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Abstract Bisimilarity and observational equivalence are notions that
agree in many classical models of coalgebras, such as e.g. Kripke struc-
tures. In the general category SetF of F−coalgebras these notions may,
however, diverge. In many cases, observational equivalence, being tran-
sitive, turns out to be more useful.

In this paper, we shall investigate the role of transitivity for the largest
bisimulation of a coalgebra. Passing to relations between two coalgebras,
we choose difunctionality as generalization of transitivity. Since in SetF
bisimulations are known to coincide with F̄−simulations, we are led to
study the notion of L−similarity, where L is a relation lifting.

1 Introduction

In the 1990s, J. Rutten developed a universal theory for state-based systems.
Such systems were represented as coalgebras in [19]. A coalgebra of type F is
a pair consisting of a base set A and a structure map α : A −→ F (A) where
F is any Set-endofunctor. Many of the early structural results, we just exem-
plarily mention [16], assumed that the type functor F should preserve weak
pullbacks. In [5], one of the present authors began studying the role of weak
pullback preservation. In [4] and [14] he extended many results from [19] to the
case of arbitrary functors, adding new coalgebraic constructions, e.g. for build-
ing terminal coalgebras. A systematic study relating preservation properties of
functors to structural (coalgebraic) properties of their coalgebras was given in
[8]. In particular, preservation properties were related to properties of bisimu-
lations and congruences. For instance, it was shown that bisimulations restrict
to subcoalgebras, if and only if the functor F preserves preimages, i.e. pullbacks
along regular monos.

Bisimulations, as compatible relations have been introduced by P. Aczel and
N. Mendler in [1]. An alternative definition, equivalent for Set-coalgebras was
given by C. Hermida and B. Jacobs [13].

A concept, competing with bisimulations is the notion of a congruence rela-
tion θ as a kernel kerϕ of a homomorphism ϕ. Just as there is always a largest
bisimulation ∼A, there is also a largest congruence ∇A on every coalgebra A.
The disadvantage of ∼A versus ∇A is, that even though ∼A is reflexive and sym-
metric, it need not be transitive, hence it is not able to reflect logical equivalence.
Since the equivalence hull of any bisimulation is always a congruence relation



[1], we have the implications

∼A⊆∼∗A⊆ ∇A

where each of the inclusions may be strict.
Already in [1], bisimulations were defined as relations between two (possi-

ble different) coalgebras A and B. The notion of congruence can as easily be
extended to the notion of 2-congruence, defined as the kernel of a sink of two
homomorphisms ϕ : A → C, and ψ : B → C i.e. as ker(ϕ,ψ) := {(a, b) | ϕ(a) =
ψ(b)}. (2-congruences were studied by S. Staton [21] under the name of kernel-
bisimulations. However they are not necessarily bisimulations in the original
sense, so we prefer to call them 2-simulations). Again, for the case of two coalge-
bras A and B it is easy to see that there is again a largest bisimulation ∼A,B as
well as a largest 2-congruence ∇A,B. The above inequalities do not immediately
generalize, since transitivity makes no sense for relations between different sets.
An alternative notion, however, is difunctionality as introduced by J. Riguet
[18]. The inequality corresponding to the above is then

∼A,B⊆∼dA,B⊆ ∇A,B

where Rd denotes the difunctional closure of a relation R.
The definition of bisimulation given by Hermida and Jacobs used the fact

that a relation R ⊆ A×B can easily be lifted to a relation F̄R ⊆ F (A)×F (B),
often called the Barr extension of R. Generalizing this to an arbitrary relation
lifting L leads to the notion of L−simulation as studied by A. Thijs [22] and in
a series of papers by I. Venema et al., see e.g. [15].

The congruences which can be obtained as transitive closure of bisimulations
are exactly the regular congruences i.e. kernels of coequalizers [8]. In the same
paper it was shown that a functor F preserves weak kernel pairs if and only
every congruence on a single coalgebra in SetF is a bisimulation. In the present
paper, which subsumes some results obtained in the first author’s Master the-
sis [24], we want to explain further the relationship between bisimulations and
2−congruences and, assuming a monotonic relation lifting L, we study the di-
functional closure of L−similarity. A quite useful tool is provided by a result,
giving conditions for a bisimulation to restrict to subcoalgebras without assum-
ing anything about the functor F .

2 Basic notions

For a product A × B we denote the projections to the components by πA and
πB . Given a relation R ⊆ A × B, the restrictions to R of the projections are
πRA := πA ◦ ιR where ιR : R ↪→ A×B is set inclusion. Given a second relation S
with R ⊆ S ⊆ A × B we note that πRA = πSA ◦ ιSR, where ιSR : R ↪→ S is, again,
the inclusion map.

The converse of a relation R is R− := {(b, a) | (a, b) ∈ R}. For a subset
U ⊆ A, we let R[U ] := {b ∈ B | ∃u ∈ U.(u, b) ∈ R}. A relation R ⊆ A × A



is transitive if for all x, y, z ∈ A we have (x, y), (y, z) ∈ R =⇒ (x, z) ∈ R.
Equivalently, R is transitive, if R◦R ⊆ R where ◦ is relational composition. The
reflexive transitive closure of R is called R?.

Transitivity makes no sense for relations R ⊆ A×B between different sets, so
difunctionality [18] can be considered as a possible generalization of transitivity:

Definition 1. A relation R ⊆ A×B is called difunctional, if for all a1, a2 ∈ A
and for all b1, b2 ∈ B it satisfies:

(a1, b1), (a2, b1), (a2, b2) ∈ R =⇒ (a1, b2) ∈ R.

This notion can be illustrated by the following figure, which explains why
“difunctional” is sometimes called “z-closed”:

a1 b1

a2 b2

It is elementary to see that the difunctional closure of a relation R is

Rd := R ◦ (R− ◦R)? = (R ◦R−)? ◦R

where R− is the converse relation to R. The difunctional closure can also be
obtained as the pullback of the pushout of πRA with πRB [18],[9].

