
Coalgebraic Simulations and Congruences

H. Peter Gumm and Mehdi Zarrad

Philipps-Universität Marburg

Abstract In a recent article Goŕın and Schröder[3] study λ−simulations
of coalgebras and relate them to preservation of positive formulae. Their
main results assume that λ is a set of monotonic predicate liftings and
their proofs are set-theoretical. We give a different definition of simula-
tion, called strong simulation, which has several advantages:
Our notion agrees with that of [3] in the presence of monotonicity, but
it has the advantage, that it allows diagrammatic reasoning, so several
results from the mentioned paper can be obtained by simple diagram
chases. We clarify the role of λ-monotonicity by showing the equivalence
of
– λ is monotonic
– every simulation is strong
– every bisimulation is a (strong) simulation
– every F-congruence is a (strong) simulation.

We relate the notion to bisimulations and F -congruences - which are
defined as pullbacks of homomorphisms. We show that
– if λ is a separating set, then each difunctional strong simulation is

an F -congruence,
– if λ is monotonic, then the converse is true: if each difunctional strong

simulation is an F - congruence, then λ is separating.

1 1. Introduction

Coalgebraic logic as introduced by D. Pattinson [6] and refined by L. Schröder
[9], has been very successful in providing a common framework for quite a variety
of modal logics, see for instance [2],[5], or [11]. In many cases, the type functor,
used to model such coalgebras preserves weak pullbacks, so logical equivalence
can be modeled by structural relations called bisimulations. Two states related
by a bisimulation are equivalent. In a recent paper Goŕın and Schröder have
introduced a notion of λ-simulation, where λ is a (set of) predicate lifting(s).
Their definition is set theoretical and their proofs are calculational. In all of
their results they assumed that all predicate liftings are monotonic.

Here we offer a different notion of simulation, which we call strong simula-
tion. The definition is amenable to diagrammatical reasoning, whose utility we
show in a number of proofs. Moreover, we show that under the assumption of
monotonicity our definition coincides with that of [3]. Since they used monotony
as a general hypothesis in their work, their results could be proved as well with
our definition. We relate our strong simulations to the notion of Aczel-Mendler
bisimulation (called F -bisimulation) and to (generalized) congruences.

2 Basic notions and preparations

Given a binary relation R ⊆ A×B, let R− ⊆ B ×A be the converse relation. If
S ⊆ B×C is another relation, then R◦S := {(a, c) | ∃b ∈ B.aRb∧ bSc} is called
the composition of R and S. Obviously, ◦ is associative and (R◦S)− = S− ◦R−.

For R ⊆ A×A, a relation on a set A, notice that R is transitive iff R◦R ⊆ R.
Let R? ⊆ A×A be the reflexive transitive closure of R. The smallest equivalence
relation containing R is Req := (R∪R−)?. It is well known that kernels of maps
are equivalence relations, where for a map f : A→ B the kernel is defined as

ker f := {(a, a′) | f(a) = f(a′)},

and conversely, any equivalence relation E ⊆ A×A is the kernel of the projection
map πE : A → A/E, sending each element a ∈ A to a/E, its equivalence class
under E. With ∆A we denote the identity relation on a set A.

2.1 Difunctionality

Difunctional relations are generalizations of equivalence relations, for the case
of relations R ⊆ A × B between possibly different sets. Reflexivity, symmetry
and transitivity make no sense for such relations, so a possible generalization is:

Definition 1. A relation R ⊆ A×B is called difunctional, if it satisfies :

(a1, b1), (a2, b1), (a2, b2) ∈ R =⇒ (a1, b2) ∈ R.

Immediately from the definition we see ([7]):

Lemma 1. R is difunctional ⇐⇒ R ◦ R− ◦ R ⊆ R ⇐⇒ R− ◦ R ◦ R− ⊆ R−

⇐⇒ R− is difunctional. The difunctional closure of a relation R is obtained as
Rd := R ◦ (R− ◦R)? = (R ◦R−)? ◦R.

Each equivalence relation on A is obviously difunctional. More generally, let
f : A→ C and g : B → C be two maps then we define

ker(f, g) := {(a, b) ∈ A×B | f(a) = g(b)}.

It is easy to see that ker(f, g) is a difunctional relation, and, in perfect
analogy to the situation with equivalence relations, every difunctional relation
arises that way:

Lemma 2. A relation R ⊆ A×B is difunctional, if and only if there are maps
f : A→ C, g : B → C with R = ker(f, g).

Proof. Let R ⊆ A×B be difunctional. Let eA : A→ A+B and eB : B → A+B
be the canonical inclusions of A and B into their sum. On A+B define

R̄ := {(eA(x), eB(y)) | (x, y) ∈ R}.

Obviously, R̄ is difunctional, so

R̄ ◦ R̄− ◦ R̄ ⊆ R̄ and R̄− ◦ R̄ ◦ R̄− ⊆ R̄−.

