holds in ¥ then « holds in 4" (V).
Now we are able to formulate the main theorem:

1.4. THEOREM. Let « be an essential and hereditary property of varieties. There
exist varieties V, and V, such that o holds in Vi and in V, but not in v, + V,.

Proof. « is essential, so o holds in a nontrivial variety V. Let A= (m, | ieT) be the
type of V and H=(h, ] iel) be the corresponding family of function symbols and
V=Mod,(2).

We duplicate the type of V by setting J:=2x7 and A’ :=(n; | jeJ) with Mo, ;=
=ny,;=m; for all iel. Let f;, be the function symbol corresponding to no,; and g; the
function symbol corresponding to n, ;.

For eeX let e (resp. e®) be the equation, obtained from e by replacing each
hi (ieI) by f; (resp. g;) and 57 : = {e” | e€X}, 28 :={e# | ecx).

Define K/ :=Mod , (2/) and K* :=Mod . (2°).

As o is hereditary, « will hold in K7 and in K.

Assume now that o holds in K7 + K¢,

a is essential, so we may apply Lemma 1.2 to get a polynomial p over K’ + K¢
with p#x such that p=x holds in K’ + K¢, As K/ +K#=Mod . (Cn(2')n Cn(2%)),
the equation p=x must be a consequence of both X7/ and of ># separately. We may
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assume that p is of the form f;(q, ..., g,,) for a certain iel and polynomials ¢, ..., g,,
over K/ +K?. Take an algebra o/ € K* with |</|>1 and *e.</.

Define a new algebra ./’ on the underlying set of 27 by:

(i) All operations g; are defined as on /.

(ii) All operations f; map each tuple (ay, ..., a,,)€/" on the point *.
/' obviously belongs to K¢ and therefore to K + K¢ but the equation p=x cannot
hold in .o’ because .2/’ has more than one element.

2. Mal’cev conditions

For the following definitions see e.g. [4].
A strong Mal cev condition is a formula of second order logic of the form

3,005 (2)

where X is a (universally quantified) set of equations in the polynomial symbols
Dos>--+5> Pn-

A Mal’cev condition is a countable disjunction W;_nS; of strong Mal’cev condi-
tions S;, ieN, such that for i<j S;=S;.

A weak Mal cev condition is a countable conjunction of Mal’cev conditions.

We will call a (weak) Mal’cev condition trivial, if it holds in every variety or in no
nontrivial variety.

DEFINITION. Varieties ¥, and ¥V, are called equivalent, if there exists an iso-
morphism F:V, — V, of categories which commutes with the forgetful functors from
V, (resp. V,) into Set. That is, for any algebra «/e ¥, and any homomorphism ¥
between algebras from V¥, F(«/) and &/ and also F(y ) and § have the same under-
lying set.

We note that a weak Mal’cev condition which holds in a variety ¥ must hold in
each subvariety of ¥ and in each variety W which is equivalent to V, see e.g. [4].

The variety of pointed sets is the (unique) variety of type (o), i.e. having one nullary
operation.

Now for weak Mal’cev conditions we get a simpler version of theorem 1.4:

2.5 THEOREM. If a nontrivial (weak) Mal cev condition W does not hold in the
variety of pointed sets, there exist varieties V, and V, such that W holds in V| and in
V, but does not hold in V{+V,.

Proof. We only have to show that W is essential and hereditary. Clearly each weak
Mal’cev condition is hereditary. Next note that the variety of pointed sets is just Q,
with 4= (o). Also if 4 and 4’ are nonempty types, Q, and Q. are equivalent varieties,
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so they are equivalent to the variety of pointed sets. Next assume that #is not essential
Then there exists a variety ¥ such that W holds in ¥ and V2, where 4 is the type
of V. A#¢ as W is nontrivial. So W also holds in Q4 and in Q), in the variety of
pointed sets. This yields a contradiction.

For the proof of Theorem 1.1 we observe the following theorem of Wille [7]:

2.6. THEOREM (Wille). Let E be a congruence equality in the terms o, A, and V.
There exists a weak Mal’cev condition W such that for any variety V

E is congruence-valid in V' iff W holdsinV.

Now Theorem 2.5 and Lemma 1.3 immediately give us Theorem 1.1.

We remark that one also can show easily that a nontrivial congruence-equality is
essential and hereditary, so one could also prove Theorem 1.1 without using Theo-
rem 2.6.