2.1 Categorical notions

We assume only elementary categorical notions and we use the terminology of [2].
Regular monos are equalizers of a parallel pair of morphisms. Analogously, reg-
ular epis are coequalizers. Split epis (split monos) i.e. the right-(left-)-invertible
morphisms are regular epi (regular mono). We denote the sum of a family (Ai)i∈I
of objects and with the canonical injections by eAi

: Ai → Σi∈IAi. Given a sink
(qi : Ai −→ Q)i∈I we denote the induced morphisms from the sum

∑
Ai → Q

by [(qi)i∈I ]. The following lemma will be needed later. It is obviously true in
every category with sums:

Lemma 1. For all morphisms f : A −→ B the map [f, idB ] : A + B → B is
split epi.

Definition 2. A weak limit of a diagram D is a cone over D such that for every
other (competing) cone there is at least one morphism making the relevant
triangles commutative.

If we replace “at least one” in the above definition with “exactly one”, this is
the definition of limit.



Set-endofunctors In the following, F will always be a Set-endofunctor. F
preserves epis, and F preserves monos with nonempty domain. Next, let D a
diagram.

Definition 3. F weakly preserves D−limits if F maps every D−limit into a
weak D−limit.

It is well known that F weakly preserves D-limits if and only if it preserves
weak D-limits, see [5].

An important property of Set-endofunctors is that they preserve finite nonempty
intersections [23]. In order to preserve all finite intersections, it might be nec-
essary to redefine F on the empty set and on empty mappings to obtain a
(marginally modified) new functor preserving all finite intersections. Therefore,
we are safe to only consider functors which preserve all finite intersections.

2.2 F -coalgebras

Definition 4. Let F : Set → Set be a Set-endofunctor. An F -coalgebra A =
(A,α) consists of a set A and a structure map α : A→ F (A). A map ϕ : A→ B
between two coalgebras A = (A,α) and B = (B, β) is called a homomorphism,
if β ◦ ϕ = Fϕ ◦ α. A subcoalgebra of a coalgebra A is a subset U ⊆ A with a
structure map αU such that the inclusion map ιXU : U ↪→ X is a homomorphism.

The class of all F−coalgebras with coalgebra homomorphisms forms the cat-
egory SetF . In [3] it is proved that SetF is cocomplete i.e. every colimit exists.
Epis are exactly the surjective homomorphisms [19]. Monomorphisms in SetF
need not be injective. Regular monos are exactly the injective homomorphisms
[6].

Bisimulations

Definition 5 (Aczel and Mendler [1]). A bisimulation between two coalge-
bras A and B is a relation R ⊆ A×B for which there exists a coalgebra structure
ρ : R→ F (R) such that the projections πRA : R→ A and πRB : R→ B are homo-
morphisms. A bisimulation R on a coalgebra A is a bisimulation between A and
itself.

The union of bisimulations is a bisimulation and ∅ is always a bisimulation,
so that the bisimulations between A and B form a complete lattice with largest
element called ∼A,B . For the same reason, every relation R between coalgebras
A and B contains a largest bisimulation, which we denote by [R]. It is the union
of all bisimulations contained in R.

Congruences and 2−congruences

Definition 6. A congruence θ on a coalgebra A is the kernel of a homomor-
phism ϕ : A → C, i.e θ = kerϕ = {(a, a′) ∈ A×A |ϕ(a) = ϕ(a′)}.



If θ is a congruence on A, then there is a structure map on the factor set
A/θ := {[a]θ | a ∈ A}, such that πθ : A −→ A/θ with πθ(a) := [a]θ := {a′ ∈ A |
aθa′} becomes a homomorphism. The set of all congruences on a coalgebra A
forms a complete lattice [7] with largest element called ∇A and smallest element
∆A = {(a, a) | a ∈ A}. The supremum of a family of congruences is obtained as
the transitive closure of their union. We denote the lattice of all congruences by
Con(A).

Given a bisimulation R on A, its equivalential hull, that is the smallest equiv-
alence relation containing R is a congruence relation [1]. It follows immediately,
that ∼A⊆ ∇A. Congruences arising as equivalential hulls of a bisimulation are
called regular. This notion is suggested by the following result from [8]:

Lemma 2. A morphism ϕ : A → B is mono iff [kerϕ] = ∆A and regular mono,
iff it is injective.

An epi ϕ : A� B is regular epi (in SetF ) iff its kernel is a regular congru-
ence iff kerϕ = [kerϕ]?.

For technical reasons, we call a homomorphism ϕ strictly regular, if its kernel
is a bisimulation, i.e. if kerϕ = [kerϕ]. Notice that this notion is not an abstract
categorical one, but a coalgebraic notion.

Definition 7. A 2−congruence between two coalgebras A and B is the kernel
(pullback in the category Set) of two homomorphisms ϕ : A → C and ψ : B → C,
i.e.

θ = ker(ϕ,ψ) := {(a, b) ∈ A×B |ϕ(a) = ψ(b)}.

Just as congruences are transitive, 2−congruences are difunctional. The largest
2−congruence between A and B is called observational equivalence and written
∇A,B. For each bisimulation R between A and B, its difunctional hull Rd , being
the kernel of the pushout of the components πRA and πRB is a 2-congruence, so
Rd ⊆ ∇A,B.

3 Observational equivalence and bisimilarity

When A and B are coalgebras, elements a ∈ A and b ∈ B are called bisimilar,
if there exists a bisimulation R between A and B containing (a, b). This is the
same as saying that for some coalgebra R and homomorphisms ϕA : R → A
and ϕB : R → B there is some r ∈ R with ϕA(r) = a and ϕB(r) = b. In short, a
and b are bisimilar, if they have a common ancestor.

Dually, a and b are called observationally equivalent, iff they have a common
offspring, meaning that there exists a coalgebra C and homomorphisms ψA :
A → C and ψB : B → C with ψA(a) = ψB(b). We first study the situation
for the case A = B. Here a, a′ are bisimilar iff (a, a′) ∈∼A and observationally
equivalent iff (a, a′) ∈ ∇A.



3.1 Nabla and simple coalgebras

Definition 8. A coalgebra A is called simple, if ∇A = ∆A and extensional, if
∼A= ∆A .