Moreover, R̄ ◦ R̄ = ∅ = R̄− ◦ R̄− by construction. Therefore,

E := ∆A+B ∪ R̄ ∪ R̄− ∪ R̄ ◦ R̄− ∪ R̄− ◦ R̄

is an equivalence relation, since one easily calculates E ◦ E ⊆ E. Notice that

(eA[A]× eB [B]) ∩ E = R̄.

With the projection πE : A+B → (A+B)/E it is now easy to calculate:

(x, y) ∈ ker(πE ◦ eA, πE ◦ eB) ⇐⇒ (eA(x), eB(y)) ∈ E
⇐⇒ (eA(x), eB(y)) ∈ R̄
⇐⇒ (x, y) ∈ R.

Thus, R = ker(f, g) where f and g are constructed as the pushout of the pro-
jections πRA : R→ A and πRB : R→ B.

More generally, if f : A→ C and g : B → D, then any difunctional relation R ⊆
C ×D gives rise to a difunctional relation ker(f, g)R := {(a, b) | f(a)Rg(b)} ⊆
A×B}.

2.2 Directed diagrams

Each map θ : A→ 2, where 2 = {0, 1} is understood as an ordered set, is called
a predicate. The carrier of predicate θ : A→ 2 is the subset

[[θ]] := {a ∈ A | θ(a) = 1}

and conversely, every subset U ⊆ A arises as U = [[χU]] from its characteristic
function χU . We shall often use the same symbol for a predicate and its carrier,
such as in � : F (2)→ 2 and � ⊆ F (2).

It is sometimes convenient to write a |= θ rather than θ(a) = 1 or a ∈ θ.
Similarly, A |= θ means that a |= θ for each a ∈ A.

We say θ =⇒ ψ provided [[θ]] ⊆ [[ψ]]. It will be convenient to encode this
diagrammatically, where the inclusion is indicated by an upwards arrow, as in

A

θ

;;

ψ

##
⇑ 2 .

Establishing such a diagram amounts to showing that for any a ∈ A, taking the
lower path in the diagram yields a result which is smaller than or equal to the
result obtained by the upper path, i.e. θ(a) ≤ ψ(a) for all a ∈ A. We generalize
this notation in the following way:

Definition 2. Given a relation S between sets A and B and predicates θ : A→ 2
and ψ : B → 2, we introduce

θ
S

=⇒ ψ :⇐⇒ ∀(x, y) ∈ S. (x |= θ =⇒ y |= ψ) (2.1)

which may be spelled as
”
θ implies ψ modulo S“. With our above notation, we

can visualize θ
S

=⇒ ψ by the following
”
upwards-commuting“ diagram

B
ψ

''
S

π1
77

π2 ''

⇑ 2 .

A
θ

77

Notice that with A = B and S = ∆A, we have θ =⇒ ψ being the same as

θ
∆A=⇒ ψ.
Interpreting a relation S ⊆ A×B as a map between the powersets S : P(A)→

P(B), via S(U) := {b ∈ B | ∃a ∈ U.(a, b) ∈ S}, we could equivalently write:

θ
S

=⇒ ψ ⇐⇒ S([[θ]]) ⊆ [[ψ]].

This shows that this notation is closely related to the notation of Hoare triples,
where the relation S would be given as the semantics of an imperative program.
We can immediately gather a number of simple properties inspired by this associ-
ation. These correspond to the rules of precondition strengthening/postcondition
weakening and sequencing:

Lemma 3.

1. θ′ ⊆ θ S
=⇒ ψ implies θ′

S
=⇒ ψ

2. θ
S

=⇒ ψ ⊆ ψ′ implies θ
S

=⇒ ψ′

3. θ
R

=⇒ ϕ and ϕ
S

=⇒ ψ implies θ
R◦S
=⇒ ψ

Proof. The first two claims can be readily obtained by gluing diagrams where
we use the obvious naming conventions for the projections of a relation to its
components:

B
⇑

ψ′

��
ψ ++S

πS
B

88

πS
A

&&

⇑ 2

A

⇑
θ

33

θ′

GG

For the third claim, we note that ifR ./ S is the pullback of πRB with πSB , then
R ◦ S is the image obtained by factoring the span (R ./ S, πR./SC , πR./SC) into an
epi followed by a mono source:

S //

''

C
ψ

&&
⇑

R ./ S
p // //

πR./S
S

55

πR./S
R))

R ◦ S

77

''

B
ϕ //

⇑
2

R

77

// A
θ

88

Explicitly, an upwards diagram chase, for instance in the right diagram, would
be:

θ ◦ πR◦SA ◦ p = θ ◦ πRA ◦ πR./SR

≤ ϕ ◦ πRB ◦ πR./SR

= ϕ ◦ πSB ◦ πR./SS

≤ ψ ◦ πSC ◦ πR./SS

= ψ ◦ πR◦SC ◦ p.

Cancelling the epi p results in θ ◦ πR◦SA ≤ ψ ◦ πR◦SC .

