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Abstract

We start with a characterization of the modular commutator that
was given by E. Kiss and the first author in [DK] and explore some
of its consequences. Implicit in this characterization is that both the
shifting lemma and the cube lemma from [Gu] yield descriptions of
the commutator in terms of implications of identities. The shifting
lemma translates into the well known term condition and the cube
lemma yields a similar condition involving two terms. We give some
applications, improving a result of [Gu] and propose to define the com-
mutator in non-modular varieties using the construction from [DK].
Varieties satisfying [a, 3] = 0 and those satisfying [a, a] = « are then
characterized. This work was done when the second author visited
Lakehead University in February and March of 1986. E. Kiss has,
through a different approach, independently obtained a result very
similar to theorem 3.2 in a preprint of November 1986. The second
author expresses his thanks to A. Day and the National Research
Council of Canada for making his stay at Lakehead University both
possible and pleasant.

1 Preliminaries

Given a homomorphism ¢ : A — B and a congruence relation 6 on A, we

write g_i;(H) or simply g_i;H for the congruence relation on B generated by the
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direct images of pairsin 6 :

$(8) = cons ({(¢z, $v)|(2,y) € 6})

This notation is justified by the observation that, given a homomorphism

¥ : B — C, then for all a € Con(A4),

— —

(¢ 0 ) (a) =$(4(a)).

If 3 € Con(B), the inverse image congruence on A is denoted by

—

¢ (8) == ({(z,9)l(¢(z), ¢(y)) € B}).

Thus the kernel of the homomorphism ¢ : A — B is given by Kerg :Z (0B).
Again we have the functorial property, for all v € Con(C),

— —

(% 0 8) (7) = (6 (7))-

Except for chapter 4, we will assume that all algebras are contained in a
congruence modular variety V. Such varieties have been characterized by
means of Mal’cev conditions in [D] and in [Gu]. A variety V is congruence

modular iff in all algebras A € V the shifting lemma holds [Gu], that is:
For any three congruences «, 3,7 with o A 8 < v we have

a o C a o C

p v — v\ |8 v

b d b d

Here, nodes labeled # and y are connected by a line labeled with a
congruence 8 to express the fact that (z,y) € 6. Parallel lines are assumed
to be labelled with the same congruence. The assumption that a A 3 < v
may be dropped, but then (a,b) € vV (a A ) must replace (a,b) € v in
the conclusion. If subalgebras of squares of A are also congruence modular
then the cube lemma will hold. This is expressed similarly as:

If a AB <5 then
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For a variety of algebras, V, both the shifting lemma and the cube
lemma are individually equivalent to congruence modularity.

In a congruence modular variety, a commutator operation was defined
by Hagemann and Herrmann [HH] on congruence lattices of algebras A4 in
V. The commutator of the congruences o and 3 is denoted |, ], and can
be described conveniently in the following way, as shown in [Gu]. Consider
a as a subalgebra of A x A and let A? be the congruence on o generated

by the -diagonals:
A% = (B) = cona ({ ((2,2),(3,9)) | =By })
where v : A — « is the diagonal given by v(a) = (a,a). Then
(a,b) € [0,0] < Fw € A:(a,w)AP(b,w).
In our new notation, we have
[a, B] :7_r)1(Ker7r2 N Ag) :7_1')1(Ker7r2ﬂ 17(5))
The most useful properties of the commutator are:
(o, 8] <
(o, B] = B, ;
[, V Bi] :_)V[aa_)ﬂi];
(iv) ¢la,b] =[¢a, ¢, if ¢ is an epimorphism.

In turn, the commutator [, ] is the biggest multiplication on congruence
lattices of a modular variety satisfying (i) through (iv). Note that (iv) may
equivalently be formulated with inverse images of congruences:
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—

(v) ¢la,B] = [Za, Zﬂ] V Kerg, if ¢ is an epimorphism.