It is well known that a coalgebra A is simple iff each morphism starting in A
is injective [4]. If a terminal coalgebra T exists, simple coalgebras are precisely
the subcoalgebras of T [4]. For every coalgebra A, the factor coalgebra A/∇A is
simple. The notions of simplicity and extensionality differ [7]. The coalgebra of
the following example is extensional but not simple.

Example 1.

0
		 &&

��

1
		

��		
2
UU

XX II

3
UU

XX

ff

Consider the above 2 × P≤3−coalgebra A := ({0, 1, 2, 3}, α) with α(0) :=
(0, {0, 1, 2}), α(2) := (1, {0, 1, 2}), α(1) = (0, {1, 2, 3}), α(3) = (1, {1, 2, 3}). It is
easy to check that ∇ = {(0, 1), (1, 0), (2, 3), (3, 2)}∪∆A. Suppose that (0, 1) ∈∼ .
Then there is (0,M) ∈ 2 × P≤3 ∼ with π1[M ] = (0, 1, 2) and π2[M ] = (1, 2, 3).
Hence M = {(0, 1), (1, 1), (2, 2), (2, 3)}. This is a contradiction, because |M | = 4.
Similarly (2, 3) 6∈ ∼. We obtain ∼= ∆ 6= ∇.

The following lemma helps us to verify whether a congruence θ is the largest
congruence. It suffices to check that the codomain of a factor is simple.

Lemma 3. Subcoalgebras of simple coalgebras are simple. More generally, if ϕ :
A → C is a homomorphism and C is simple, then kerϕ = ∇A.

Proof. Let ι : U ↪→ C be the inclusion morphism, and assume that θ is a congru-
ence on U . The pushout of ι with πθ yields a homomorphism ψ : C → P. Since C
is simple, ψ is injective. It follows that πθ is injective. This means that ∇U = ∆U .
Next, let ϕ : A → C be a homomorphism and C simple. The image of A under ϕ
is a subcoalgebra of C, which, as we have just seen, must be simple. Thus we may
as well assume that ϕ is epi. Obviously, kerϕ ⊆ ∇A, so there is a homomorphism
ψ : C → A/∇A with π∇A = ψ ◦ ϕ. So ψ is surjective, and injective, since C is
simple. It follows that ψ is an isomorphism, whence kerϕ = kerπ∇A = ∇A.

The following lemma relates observational equivalence between two coalge-
bras to observational equivalence on their sum:

Lemma 4 ([14]). (a, b) ∈ ∇A,B ⇐⇒ (eA(a), eB(b)) ∈ ∇A+B.



Proof.

(a, b) ∈ ∇A,B ⇐⇒ ∃C, ϕ : A → C, ψ : B → C. ϕ(a) = ψ(b)

⇐⇒ ∃C, χ : A+ B → C, χ(eA(a)) = χ(eB(b))

⇐⇒ (eA(a), eB(b)) ∈ ∇A+B.

We need to extend Lemma 3 to the case of a cospan of two homomorphisms:

Lemma 5. If ϕ : A → C and ψ : B → C are homomorphism and C is simple,
then ker(ϕ,ψ) = ∇A,B.

Proof. Consider [ϕ,ψ] : A+ B → C with ϕ = [ϕ,ψ] ◦ eA and ψ = [ϕ,ψ] ◦ eB. By
lemma 3, we obtain ker[ϕ,ψ] = ∇A+B, so with this and lemma 4 we calculate:

ϕ(a) = ψ(b) ⇐⇒ [ϕ,ψ] ◦ eA(a) = [ϕ,ψ] ◦ eB(b)

⇐⇒ (eA(a), eB(b)) ∈ ker[ϕ,ψ]

⇐⇒ (eA(a), eB(b)) ∈ ∇A+B

⇐⇒ (a, b) ∈ ∇A,B.

The following construction will be used in various places. It can be used to
change the structure map α of a coalgebra while at the same time preserving
other important properties as seen in the ensuing lemma:

Definition 9. Given a coalgebra A = (A,α), element x0 ∈ A and subset U ⊆ A.
We define a new coalgebra AUx0

:= (A, ᾱ) on the same base set by constantly
mapping all elements of U to α(x0) and retaining α on all other elements, i.e.:

ᾱ(x) :=

{
α(x0) if x ∈ U
α(x) else.

Lemma 6. Let ϕ : A → C be a homomorphism and U ⊆ [x0] kerϕ for some
x0 ∈ A. Then the map ϕ : A → C is also a homomorphism ϕ : Ā→ C where
Ā := AUx0

. Moreover, ∇A = ∇Ā.

Proof. If x ∈ U, then (Fϕ ◦ ᾱ)(x) = (Fϕ)(αA(x0)) = αC(ϕ(x0)) = αC(ϕ(x)). If
x /∈ U , nothing has changed, so ϕ keeps being a homomorphism. With C = A/∇A
and lemma 3, we obtain ∇A = kerϕ = ∇Ā.

3.2 Restricting bisimulations

For the following we assume that R ⊆ A1 × A2 is a bisimulation between coal-
gebras A1 = (A,α1) and A2 = (A,α2), and Ui ≤ Ai are subcoalgebras for
i = 1, 2.

Definition 10. R restricts to U := U1 × U2, if R � U := R ∩ (U1 × U2) is a
bisimulation between U1 and U2.



Without any further assumption, bisimulations will not necessarily restrict
to subcoalgebras. In fact in [6] it was shown that all bisimulations restrict to all
subcoalgebras, globally throughout SetF , if and only if F preserves preimages. In
spite of this, here we can identify conditions on R and on the Ui that guarantee
that R restricts to U1 ×U2 without any condition on F . The main result of this
section is the following theorem and its applications:

Theorem 1. If there exist κi : Ai → Ui left inverses to the inclusion maps,
satisfying for all a1 ∈ A1,a2 ∈ A2:

(a1, a2) ∈ R =⇒ (κ1a1, κ2a2) ∈ R

then R restricts to U .

Instantiating the existential quantifier in this theorem with particularly natu-
ral left inverses to the inclusion maps, we shall obtain the following, easy-to-apply
criterion (Here R[U ] denotes {y | ∃x ∈ U.(x, y) ∈ R} and R− is the converse
relation to R):

Theorem 2. If R[U1] ⊆ U2 and R−[U2] ⊆ U1 then R restricts to a bisimulation
between U1 and U2.