3 Functors, Coalgebras and Bisimulations

Let F : Set → Set be an endofunctor on the category of sets. We shall write
F (X) for the action of F on an object X and Ff for the action of F on a map
f.

Typical endofunctors describe set-theoretical constructions, such as sets, lists,
tuples, bags, etc. In programming they include all generic collection classes such
as List<X>, Set<X>, Bag<X> etc. The action of F on a map f : X → Y is
generically called : map f. It will be useful to keep the following visualization in
mind:

– F defines a type of
”
constructions“.

– Elements of F (X) are those
”
constructions“ whose elements are drawn from

a set X; we will call them X − patterns.
– Given a map f : X → Y, the map Ff : F (X)→ F (Y) acts on an X-pattern
p ∈ F (X) by replacing in p each x by f(x).

– A pattern p ∈ F (X) is finite, if there is a subset {x1, ..., xn} ⊆ X such
that p ∈ F ({x1, ..., xn}). In this case, we write p = p(x1, ..., xn) and we let
p(f(x1), ..., f(xn)) denote (Ff)p(x1, ..., xn).

– In particular, if θ : X → 2 is a predicate, then Fθ acts on an element
p ∈ F (X) by replacing in p each x by 1 if x |= θ and by 0 otherwise.

– If p = p(x1, ..., xn), then (Fθ)p(x1, ..., xn) = p(θ(x1), ..., θ(xn)) is called a
0− 1− pattern.

If f : X → Y is injective and X 6= ∅, then f is left-invertible, hence Ff is
injective, too. F can always be modified just on the empty set and on empty
mappings, so that it preserves injectivity for all mappings, including the empty
one, see [13]. We therefore assume for the rest of this article, that F preserves
all monos.

3.1 Coalgebras

Definition 3. An F -coalgebra A = (A,α) consists of a set A and a map α :
A → F (A). A is called the base set and α the structure map. The functor F is
called the type of coalgebra A.

We shall keep F fixed and consider only coalgebras of that given type F .

Definition 4. A map ϕ : A → B between two coalgebras A = (A,α) and B =
(B, β) is called a homomorphism, if β ◦ ϕ = Fϕ ◦ α.

The functor properties immediately guarantee that the class of all F -coalgebras
with homomorphisms as morphisms forms a category SetF . The forgetful functor
U : SetF → Set which associates with every coalgebra A its underlying set A and
with every homomorphism its underlying map is known to create and preserve
colimits [8], so in particular the category SetF is cocomplete and colimits have
the same underlying set and mappings as the corresponding colimits in Set.

Example 1. Kripke frames are coalgebras of type P where P is the covariant
powerset functor, acting on a map f : X → Y as Pf : P(X) → P(Y) where
(Pf)(U) := f [U] := {f(u) | u ∈ U} for any U ∈ P(X).

Kripke structures come with a fixed set V of atomic properties, so they are
modeled as coalgebras of type P(−) × P(V), where the second component is
simply a constant. A coalgebra of type P(−) × P(V) is therefore a base set A
with a structure map α : A → P(A) × P(V). Its first component associates to
a state a ∈ A the set of its successors succA(a) :=(π1 ◦ α)(a) and its second
component yields the set of all atomic values valA(a) := (π2 ◦ α)(a) which are
true for a.

Homomorphisms ϕ : A→ B between Kripke frames, resp. Kripke structures
are also known as bounded morphisms. They are maps preserving and reflecting
successors and atomic values in the following sense: ϕ[succA(a)] = succB(ϕ(a))
and valA(a) = valB(ϕ(a)).

3.2 Bisimulations

In the structure theory of coalgebras, bisimulations play the role of compatible
relations.

Definition 5. ([1]) A bisimulation between coalgebras A and B is a relation
R ⊆ A× B for which there exists a coalgebra structure ρ : R → F (R) such that
the projections πRA : R→ A and πRB : R→ B are homomorphisms.

Typical bisimulations are graphs of homomorphismsG(ϕ) := {(a, ϕ(a)) | a ∈ A}.
In fact, a map f : A → B is a homomorphism iff its graph is a bisimulation
([8]). If R ⊆ A × B is a bisimulation between coalgebras A and B, then there
could be several possible structure maps ρ : R → F (R) establishing that R is a
bisimulation.

The empty relation ∅ ⊆ A×B is always a bisimulation and (more generally)
the union of bisimulations is a bisimulation, so that bisimulations between A
and B form a complete lattice with largest element called ∼A,B .

The following proposition will be needed later in the proof of Theorem 3. It
shows that bisimulations can be enlarged as long as the structure maps are not
affected in the following sense:

Proposition 1. Let A1 and A2 be coalgebras with corresponding structure maps
α1 and α2. Let R ⊆ A1 × A2 be a bisimulation and R′ an enlargement i.e.
R ⊆ R′ ⊆ ker α1 ◦R ◦ ker α2. Then R′ is also a bisimulation.