Now we can easily list some properties of varieties for which Theorem 2.5, resp.
Theorem 1.4 applies:

2.7 COROLLARY. For the following properties a,..., &, of varieties there exist
varieties V; y and V,; , such that «; holds in V;  and in V; , but not in V; +V;,2;
1<i<T.

a,: o-Regularity (Vis o-regular iff V has a nullary polynomial o and each congruence
of each algebra s/ €V is uniquely determined by its class containing o.)

o,: Lagrangian (If &/ <#eV and |B)| finite, then || is a divisor of |A|).

ay: Any homomorphic image of a finite o/ €V has power dividing | |.

a,: Any cosets of a congruence relation 0 on a finite <7 €V have the same power.

os: Thenumber of fixedpoints of any endomorphisms of finite s/ € Vis a divisor of |Z|.

ag: Spec(V)sJ for a fixed multiplicative closed set J=N with 1eJ#N.
(Spec(V):={neN | I/ eV(|Z|=n)}.

o, V has no nontrivial finite algebras.

Proof. Taylor has shown in [4] that each of the properties o,~; of varieties is
equivalent to a weak Mal’cev condition, and it is obvious, that no one of these prop-
erties holds in the variety of pointed sets. For «, we may apply Theorem 4. Grétzer
has shown in [2] that «, is a generalized Mal’cev condition.

3. Mal’cev conditions to which Theorem 2.5 does not apply

Theorem 2.5 and Corollary 2.7 show us that there are only very few Mal’cev condi-
tions which hold in ¥V, + ¥, whenever they hold in ¥ and in ¥,. We will now give
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some such Mal’cev conditions, and then we are going to show that the converse of
Theorem 2.5 is not true in general.

Consider the following strong Mal’cev conditions:

A: Fa (a(x)=a(y))

C;: 3p (p(x,¥)=p(y, x))

C,: Ap (p(X1, X255 X5) =D (X2, ..., Xpp X4));  nEN.

Condition A4 is due to Taylor. He has shown in [5] and in [4]:

3.8. THEOREM (Taylor). For an equational class V the following are equivalent:
(i) 4 holdsin V

(i) Every endomorphism of any algebra in V has a fixed point

(iii) Every two subalgebras of any algebra in V have a point in common

(iv) If ¢ and y are endomorphisms of an algebra s/ €V then there exists an xe</

such that ¢ (x)=y (x)
We are now going to prove a similar theorem for the condition C, (It may easily
be generalized for C,)

DEFINITION. An involution is an automorphism y with oy =id. (An n-involu-
tion is an automorphism Y with y"=id).

3.9. THEOREM. For an equational class V the following are equivalent:
(1) C, holds in V
(i) If ¥ is an endomorphism and YoV has a fixed point then  has a fixed point
(iil) Each involution has a fixed point
(iv) If Y and ¢ are involutions of S/ eV and o= o\ then there is an xeZ with
¥ (x)=¢(x)
(v) If for involutions s and ¢ of L€V there is an xesd with Yo (x)= oy (x)
then there is a yeZ with Y (y)=¢ ()
Proof. (i)— (ii):Assume Yoy (x)=x, then ¥ (p(x, ¥ (x))=p W (x), Yoy (x))=
=p (Y (x), x)=p(x, ¥ (x)), so p(x, ¥(x)) is a fixed point of V.
(if) > (i) s trivial.
(iii) — (i): Let Fy ({x, y}) be the free algebra in ¥ on two generators x and y. Let
Y be the unique endomorphism of Fy, ({x, y}) with  (x)=y and ¥ (y)=x. Then ¢ is
an involution and thus has a fixed point ae Fy, ({x, y}). So there exists a polynomial
p over V such that p(x,y)=a. By the definition of y:y(a)=vy (p(x,¥))=
=p (¥ (x), ¥ (»))=p(», x)=a=p(x, y).
(v)— (iv) is again trivial.
(iv) - (iii): take y =id.
= (V): wed(x)=et(x) implies ¥(p(Y () B())=p(W2(x), Voo (x))=
=D (x’ Yoo (x))=p (x’ ooy (x)) =P (¢ oY (x)’ x) =¢(p(¥ (x)’ ¢ (x))
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Now consider varieties V| and ¥, in which C, holds. So we get a polynomial f
over V; and a polynomial g over ¥, such that

£ (% ¥)=f (3, x) holds in ¥,
and

g(x, y)=g(y, x) holds in V,.