The following further specialization with U ≤ A and R a bisimulation on A
will likely be the most useful one:

Corollary 1. A bisimulation R on A restricts to the subcoalgebra U ≤ A, pro-
vided that R[U ] ⊆ U and R−[U ] ⊆ U .

Given an epimorphism ϕ : A � B, the largest bisimulation contained in its
kernel reveals, whether ϕ is a regular epi in the category SetF or not. We start
with [kerϕ], the largest bisimulation contained in the kernel of ϕ. The criterion
found in [8] is, that the transitive hull of [kerϕ] should be all of kerϕ. Expressed
as a formula this is: [kerϕ]? = kerϕ. Studying this further, we show the following
result, which turns out to be another corollary:

Corollary 2. From ϕi : Ai → Bi construct ϕ1 +ϕ2 : A → B with A := A1 +A2

and B := B1 + B2. Consider ker ϕi as subsets of A, then [ker (ϕ1 + ϕ2)] =
[kerϕ1] ∪ [kerϕ2].

To see why this follows from corollary 1, choose Ui := Ai ≤ A: If R ⊆
ker (ϕ1 + ϕ2) is a bisimulation, then R[Ai] ⊆ ker (ϕ1 + ϕ2)[Ai] = Ai and
symmetrically R−[Ai] ⊆ Ai. Thus R restricts to Ai ⊆ A1 + A2. This proves
that [ker (ϕ1 + ϕ2)] ⊆ [kerϕ1] ∪ [kerϕ2]. The other direction is trivial, since
kerϕi ⊆ ker(ϕ1 + ϕ2), hence [kerϕi] ⊆ [ker(ϕ1 + ϕ2)].

We now turn to the proof of theorem 1:

Proof (of theorem 1 and 2). Consider the following diagram, where we use ι,
possibly with indices, to denote inclusion maps and similarly πi or π̄i to denote
projection maps to the i-th component, for i = 1, 2. The κi are the mentioned



left inverses to the ιi and κ := κ1×κ2. The condition of the theorem guarantees
that κ′s codomain is indeed R � U , and by definition, we have:

π̄i ◦ κ = κi ◦ πi.

Simply define
ρ̄ := F (κ) ◦ ρ ◦ ι

and chase the following diagram:

R
πi //

ρ

��

κ

&&
Ai

αAi

��

κi

%%
Ui

αUi

��

_?ιi
oo R � U

π̄ioo

ρ̄

��

3 S

ι

yy

F (R)
Fπi //

F (κ)

88
F (Ai)

Fκi

''
F (Ui)_?Fιi

oo F (R � U)
Fπ̄ioo

Fπ̄i ◦ ρ̄ = Fπ̄i ◦ Fκ ◦ ρ ◦ ι
= Fκi ◦ Fπi ◦ ρ ◦ ι
= Fκi ◦ αAi

◦ πi ◦ ι
= Fκi ◦ αAi

◦ ιi ◦ π̄i
= Fκi ◦ Fιi ◦ αUi

◦ π̄i
= FidAi

◦ αUi
◦ π̄i

= αUi
◦ π̄i

For the proof of theorem 2, we note that the case where R � U is empty
becomes trivial. Otherwise fix any pair (u1, u2) ∈ R � U and define the following
inverses κi to the inclusions ιi : Ui → Ai:

κi(a) := if (a ∈ Ui) then a else ui.

Given (a1, a2) ∈ R, the conditions R[U1] ⊆ U2 and R−[U2] ⊆ U1 guarantee
that a1 ∈ U1 ⇐⇒ a2 ∈ U2. By definition of κi then, either (κ1a1, κ2a2) =
(a1, a2) or (κ1a1, κ2a2) = (u1, u2).

4 Relationships between bisimilarity and observational
equivalence

Bisimilarity and observational equivalence need not be distinguished in many
classical systems, such as e.g. in Kripke structures. In particular, the famous



Hennessy-Milner theorem [12] relates bisimilarity with logical equivalence. How-
ever, the generalization of this result to coalgebras, as given by D. Pattinson [17],
demonstrates that logical equivalence should rather be related to observational
equivalence. In hindsight, this appears obvious, as bisimilarity need not be tran-
sitive, whereas observational equivalence always is transitive, and clearly so is
logical equivalence. Thus in the case of the Hennessy-Milner theorem, “luckily”
both notions agreed. The reason for this is, that the type functor for Kripke-
structures, is rather well behaved, in that it weakly preserves kernel pairs, even
arbitrary pullbacks.

4.1 Weak preservation of kernel pairs

A kernel pair is the pullback of two equal morphisms. A preimage is a pull-
back with a regular epimorphism. The role of weak preservation of pullbacks in
general, of kernel pairs and of preimages has been studied by H.P. Gumm and
T. Schröder [8]. In particular, we recall that:

Theorem 3 ([8]). The following are equivalent :
(1) F weakly preserves kernel pairs (of epis).
(2) Every congruence is a bisimulation.

Thus weak preservation of kernel pairs is equivalent to all epis ϕ being strictly
regular, meaning that [ker ϕ] = kerϕ. We shall show below that this is equivalent
to all epis just being regular, i.e. [ker ϕ]? = ker ϕ.

A joint result of the second author and C. Henkel, to be found in the latter’s
Master thesis [11], also turns out to be useful:

Theorem 4 ([11]). The following are equivalent:

1. F weakly preserves kernel pairs
2. F weakly preserves pullbacks of epimorphisms.

In [8], furthermore, the implications (1) =⇒ (2) =⇒ (3) have been shown
for the following properties:

1. F weakly preserves kernel pairs
2. every epi is regular epi
3. every mono is regular mono.

In [20] it was further claimed that (3) ⇒ (1), rendering all three properties
equivalent. Unfortunately, the proof contained a gap, so until today, (3) ⇒ (1)
remains open. Nevertheless, we are able to close the loop at (2)⇒ (1) in the fol-
lowing theorem 5, so (1) and (2) indeed turn out to be equivalent. The following
innocuous lemma holds a key for the proof.