Proof. R is a bisimulation, so there exists a structure map ρ : R → F (R) with
αi◦πRi = FπRi ◦ρ. Let ι : R→ R′ be the inclusion map, then clearly πRi = πR

′

i ◦ι.
By assumption, we find for every (x′, y′) ∈ R′ a pair (x, y) ∈ R such that
α1(x) = α1(x′) and α2(y) = α2(y′). The axiom of choice provides for a map
µ : R′ → R satisfying

αi ◦ πR
′

i ◦ ι ◦ µ = αi ◦ πR
′

i .

We now define ρ′ : R′ → F (R′) by ρ′ := Fι ◦ ρ ◦ µ.

R′
πR′
i

((

ρ′

��

µ

vv
R

ρ

��

)
ι

66

πR
i // Ai

αi

��

F (R′)
FπR′

i

((

Fµ

vv

F (R)
) Fι

66

FπR
i

// F (Ai)

The rest is a simple calculation.

Corollary 1. Let A = (A,α) be a coalgebra, then every reflexive relation R ⊆
ker α is a bisimulation.

Proof. Since ∆ ⊆ A is always a bisimulation, we have ∆ ⊆ R ⊆ ker α = ker α ◦
ker α = ker α ◦∆ ◦ ker α, because ker α is transitive.

3.3 Predicate liftings and boxes

We denote the contravariant powerset functor by 2−. Thus 2X is the set of
all subsets of X and a map f : X → Y induces a map 2f : 2Y → 2X via
2f (V) := f−1[V]. If we consider the elements of 2Y as predicates τ : Y → 2, we
can write 2f (τ) = τ ◦ f , or 2f = (−) ◦ f .

The classical Kripke style modal logic introduces formulae expressing prop-
erties holding for all successors of a point x. If ϕ is a state formula then �ϕ holds
at x if ϕ holds for each successor x′ of x. The set of all successors of a point x is
α(x) ∈ P(X), in the case of Kripke frames. Thus � can be understood as lifting

a property ϕ from the base set A to a property λA(ϕ) ⊆ P(A), so x |= �ϕ iff
α(a) satisfies the lifted property λA(ϕ). Generalizing this observation, Pattinson
[6] introduced predicate liftings λA : 2A → 2F (A) as natural transformations
between the contravariant powerset functors 2(−) and 2F (−).

Definition 6. A predicate lifting λ for F is a natural transformation λ : 2− →
2F (−) where the latter is the composition of the functor F with 2−. For each X
denote by λX its X-component λX : 2X → 2F (X).

The idea is that every property for elements of a set X is transformed to a
property for elements of F (X).

By the Yoneda lemma, such a natural transformation λ is uniquely deter-
mined by the action of λ2 on the input id2 where [[id2]] = {1} ⊆ 2, i.e. by
λ2(id2) : F (2) → 2, which is a predicate on F (2). This was observed in [9]. We
shall from now on write [λ] or simply �, if λ is understood, for this predicate.

Conversely, given a predicate � : F (2)→ 2 on F (2), then θ 7→ �◦Fθ defines
a predicate transformer, and it is easy to see that id2 is sent to � again.

Intuitively, we think of � ⊆ F (2) as a selection of 0 − 1 − patterns. The
map λA of the corresponding predicate transformer λ, when applied to θ ∈ 2A

takes an A-pattern p(a1, ..., an) ∈ F (A) to 1 if p(θ(a1), ..., θ(an)) ∈ �, and to 0
otherwise.

In this paper we prefer to deal with predicates � : F (2) → 2 rather than
with predicate transformers λ : 2(−) → 2F (−). Ignoring for a moment the map
α, the following figure visualizes the translation between these two views.

A
θ //

α ��

2
id // 2

F (A)
Fθ //

λA(θ)

99F (2)
λ2(id2)

� // 2

Let us now consider F -coalgebras A = (A,α), where α : A → F (A) is
the structure map. Every predicate transformer, i.e. every predicate � on F (2)
defines a modality.

Definition 7. Given a predicate θ on A = (A,α), denote by �θ the predicate
� ◦ Fθ ◦ α, that is for any a ∈ A we define

a |= �θ :⇐⇒ (� ◦ Fθ ◦ α)(a) = 1.

3.4 Coalgebraic modal logic

Given any choice of predicate liftings, equivalently, any choice of boxes �i :
F (2) → 2, i ∈ I, we obtain a logic L (see [6]) whose formulae are defined
inductively by

ϕ ::= > |ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ¬ϕ | �iϕ for each i ∈ I

A formula is called positive, if it has no occurrence of ¬.
Given a coalgebra A = (A,α) each formula defines a predicate ϕA : A →

2, where the propositional connectors have their obvious interpretation and
(�iϕ)A := �i ◦ (FϕA) ◦ α, which is short for saying

a |= �iϕ :⇐⇒ (FϕA ◦ α)(a) ∈ �i.