But then f(g(x, »), (¥, x))=/ (g(, x), g (x, »)) holds in V; + V3, so f (g, g(n3, n1))
gives us a commutative polynomial over ¥, +V,, thus C, holds in V, +V,.
Similarly we can work with C, and with 4, so we get:

3.10. PROPOSITION. If one of the conditions A, C, or C, holds in varieties V,
and V,, it also holds in V, +V,.

This suggests asking whether the converse of Theorem 2.5 is true. The answer is no.

To prove this we have to find a Mal’cev condition B which holds in the variety
Q oy and varieties K; and K, such that B holds in K; and K, but not in K; +K,.

Choose for B the following strong Mal’cev condition:

B: Ap [p(x,p(», 2))=p(p(x, ), 2) Ap(x, ¥)=p (¥, X)].

3.11. PROPOSITION. There exist varieties K, and K, such that B holds in K, and
in K, but not in K, +K,.

Proof. Take for a type 4 :=(2, 2) with corresponding function symbols f and g.
Define:

Kf:=MOdA(2f) with Ef:={f(x,f(y, Z))=f(f('x’ y)’ Z)af(x’ y)::f(y’ x)}

and correspondingly K?2.

Obviously B holds in K/ and in K.

Assume B holds in K/ + K. Then there exists an associative commutative poly-
nomial p over K/ 4 K2,

First: p cannot be a projection (this is in fact the only point where we use the
commutativity).

Second: p cannot be g, because g does not satisfy any nontrivial law in K”. (Anal-
ogously p cannot be f.)

Therefore we may assume: p is of the form f(q,, ¢,). The associative law for p
is then:

f(q1(xf(q1(3: 2)s 2(1, 2))) 42 (%, F (91 (5 2), 42 (3, 2)))) =
=f (ql (f(ql (x’ y): q> (x’ J/)), Z)’ q2 (f(ql (x9 y)’ 6]2 (x’ y))? Z)) (f)
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Define an algebra o7 with the set N of natural numbers as underlying set by setting:

g(x,y):=max{x,y} and f(x,y):=max{x,y}+1

g is associative and commutative, so &/ €K* and therefore o eKf+KE&. For the rest
of the proof we need:

3.12. LEMMA. For every binary polynomial p over K¥ +K? there is a pair (r, 1)
of natural numbers such that either
(i) for all x, yesZ withyzx+r:p(x,y)=x+I
or
- (ii) for all x, yesl with yzx+r:p(x,y)=y+I.

Proof. We prove this by induction on the length of polynomials. For the projec-
tions and for f and for g the claim is clear. Assume: p=f(p,, p,) and for p, and p,
our claim is true. So there are pairs (ry, /;), resp. (r,, I;) associated to py, resp. p,.
There are four cases to consider:

Case 1. p,(x,y)=x+1;, for x+r <y
pa(x,y)=x+1, for x+r,<y.

Take r=max {r,, r,} and /=max {/, /,}, then

p(x, )= (p1(x,»), p2(x,¥))=x+I+1 for x+r<y.

Case 2. py(x,y)=x+I; for x+r <y
p.(x,y)=y+1l, for x+r,<y.

Take r=max {r,, r5, Iy —1,}, then

F(p1(x, )02 (%, ¥))=f (x+1, y+L)=y+L+1 for x+r<y.

The remaining cases follow by symmetry.

Turning back to our assumption that there exists an associative and commutative
polynomial p over K +K¥, we consider this polynomial in our algebra <.

We have already remarked that p is of the form f(q,, g,). By the above claim we
find for p,, resp. p, pairs (r,, I,), esp. (r,, I,) satisfying the conditions of Lemma 3.12.

Set r:=max {r,, r,}, [ :=max {/;, I} and choose a, b and ceN subject to the con-
ditions

(i) b=a+r

(ii)) b= a+|l -1,

(i) e=b+I+r+1.

Then there are again four cases to consider as in the proof of the above lemma:
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Now, however, we can actually compute both sides of the equation (%), having sub-
stituted a, b and c¢ for x, y and z, respectively:

Left side of ()  Right side of ()

Case 1 yields a+l+1 a+2/+2
Case 2 yields c+21,+2 c+l+1
Case 3 yields c+2/+2 c+1+1

Case 4 yields c+2l +2 c+l +1.

In each of these cases the left hand side of () and the right hand side of (x) are dif-
ferent, so there cannot be an associative and commutative polynomial p over K + K3,
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