Lemma 7. Let ϕ be the coequalizer of ψ1, ψ2 : Q → A and let x ∈ A. If there
exists y 6= x with ϕ(x) = ϕ(y) then for some q in Q either ψ1(q) = x 6= ψ2(q) or
ψ2(q) = x 6= ψ1(q).



Proof. In the category Set, the coequalizer ϕ of ψ1 and ψ2 is obtained by factor-
ingA by the equivalence relation generated by the relationR = {(ψ1(q), ψ2(q)) | q ∈
Q}. Thus kerϕ = Eq(R) = (∆A ∪ R ∪ R−)∗. If x ker y for some y 6= x, there
must be therefore be at least some y′ 6= x with xRy′ or xR−y′.

The following theorem was obtained in the master thesis of the first author:

Theorem 5 ([24]). F weakly preserves kernel pairs iff every epi is regular epi.

Proof. “⇒” is from [8].
“⇐”: By theorem 3 it suffices to show, that F preserves weak kernel pairs of epis.
Let ϕ : A � C be a surjective map, ã,b̃ ∈ F (A) and c̃∈ F (C) with (Fϕ)ã =
c̃ = (Fϕ)b̃. We need to find p̃∈ F (kerϕ) with (Fπ1)p̃ = ã and (Fπ2)p̃ = b̃. In
case ϕ is injective, then the pullback of ϕ is an intersection. We have assumed
in this paper that functors preserve intersections. Otherwise there are x, y ∈ A
with x 6= y and ϕ(x) = ϕ(y). We define structure maps αA : A −→ FA and
αC : C −→ FC as follows:

αA(z) :=

{
ã if z = x

b̃ otherwise

and

αC(z) := c̃.

Clearly ϕ is a surjective homomorphisms, since (αC ◦ ϕ)(z) = αC(ϕ(z)) = c̃
= (Fϕ)(αA(z)) = ((Fϕ) ◦ αA)(z) for every z ∈ A. By assumption ϕ is regular
epi, so it is the coequalizer of two homomorphisms ψ1 and ψ2: Q −→ A. By
Lemma 7 there is some q ∈ Q with (ψ1(q) = x and ψ2(q) 6= x) or (ψ1(q) 6= x
and ψ2(q) = x). Since ϕ is the coequalizer of ψ1 and ψ2, (Q,ψ1, ψ2) becomes a
competitor for the pullback (kerϕ, π1, π2) in Set. Thus there is a map m with
π1 ◦m = ψ1 and π2 ◦m = ψ2.

Q

ψ1

$$ψ2

$$
m
//

αQ

��

kerϕ
π1 //
π2

// A
ϕ // //

αA

��

C

αC

��
FQ

Fψ1
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Fψ2

88Fm
// Fkerϕ

Fπ1 //
Fπ2

// F (A)
Fϕ // F (C)

Since ψ1(q) = x and ψ2(q) 6= x it follows that αA(ψ1(q)) = ã and αA(ψ2(q)) = b̃.
Then Fψ1 ◦ αQ(q) = ã and Fψ2 ◦ αQ(q) = b̃ because ψ1 and ψ2 are homo-
morphisms. From property of functor this implies: Fπ1 ◦ Fm ◦ αQ(q) = ã and

Fπ2 ◦ Fm ◦ αQ(q) = b̃. Then Fπ1(Fm ◦ αQ(q)) = ã and Fπ2(Fm ◦ αQ(q)) = b̃.

This shows the existence of some p̃∈ Fkerϕ with (Fπ1)p̃ = ã and (Fπ2)p̃ = b̃.



Lemma 8. If an epimorphism ϕ : U � B can be factored as ϕ = ψ ◦ e with
e : U ↪→ A regular mono and ψ : A� B a strictly regular epi, then ϕ is strictly
regular epi.

Proof. If U = ∅ then kerϕ = ∅ is a bisimulation, so we may assume that U 6= ∅.
Since ϕ is epi, then ϕ is surjective and the axiom of choice yields a right inverse
map r for ϕ. With its help we obtain a map l : A −→ U as

l(x) :=

{
u if e(u) = x

r(ψ(x)) otherwise.

It is easy to check that ϕ ◦ l = ψ.

kerϕ
π1 //
π2

// U
ϕ // //� _

e

��

B

r

{{

kerψ
π̄1 //
π̄2

// A

ψ

88 88

l

]]

(kerϕ, e ◦ π1, e ◦ π2) is a competitor to the pullback kerψ. This yields a map
m : kerϕ −→ kerψ with π̄i ◦m = e◦πi for i = 1, 2. Similarly, (kerψ, l ◦ π̄1, l ◦ π̄2)
is a competitor to the pullback kerϕ, providing another map m̄ : kerψ −→ kerϕ
with l ◦ π̄i = πi ◦ m̄. Now let us assume that kerψ is a bisimulation, then there
exists a structure map ρ : kerψ −→ F kerψ such that αA ◦ π̄i = Fπ̄i ◦ ρ for
i = 1, 2.

kerϕ

m

��

π1 //
π2

// U� _

e

��
kerψ

m̄

XX

π̄1 //
π2

// A

l

YY

We claim that ρ′ := Fm̄ ◦ ρ ◦ m is a structure map witnessing that kerϕ is a
bisimulation.

Fπi ◦ ρ′ = Fπi ◦ Fm̄ ◦ ρ ◦m
= Fl ◦ Fπ̄i ◦ ρ ◦m
= Fl ◦ αA ◦ π̄i ◦m
= Fl ◦ αA ◦ e ◦ πi
= Fl ◦ Fe ◦ αU ◦ πi
= αU ◦ πi



Lemma 9. Let ϕ : A � B be an epimorphism. ϕ is strictly regular epi iff
[ϕ, idB ] is strictly regular epi.

kerϕ
π1 //
π2

// A
ϕ // //� _

eA

��

B

ker [ϕ, idB ]
π̄1 //
π̄2

// A+B

[ϕ,idB ]
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Proof. ”⇒ ” : ker [ϕ, idB ] = kerϕ ∪ graphϕ ∪ (graphϕ)− ∪∆A+B . Since kerϕ
is bisimulation, ker [ϕ, idB ] is bisimulation, too.
” ⇐ ” [ϕ, idB ] is regular epi by lemma 1 and eA is regular mono since it is
injective. The rest follows from lemma 8.