4 Simulations

Given a predicate lifting λ, a λ−simulation S between coalgebras A = (A,α) and
B = (B, β) was defined in [3] as a relation S ⊆ A×B such that for any (x, y) ∈ S
and any predicate θ : A→ 2 one has α(x) |= λA(θ) =⇒ β(y) |= λB(S[θ]), where
S[θ] is defined as b |= S[θ] : ⇐⇒ ∃a ∈ A.(aSb ∧ a |= θ). Most of the results in
[3] assume that λ is monotonic, a notion to be discussed in Sect. 4.2. Amongst
other things, for instance they prove:

– if λ is monotonic then bisimulations are λ−simulations
– if λ is monotonic, then each λ−simulation preserves positive formulae.

The proofs, in each case, are set theoretical, so it is difficult to see how the
notions and results could possibly be lifted to situations beyond set-theoretical
categories. Therefore, we introduce a new definition of

”
strong“ simulation which

has the advantage that

– proofs are diagrammatical
– monotonicity need not be assumed.

For notational reasons, we shall from now on fix a certain � and define simu-
lations relative to that �. Thus a

”
simulation“ is the same as a λ−simulation

from [3] with λ the predicate lifting defined by �. Next we shall define our new
notion of

”
strong simulation“. It will turn out that monotonicity is the property

relating simulations with strong simulations, see theorem 2 below.

4.1 Strong simulations

A strong simulation between coalgebras A = (A,α) and B = (B, β) is a relation
S ⊆ A×B such that for any predicates θ : A→ 2 and ψ : B → 2 we have

θ
S

=⇒ ψ implies �θ
S

=⇒ �ψ.

Diagrammatically:

B
ψ

B
ψ

β // F (B)
Fψ

%%
S

π1
==

π2 !!

⇑ 2 implies S

π1
==

π2 !!

2 ⇑ F (2)
� // 2

A
θ

>>

A
θ

>>

α
// F (A)

Fθ

99

Clearly, every strong simulation is a simulation. This is because the diagram
in the premise, above, is trivially satisfied with ψ = S[θ].

Lemma 4. Strong simulations are closed under unions and relational compo-
sition, i.e. if R ⊆ A × B and S ⊆ B × C are strong simulations, then so is
R ◦ S ⊆ A× C.

Proof. Closure under unions is easily checked. For closure under relational com-

position, let θ
R◦S
=⇒ ψ be given. Obviously, then θ

R
=⇒ R[θ] and R[θ]

S
=⇒ ψ.

Assuming that R and S are simulations, we obtain �θ
R

=⇒ �R[θ] as well as

�R[θ]
S

=⇒ �ψ, so Lemma 3 yields �θ
R◦S
=⇒ �ψ.

Simulations have a preferred direction. This is emphasized by the following log-
ical fact:

Theorem 1. Strong simulations preserve positive formulae.

Proof. Let S be a strong simulation between coalgebras A and B, and (x, y) ∈
S. By structural induction, we show that for any positive formula φ we have:

x |= φ =⇒ y |= φ, that is we need to show φA
S

=⇒ φB. The only interesting
case is when φ = �ψ with ψ another positive formula. Let ψA, resp ψB be the

predicates defined by ψ in A, resp B. By assumption then, ψA
S

=⇒ ψB , whence

the definition of simulation yields �ψA
S

=⇒ �ψB , hence (�ψ)A
S

=⇒ (�ψ)B

By a (strong) bidirectional simulation we understand a (strong) simulation S for
which S− is also a simulation. We must be careful not to confuse this with the
notion of bisimulation.

From Lemmas 1 and 4 we obtain:

Lemma 5. Let (Si)i∈I be a family of bidirectional simulations, then their di-
functional closure is again a bidirectional simulation.

4.2 Monotonicity

Definition 8. A predicate lifting λ is called monotonic, if for all sets U, V,A
with U ⊆ V ⊆ A one has λA(U) ⊆ λA(V). We say that � : F (2) → 2 is
monotonic, if the predicate lifting given by � is monotonic.

We get the following characterization:

Lemma 6. � : F (2) → 2 is monotonic, iff for any A and any predicates θ, ψ
on A with θ =⇒ ψ, we obtain � ◦ Fθ =⇒ � ◦ Fψ.

Proof. Suppose λA = � ◦ F (−) is monotonic, θ =⇒ ψ and � ◦ Fθ = 1, that
is λA(θ) = 1. By monotonicity, λA(ψ) = 1, i.e. � ◦ Fψ = 1. Conversely, assume
U ⊆ V ⊆ A and u ∈ λA(U), where λA(U) = [[� ◦ FχU]]. Then χU =⇒ χV and
(�◦FχU)(u) = 1 whence by assumption (�◦FχV)(u) = 1, meaning u ∈ λA(V).
Thus λA is monotonic.

Graphically, monotonicity can be represented as

A

θ

99

ψ

%%⇑ 2 =⇒ F (A)

Fθ

66

Fψ

((
⇑ F (2)

� // 2.

The following observation was independently found by L. Schröder and ap-
pears in the journal version [10] of [9]. With our diagrammatic notation its proof
becomes almost trivial:

Lemma 7. � is monotonic if and only if for every ternary pattern p(x, y, z) we
have that

p(1, 0, 0) ∈ � =⇒ p(1, 1, 0) ∈ �.

Proof. When θ =⇒ ψ, we can obtain a joint factorization as θ = χ{x} ◦ f
and ψ = χ{x,y} ◦ f . Thus the above definition of monotonicity reduces to the
following implication:

A
f//

ψ

��

θ

AA{x, y, z}
χ{x}

88

χ{x,y}

&&⇑ 2 =⇒ F (A)
Ff//

ψ

!!

θ

==
F ({x, y, z})

Fχ{x}

55

Fχ{x,y}

))
⇑ F (2)

� // 2 .

The outer diagrams are upward commutative iff the inner ones are. The one in
the premise is automatically upward commutative. Therefore, � is monotonic,
if and only if the inner diagram on the right is upwards commutative.

This means that monotonicity needs only be checked for θ = χ{x} and ψ =
χ{x,y}, which translates immediately into the statement p(1, 0, 0) ∈ � =⇒
p(1, 1, 0) ∈ � for each p ∈ F ({x, y, z}).

Theorem 2. � is monotonic iff each simulation is strong

Proof. Suppose that � is monotonic and let S be a simulation between coalgebras

A = (A,α) and B = (B, β). Suppose θ
S

=⇒ ψ, then S[θ] ≤ ψ as shown in the
left part of the following figure, where the left inner square trivially commutes.
Since S is a simulation we get upwards commutativity of the outer figure with
FS[θ] instead of Fψ. Using monotonicity, we get upwards commutativity of the
right upper figure and therefore of the whole diagram:

B

⇑

S[θ] //

ψ

��

β // F (B)

⇑

FS[θ]
..

Fψ

��
S

πS
B
>>

πS
A

2 ⇑ F (2)
� // 2

A
θ

??

α
// F (A)

Fθ

99

For the converse, consider the identity relation ∆A on A, which is obviously
a simulation, hence it is a strong simulation by assumption. Given any p ∈ F (A)
and θ ≤ ψ : A → 2 we choose the constant coalgebra structure cp : A → F (A).
Since the left square is upwards commuting, so must be the outer figure. This
readily translates into � being monotonic.

A
ψ

��

cp // F (A)
Fψ

%%
∆A

π1
==

π2 !!

⇑ 2 ⇑ F (2)
� // 2

A
θ

??

cp
// F (A)

Fθ

99

Theorem 3. The following are equivalent:

1. � is monotonic
2. each bisimulation is a simulation
3. each bisimulation is a strong simulation

Proof. (1.→ 3.) Suppose � is monotonic and S ⊆ A × B is a bisimulation

between coalgebras A = (A,α) and B = (B, β). Given θ
S

=⇒ ψ, the left square
is upward commuting. Since � is monotonic, applying F makes the right hand
square (followed by �) upward commuting, too.

B

⇑

ψ

��

β // F (B)

⇑

Fψ

%%
S

πS
B
>>

πS
A
 ρ

442 F (S)

FπS
B
99

FπS
A
%%

F (2)
� // 2

A
θ

??

α
// F (A)

Fθ

99

Inserting the bisimulation structure ρ into the picture, an upward diagram
chase yields that the outer diagram is upward commuting, too:

� ◦ Fθ ◦ α ◦ πSA = � ◦ Fθ ◦ FπSA ◦ ρ
≤ � ◦ Fψ ◦ FπSB ◦ ρ
= � ◦ Fψ ◦ β ◦ πSB

which means that S is a strong simulation.
(3 → 2) being trivial, we prove (2→1): By Lemma 7, we need to check

monotonicity only for A = {x, y, z}, θ = χ{x} and ψ = χ{x,y}. Given p ∈ F (A)
with p(1, 0, 0) ∈ �, i.e. (�◦Fθ)(p) = 1, define a coalgebra Ap on A with constant
structure map cp. By proposition 1, R := ∆A∪{(x, y), (y, x)} is a bisimulation on

Ap, and ψ = R[θ]. By hypothesis, R is a simulation, so �◦Fθ◦cp
B

=⇒ �◦Fψ◦cp,
in particular,

(� ◦ Fψ)(p) = (� ◦ Fψ ◦ cp ◦ π2)(x, x)

≥ (� ◦ Fθ ◦ cp ◦ π1)(x, x)

= (� ◦ Fθ)(p)
= 1

i.e. p(1, 1, 0) ∈ �, as can be read from the following diagram:

A
ψ

!!

cp // F (A)
Fψ

%%
R

π2
>>

π1

⇑ 2 ⇑ F (2)
� // 2.