Proposition 1. Let ϕ : A −→ B and ψ : C −→ D be two homomorphisms. ϕ
and ψ are regular epi iff ϕ+ ψ is regular epi.

Proof. ”⇒ ” This holds in every cocomplete category [2].
”⇐ ”By corollary 2 [ker(ϕ+ ψ)]A+C = [kerϕ]A ∪ [kerψ]C . By lemma 2 kerϕ ∪
kerψ = ker(ϕ+ψ) = [ker(ϕ+ψ)]∗A+C = [kerϕ]∗A∪[kerψ]∗C . Then kerϕ = [kerϕ]∗A
and kerψ = [kerψ]∗A. From lemma 2 it then follows that ϕ and ψ are regular
epi.

[kerϕ]
π1 //
π2

// A
ϕ // //� _

eA

��

B� _

eB

��
[ker (ϕ+ ψ)]

π̄1 //
π̄2

// A+ C
ϕ+ψ

// B +D

[kerψ]
π1 //
π2

// C
ψ // //?�

eC

OO

D
?�

eD

OO

We define an order over all homomorphisms with the same domain by ϕ ≤
ψ :⇔ kerϕ ⊆ kerψ

Lemma 10. For any epimorphism ϕ : A � B, the infimum of idB + [ϕ, idB ]
and [idB , ϕ] + idB is idB + ϕ+idB .

Proof. Mark the two isomorphic copies of B as B1 and B2 and abbreviate ψ1 :=
idB1

+ [ϕ, idB2
], ψ2 := [idB1

, ϕ] + idB2
and ψ := idB1

+ ϕ + idB2
. We need to

check that kerψ = kerψ1 ∩ kerψ2. Given x 6= y, then

(x, y) ∈ kerψ1 ∩ kerψ2 ⇐⇒ ∃(a, a′) ∈ kerϕ. x = eA(a) ∧ y = eA(a′)

⇐⇒ (x, y) ∈ kerψ.



Theorem 6. The following are equivalent:

1. F preserves weak kernel pairs,
2. Rd is a bisimulation, whenever R is,
3. [θ] is difunctional for each 2−congruence θ,
4. [θ] is transitive for each congruence θ,
5. [θ]∗ = θ for every congruence θ,
6. the regular congruences form a sublattice of Cong(A).

Proof. (1)⇒(2) Let R be a bisimulation between two coalgebras A1 and A2. We
factor the projections πRi : R → Ai into ιi ◦ π̄Ri as an epi followed by a regu-
lar mono and produce the pushout (p1, p2) of (π̄R1 , π̄

R
2 ). Then p1 and p2 are epi

and.Rd = ker(p1, p2). It follows from theorem 4 that Rd is a bisimulation.
(2) ⇒ (3) is evident
(3) ⇒ (4) If θ is a congruence, [θ] also must be reflexive and symmetric. Con-
sidered as a 2−congruence between A and itself, the hypothesis yields that [θ]
is difunctional, too. Difunctionality with reflexivity and symmetry implies tran-
sitivity.
(4)⇒ (5) θ = kerϕ for some epimorphism ϕ : A� B. By lemma 1, ker[ϕ, idB] is
a regular congruence, so ker[ϕ, idB] = [ker[ϕ, idB]]?. By hypothesis, [ker[ϕ, idB]]
is transitive, so in fact ker[ϕ, idB] = [ker[ϕ, idB]], witnessing that ker[ϕ, idB] is a
bisimulation. From lemma 9, we can conclude now, that kerϕ = θ is a bisimula-
tion, too. Consequently, θ = [θ] and a fortiori θ = θ? = [θ]?.
(5)⇒ (6) is evident, because all congruences are regular.
(6) ⇒ (1) Let ϕ : A � B be an epimorphism. Let ψ1 : B + A + B −→ B + B,
ψ2 : B + A + B −→ B + B and ψ : B + A + B −→ B + B + B be defined
as ψ1 := idB + [ϕ, idB ], ψ2 := [idB , ϕ] + idB and ψ := idB + ϕ + idB . From
lemma 1 and proposition 1 we obtain that ψ1 and ψ2 are regular epis. From the
hypothesis it follows that the infimum of ψ1 and ψ2 is regular epi. By lemma 10
then ψ is regular epi. By lemma 1 then ϕ is again regular epi.

4.2 Transitivity of ∼

The next theorem clarifies which properties assure the transitivity of bisimilarity.
The equivalence (1) ⇔ (3) appears in [8] under the additional assumption that
F should preserve preimages. Its proof will need a simple lemma allowing us to
extend bisimulations in certain situations.

Theorem 7. The following are equivalent:
(1) ∼A= ∇A for each F−coalgebra A.
(2) ∼∗A= ∇A for each F−coalgebra A.
(3) ∼A is transitive for each F−coalgebra A:

Proof. (1)⇒ (2) and (1)⇒ (3) are evident, since ∇A is transitive.
(2)⇒ (1): Given A = (A,α), we have to show that ∇A is a bisimulation. Hence
for arbitrary (x0, y0) ∈ ∇A we need to find some p ∈ F∇A with Fπ1(p) = α(x0)
and Fπ2(p) = α(y0) where π1, π2 : ∇A → A are the projection maps.



If x0 = y0 then (x0, y0) ∈ ∆A which is already a bisimulation contained
in ∇A. But for each bisimulation S contained in ∇A with (x0, y0) ∈ S there
is already some q ∈ F (S) with FπSA(q) = α(x0) and FπSA(q) = α(x0). The
inclusion map ι∇S : S ↪→ ∇A yields an element p := Fι∇S (q) ∈ F (∇A) for
which Fπ1(p) = Fπ1(Fι∇S (q) = F (π1 ◦ ι∇S )(q) = F (πS1 )(q) = α(x0), and likewise
Fπ2(p) = α(y0).