A
θ

==

cp
// F (A)

Fθ

99

5 Congruences and separability

5.1 Congruences

In classical examples of coalgebras, such as Kripke structures, deterministic and
nondeterministic automata, etc., observational equivalence is definable via bisim-
ulations. The reason is that the corresponding type functors preserve weak pull-
backs (see [4]). This in turn has many structural consequences. In particular the
largest bisimulation is always the same as the largest congruence relation, where
a congruence is defined as the kernel of a homomorphism. Thus a congruence is a
relation on a single coalgebra. Since we want to study relations between different
coalgebras, we have to widen the notion of congruence and therefore introduce
the notion of F -congruence. This notion has been studied by Sam Staton under
the name kernel bisimulation [12]:

Definition 9. An F -congruence θ between coalgebras A and B is the pullback
of two homomorphisms ϕ : A → C and ψ : B → C:

θ = ker(ϕ,ψ).

Theorem 4. The following are equivalent:

1. � is monotonic
2. each congruence is a simulation
3. each F−congruence is a strong simulation.

Proof. (1.→3.): An F -congruence θ = ker(ϕ,ψ) can be obtained as a composi-
tion of relations: θ = G(ϕ) ◦ G(ψ)− where G(ϕ) and G(ψ) are the graphs of ϕ
and ψ. The graphs of homomorphisms are bisimulations ([8]) and the converse
of a bisimulation is a bisimulation. Assuming monotonicity of �, Theorem 3
tells us that they are strong simulations. By Lemma 4, their composition is a
strong simulation. In particular, each congruence is a simulation, too. (3.→2)
is of course trivial, since each congruence is an F -congruence and each strong
simulation is a simulation.

For (2.→1.), assuming that each congruence is a simulation, we can reuse the
proof of (3→ 2) in Theorem 3. This time, we only need to observe that R happens
to be a congruence relation, since it is the kernel of the obvious homomorphism
from Ap = Ap(x,y,z) to the constant coalgebra Ap(x,x,z) on {x, z}.

5.2 Separability

In this section we need to work with a family of boxes (�i)i∈I . Such is usually
required in order to render coalgebraic modal logic expressive. Separability is
usually expressed for the functor and for the boxes separately. A functor is
called 2-separable, if for any X and any p, q ∈ F (X) with p 6= q there is a
predicate φ : X → 2 such (Fφ)(p) 6= (Fφ)(q). Next, we call a family (�i)i∈I of
predicate liftings separating, if the functor F is 2-separating and the predicates
�i : F (2) → 2 combined with the unary boolean operations θ : 2 → 2 form a
mono-source. We can equivalently define this as follows:

Definition 10. (�i)i∈I is separating if
∀p 6= q ∈ F (X).∃φ : X → 2.∃i ∈ I.(�i ◦ Fφ(p) 6= �i ◦ Fφ(q)).

Theorem 5. If (�i)i∈I is separating then every difunctional bidirectional strong
simulation is an F -congruence.

Proof. Let S be a difunctional strong simulation between coalgebras A = (A,α)
and B = (B, β) and π1, π2 the projections of S. Form the pushout (P, f : A →
P, g : B → P) of (S, π1, π2) in Set. Since S is difunctional, (S, π1, π2) is a pullback
of f and g in Set. It suffices to show that there exists a coalgebra structure on
P so that f and g are homomorphisms. We obtain such a coalgebra structure if
we can show that (FP, Ff ◦ α, Fg ◦ β) is a competitor of the pushout (P, f, g)
in Set. For this it remains to show : Ff ◦ α ◦ π1 = Fg ◦ β ◦ π2.

A

��

f // P
φ //

��

2

S
π2

//

;;π1
;;

B

��

g
99

F (A)
Ff // F (P)

Fφ // F (2)
�i // 2

F (B)

Fg ::

Let (x, y) ∈ S. As (�i)i∈I is separating, it is enough to show that for each i ∈ I
and each φ : P → 2 we have Ff ◦ α(x) |= �iθ ⇐⇒ Fg ◦ β(y) |= �iθ. This we
can read from the following diagram :

B
φ◦g

β // F (B)
F (φ◦g)

##
S

π2

@@

π1 ��

◦ 2 ⇑ F (2)
�i // 2

A
φ◦f

>>

α
// F (A)

F (φ◦f)

;;

The left square in the diagram commutes, since (P, f, g) is a pushout, in particu-
lar it is upward commuting. S being a strong simulation, we obtain Ff ◦ α(x) |=
�θ =⇒ Fg ◦ β(y) |= �θ. Since S− is a strong simulation, too, we similarly
have Fg ◦ β(y) |= �θ =⇒ Ff ◦ α(x) |= �θ.

Theorem 6. If each difunctional simulation is an F−congruence, then (�i)i∈I
is separating.

Proof. Assume p, q ∈ FX such that p |= �iθ ⇐⇒ q |= �iθ for each i ∈ I and
each θ : X → 2. We must show p = q.