If x0 6= y0, we consider Ā := AUx0
(see def.9), where we choose U := {x |

x0∇Ax 6= y0}. Invoking lemma 6 with π∇A : A → A/∇A and recalling that
A/∇A is simple, we obtain ∇Ā = ∇A =: ∇. By assumption (2), there is a
bisimulation S on Ā with S? = ∇, so in particular x0S

?y0. As x0 6= y0, there is
some z 6= y0 with x0 S

?z S y0 and a fortiori x0∇zSy0. Since S is a bisimulation
on Ā, there is some q ∈ F (S) with Fπ1(q) = ᾱ(z) = α(x0) and Fπ2(q) =
ᾱ(y0) = α(y0).
(3) ⇒ (1):

∇
π1 //
π2

// A
π∇ // //� _

eA

��

A/∇

ker [π∇, idA/∇]
π̄1 //
π̄2

// A+A/∇
[π∇,idA/∇]
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By lemma 1 [π∇, idA/∇] is regular epi. From theorem 2 we obtain ∼∗A+A∇
=

∇A+A/∇. Then

[ker [π∇, idA∇ ]] = [∇A+A/∇] lemma 3

=∼A+A∇

=∼∗A+A∇ hypothesis

= ker [π∇, idA/∇].

Therefore, ker [π∇, idA/∇] is a bisimulation, and by lemma 9, ∇ is a bisimulation.

For image finite Kripke structures A, i.e. coalgebras for D × Pfin where D
is a fixed output set and Pfin the finite-powerset functor, it is well known that
∼A= ∇A. However, considered as a coalgebra of D×P≤k where P≤kX := {U ⊆
X | |U | ≤ k} the same Kripke structure may fail to satisfy ∼A= ∇A. The fact
that for k ≥ 3 the functor P≤k, defined as a subfunctor of P, does not preserve
weak kernel pairs was noticed in [8].

4.3 Difunctionality of ∼

In an attempt to generalize the results of the previous subsection to relations
between two coalgebras, we consider the following conditions:

1. For all F−coalgebras A,B: ∼A,B= ∇A,B
2. For all F−coalgebras A,B: ∼dA,B= ∇A,B



3. For all F−coalgebras A,B: ∼A,B is difunctional.

We will show in the next section that the direction (2)⇒ (1) holds more gener-
ally, yet the implication (3)⇒ (1) fails in general. We provide a counterexample
(example 2) in the next section. We will use the following characterization of
preimages preservation.

Theorem 8 ([6]). The following are equivalent:
(1) F preserves preimages
(2) If U , V are subcoalgebras of A, B then bisimulations between U and V are
just the restrictions to U × V of bisimulations between A and B.

Under the assumption that F should preserves preimages we will see that
difunctionality and transitivity of bisimulations are equivalent.

Theorem 9. If F preserves preimages, then the following are equivalent:
(1) For all F−coalgebras A,B: ∼A,B= ∇A,B
(2) For all F−coalgebras A,B: ∼A,B is difunctional.
(3) For all F−coalgebras A: ∼A= ∇A.

Proof. (1)⇒ (2) is evident because ∇A,B is difunctional.
(2)⇒ (3) From the hypothesis it follows that∼A is transitive for all F−coalgebras
A, because ∼A is reflexive and symmetric. By theorem 7 we obtain that for all
F−coalgebras A: ∼A= ∇A.
(3) ⇒ (1) Let A = (A,α) and B = (B, β) two coalgebra. We have to show
∼A,B= ∇A,B.

(a, b) ∈ ∇A,B ⇐⇒ (eA(a), eB(b)) ∈ ∇A+B by lemma 4

⇐⇒ (eA(a), eB(b)) ∈∼A+B by hypothesis

⇐⇒ (a, b) ∼A,B by theorem 8.

4.4 Relation liftings

An alternative definition of bisimulation was given by C. Hermida and B. Jacobs
in [13]. The idea is to define a bisimulation R as a relation R ⊆ A×B satisfying:

xR y =⇒ α(x) F̄ (R)α(y)

where F̄ is the “lifting” of the relation R ⊆ A×B to a relation F̄ (R) ⊆ F (A)×
F (B), known as Barr-extension:

F̄ (R) := {(FπRA(u), FπRB(u)) | u ∈ F (R)}.

Choosing the Barr-extension may be one particular method for extending a
relation between A and B to a relation between F (A) and F (B), but there might
likely be others, so we define:



Definition 11. A relation lifting L is a transformation sending every relation
R ⊆ A × A into a relation L(R) ⊆ FA × FB. It is called monotonic, if R ⊆ S
implies L(R) ⊆ L(S). For a given relation lifting L and coalgebras A = (A,αA)
and B = (B,αB), an L−simulation is a relation R ⊆ A×B such

xR y =⇒ α(x)L(R)α(y).

Diagrammatically, R is an L-simulation if and only if the map sending (x, y)
to (αA(x), αB(y)) factors through L(R), which is the same as saying that there
exists a map m such that the following diagram commutes:

A

◦α

��

R
πAoo πB //

m

��

B

◦ α

��
F (A) LR

πF (A)oo
πF (B)// F (B)

Thus a Hermida-Jacobs-bisimulation is the same as an L−simulation where
L = F̄ . Observe, that categorically, F̄ (R) arises by applying the functor F to
the source πRA : R → A and πRB : R → B, then factoring the resulting source
FπRA : F (R) → F (A) and FπRB : F (R) → F (B), into an epi q followed by a
mono-source:

F (A) F̄R
πF (A)oo

πF (B) // F (B)

F (R)

FπR
A

cc

FπR
B

;;
q

OOOO

This diagram can be readily used to demonstrate the well known fact that
our earlier definition of bisimulation agrees with that of Hermida and Jacobs in
the presence of the axiom of choice. When L = F̄ , we can paste it to the bottom
line of the previous diagram in order to see that any bisimulation ρ : R→ F (R)
yields an F̄−simulation and conversely, any choice of right inverse e for q yields
a bisimulation ρ := e ◦m.

Thijs in [22] defined relators as relation liftings with additional properties
and generalized the notion of coalgebraic simulation. In [15] Marti and Venema
introduced further properties, in an attempt to achieve that L−similarity should
capture observational equivalence. The union of all L−simulations between given
coalgebra A and B is denoted by ≈LA,B. If L is monotonic then ≈LA,B is again an

L−simulation. For L = F̄ , of course, ≈LA,B agrees with ∼A,B.
In [15] it was also shown that there is no relation lifting L for the neigh-

borhood functor which captures observational equivalence in the sense that
≈LA,B= ∇A,B for all coalgebras A,B. In particular, for this functor there are
coalgebras A and B such that ∼A,B 6= ∇A,B.

Example 2. Consider the neighborhood functor 22− . From theorem 6 ∼A,B is

difunctional for all coalgebras A,B, since 22− weakly preserves kernel pairs [10].
But ∼A,B= ∇A,B does not hold.



In [9] we have shown, that bisimulations can be enlarged as long as the
structure maps are not affected in the following sense:

Proposition 2 ([9]). Let A1 and A2 be coalgebras with corresponding structure
maps α1 and α2. Let R ⊆ A1×A2 be a bisimulation and R′ an enlargement i.e.
R ⊆ R′ ⊆ ker α1 ◦R ◦ ker α2. Then R′ is also a bisimulation.

A relation lifting L is called extensible, if for all coalgebras A1 and A2

the statement of the above proposition holds with “bisimulation” replaced by
“L−simulation”. It turns out, that this property precisely captures monotonic-
ity, i.e.:

Proposition 3. A relation lifting L is monotonic iff it is extensible.

Proof. The proof of the if -direction closely follows, but is not identical to, the
proof of proposition 2 from [9]: R is a L−simulation, so there exists a map
ρ : R → L(R) with αi ◦ πRi = πLRi ◦ ρ. Let ι : R → R′ be the inclusion map,

then clearly πRi = πR
′

i ◦ ι. By assumption, we find for every (x′, y′) ∈ R′ a pair
(x, y) ∈ R such that α1(x) = α1(x′) and α2(y) = α2(y′). The axiom of choice
provides for a map µ : R′ → R satisfying

αi ◦ πR
′

i ◦ ι ◦ µ = αi ◦ πR
′

i .

We now define ρ′ : R′ → L(R′) by ρ′ :=⊆ ◦ρ ◦ µ.

R′

πR′
i

$$

ρ′

��

µ

zz
R

ρ

��

�,

ι

::

πR
i // Ai

αi

��

L(R′)

πLR′
i

$$
L(R)

-
⊆

;;

πLR
i

// F (Ai)

For the only-if direction, let R ⊆ R′ ⊆ A1×A2 and (x̃, ỹ) ∈ LR. We have to
show (x̃, ỹ) ∈ LR′. Since (x̃, ỹ) ∈ LR then R is a L−simulation between (A1, cx̃)
and (A2, cỹ). By the hypothesis R′ is also a L−simulation. Then (x̃, ỹ) ∈ LR′.

With the help of this proposition, we can now somehow simplify the task
of proving that ≈LA,B captures observational equivalence, provided that L is
monotonic:

Theorem 10. For a monotonic relation lifting L, the following are equivalent:

1. For all coalgebras A,B: ≈A,B= ∇A,B
2. For all coalgebras A,B: ≈dA,B= ∇A,B



Proof. (1) ⇒ (2) is evident as ∇A,B is difunctional.
(2) ⇒ (1): For any A = (A,α) and B = (B, β), we have to show that ∇A,B is
an L−simulation. Given (x0, y0) ∈ ∇A,B, let U := [x0]∇A and V := [y0]∇B,
let ϕ := π∇A+B ◦ eA and ψ := π∇A+B ◦ eB. Since A + B/∇A+B is simple, it
follows from lemma 5 that kerϕ = ∇A and kerψ = ∇B. We define now two
coalgebras Ā := AUx0

and B̄ := BVy0 as in definition 9. Since U ⊆ [x0]kerϕ and

V ⊆ [x0]kerψ, we can use lemma 6 to see that both ϕ : Ā −→ A + B/∇A+B
and ψ : B̄ −→ A + B/∇A+B are homomorphisms to a simple coalgebra, so by
lemma 5, ∇Ā,B̄ = ker(ϕ,ψ) = ∇A,B. By hypothesis (x0, y0) ∈≈dĀ,B̄, so there

is x1 ∈ A with x1 ≈Ā,B̄ y0. From ≈dĀ,B̄= ∇A,B it follows that ≈Ā,B̄⊆ ∇A,B,

so (x1, y0) ∈ ∇A,B. Hence ϕ(x1) = ψ(y0) = ϕ(x0) and consequently (x0, x1) ∈
kerϕ = ∇A. By construction of Ā then ᾱ(x1) = α(x0) = ᾱ(x0). With the help of
proposition 3 we obtain x0 ≈Ā,B̄ y0. Hence (ᾱ(x0), β̄(y0)) ∈ L ≈Ā,B̄ and finally
(α(x0), β(y0)) ∈ L∇A,B since ≈Ā,B̄⊆ ∇A,B and L is monotonic.

The Barr extension F̄ is an example of a monotonic relation lifting, so we
obtain:

Corollary 3. The following are equivalent:

1. For all coalgebras A,B: ∼A,B= ∇A,B.
2. For all coalgebras A,B: ∼dA,B= ∇A,B.

5 Conclusion and further work

In this paper we exhibited conditions under which bisimulations restrict to sub-
coalgebras without requiring the type functor to preserve preimages. Further,
we have shown that if the transitive, resp. difunctional hull of bisimilarity covers
observational equivalence then bisimilarity and observational equivalence agree.
If bisimilarity is transitive for all F -coalgebras, then it agrees with observational
equivalence.

A negative result is that difunctionality is not enough to cover observational
equivalence between two coalgebras. Assuming preimage preservation for the
type functor F , transitivity and difunctionality of bisimilarity are equivalent.

We also show that F weakly preserves kernel pairs if and only if every epi is
regular epi. While it is known that this implies that every mono is regular mono,
the converse remains an open question.

A further open question is: If every extensional coalgebra is simple, does this
mean that ∼A= ∇A for all coalgebras A? In order to put this question into a
more general framework, we plan to investigate L−extensionality for arbitrary
relation liftings L.

References

1. P. Aczel and N. Mendler. A final coalgebra theorem. In D.H. Pitt et al., editors,
Proceedings category theory and computer science, Lecture Notes in Computer Sci-
ence, pages 357–365. Springer, 1989.
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