Case 1. X 6= ∅: On the set X define F -coalgebras Xp = (X, cp) and Xq = (X, cq),
where cp, resp. cq, are constant maps with value p, resp. q. Notice that the
assumption is then equivalent to saying that ∆X is a (difunctional) simula-
tion (with respect to each �i) between Xp and Xq. Therefore, by the theorem’s
premise, ∆X is an F -congruence. Consequently, there must be homomorphisms
ϕ : Xp −→ Z = (Z, γ) and ψ : Xq −→ Z with ∆X = Pb(ϕ,ψ). This immediately
yields ϕ = ψ and ϕ injective.

X
cp //

ϕ

��

FX
Fϕ

""
∆X

π1

==

π2 !!

Z
γ // FZ

X
cq

//

ϕ
??

FX
Fϕ

<<

The above diagram commutes, since ϕ is a homomorphism, so (Fϕ)(p) = (Fϕ ◦
cp ◦ π2)(x) = (Fϕ ◦ cq ◦ π2)(x) = (Fϕ)(q). Therefore p = q as required.

Case 2. X = ∅: According to our general assumption, Fι : F∅ → F1 is injective.
Thus in order to separate p, q ∈ F∅, it is enough to separate (Fι)(p) ∈ F (1) from
(Fι)(q) ∈ F (1) which is possible due to the previous case.

Corollary 2. If � is monotonic and separating then every difunctional simula-
tion is an F -congruence.

As a further corollary, we obtain a converse to another result found in [3].

Corollary 3. Let (�i)i∈I be monotonic. Then (�i)i∈I are separating and F
weakly preserves pullbacks if and only if each difunctional simulation is an F -
bisimulation.

Proof. The direction from left to right is from [3]. For the converse, suppose
that each difunctional simulation is an F -bisimulation. Then by monotony each
F -congruence is an F -bisimulation. This is the same as saying that F weakly
preserves pullbacks. Similarly, every difunctional simulation is an F -congruence,
hence by the above proposition, (�i)i∈I is separating.

6 Conclusion and further work

We have given a new definition of coalgebraic simulation, which has the advan-
tage to be amenable to diagrammatic reasoning. We have demonstrated its use
with a number of results and related our definition to that of Goŕın and Schröder
in [3]. In the case where our boxes (respectively predicate liftings) are monotonic,
a general assumption in the paper [3], our definition agrees with that of the au-
thors. We have related our simulations to 2-dimensional congruences (so called
F -congruences). We suspect that the set of all F -congruences between fixed coal-
gebras A and B forms a complete lattice with the natural ordering. However we
were only able to show it under the additional assumption that there exists a
set of separating monotonic boxes (�i)i∈I . In that case, F -congruences are bidi-
rectional simulations and their supremum is given by difunctional closure. We
leave it open whether the existence of a separating set (�i)i∈I is needed.

References

1. P. Aczel and N. Mendler. A final coalgebra theorem. In D.H. Pitt et al, editor, Pro-
ceedings category theory and computer science, Lecture Notes in Computer Science,
pages 357–365. Springer, 1989.

2. C. Ĉırstea, A. Kurz, D. Pattinson, L. Schröder, and Y. Venema. Modal logics are
coalgebraic. In BCS Int. Acad. Conf., pages 128–140, 2008.

3. D. Goŕın and L. Schröder. Simulations and bisimulations for coalgebraic modal
logics. In R. Heckel and S. Milius, editors, CALCO ’13, Lecture Notes in Computer
Science. Springer, 2013.

4. H.P. Gumm and T. Schröder. Types and coalgebraic structure. Algebra Universalis,
53:229–252, 2005.

5. R.S.R. Myers, D. Pattinson, and L. Schröder. Coalgebraic hybrid logic. In FOS-
SACS, pages 137–151, 2009.

6. D. Pattinson. Coalgebraic modal logic: soundness, completeness and decidability
of local consequence. Theoretical Computer Science, 309(2-3):177–193, 2003.

7. J. Riguet. Relations binaires, fermetures, correspondances de Galois. Bulletin de
la Société Mathématique de France, 76:114–155, 1948.

8. J.J.M.M. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer
Science, (249):3–80, 2000.

9. L. Schröder. Expressivity of coalgebraic modal logic: The limits and beyond. In
R. Amadio, editor, Foundation of Software Science and Comp. Structures, volume
3441 of Lecture Notes in Computer Science.

10. L. Schröder. Expressivity of coalgebraic modal logic: The limits and beyond. The-
oretical Computer Science, 390(2-3):230–247, 2008.

11. L. Schröder and D. Pattinson. Coalgebraic correspondence theory. In FOSSACS,
pages 328–342, 2010.

12. S. Staton. Relating coalgebraic notions of bisimulation. Logical Methods in Com-
puter Science, 7(1), 2011.

13. V. Trnková. Some properties of set functors. Comm. Math. Univ. Carolinae,
(10,2):323–352, 1969.