We shall look at inverse images of commutators in free algebras F(X +
Y), where X and Y will be disjoint isomorphic sets. An element from
F(X 4+Y) will be a term p(z1,...,%k,¥1,-..,Yy.) where the z; € X and
the y; € Y. We may sometimes list more variables than actually ap-
pear in p and therefore can always assume that k¥ = r. We abbreviate

p(wlw")wk)yl)"')yk) by p(X’y)

2 Homomorphic sections

Let ¢ : A —» B be an epimorphism. A section of ¢ is a homomorphism
p: B — A with ¢op = idg. If p is a section of ¢ then p must be
a monomorphism, so u[B] is a subalgebra of A on which p o ¢ acts as
the identity; in other words: p o ¢ is an idempotent endomorphism of A.
Conversely, if ) : A — A is an endomorphism with ¥ o ¢ = 1, then the
inclusion of the subalgebra B := [A] into A is a section for v, considered
as an epimorphism onto B. Given an epimorphism ¢ : A —» B with a
section pu : B — A, certain commutators can be easily described as in the
following theorem of [DK] whose proof we include for completeness:

Theorem 2.1 Let ¢ : A —» B be an epimorphism and p : B — A a
section of ¢. Let B be a congruence relation on B. Then [Kerg, 1t (8)] =

Kerg N l_/:(ﬂ)

Proof: Let v — (8). The maps ¥ : A — Kerd, given by ¥(a) =
(a,(po¢)(a)), and the diagonal v : A — Kerd, given by v(a) = (a,a) are
homomorphisms with

—

$(7) = o p) (B) =(wo ) (B) =0 () = Arurs
Therefore

—

1/)(Ker¢’ N 7) g K6T7l'2 N A}I{emﬁ

and
Kergp N~y :(Wl_gz/)) (Keré N-y) §7_r)1(Ker7r2 N A}er(ﬁ) = [Kerg,v].
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Thus [Kergﬁ,ﬁ(ﬂ)] = Kergp N ,l_/:(ﬂ) as desired. O
This theorem can in turn be used to give a definition of the modular
commutator:

Theorem 2.2 The commutator operation is characterized by the following
two properties:

(i) For every epimorphism ¢ : A —» B with a section p: B — A and
every 3 € Con(B), [Kergﬁ,ﬁ(ﬂ)] = Ker¢ N ,l_/:(ﬂ) .

(ii) For every epimorphism ¢ : A —» B and all congruences o,3 on A
y ¥le, Bl = [¥ (), % (B)].

Proof: We need only prove the suffiency of the two properties. Given
congruences a,3 € Con(A), consider the second projection m : @« — A.
Now 7, has a section v, given by v(a) := (a, a), so on the algebra o we have

[Kermy, v(8)] = Kermyn v(B),

and using property (ii) with ¢ = m; we obtain

- ,—

[71(Kermy), 71 (v (B))] =m1(Kermyn v(8)).

Then
7_r)1(Ker7r2) = cona({(m(a,b),m1(c,b))|acb, cab})
— cona({(a,c)loac))
and .
m(v(8)) =(m ov) (8) = .
O

Therefore [, 8] = m (KermN v (8)), and (i) and (i) suffice to define
the commutator in a congruence modular variety. Note that we did not
have to assume congruence modularity to attain that definition. In order
to compute the commutator of @ and 3 in an algebra A then, a suitable
preimage of A can be chosen where the commutator of (a preimage of) o
and (a preimage of ) § is calculated as their intersection and the resulting
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congruence is projected down into A. In the congruence modular case, such
a suitable preimage algebra is the congruence a. In [DK], a much larger
preimage algebra was considered, a free algebra with a generating set twice
the cardinality of A.

We start with an algebra A and introduce three variables z,,y,, z, for
each a € A. Define X := {z,Ja € A}, Y and Z correspondingly. We
consider F'(X +Y), F(Z) and the canonical homomorphisms

FX+Y)-L F(Z)2% 4
given by extension from
V(wa) — V(ya) = Zq

and
eval(z,) = a.

Given congruences « and  on A there are corresponding equivalence re-
lations ax = {(z4,zs)|aabd} on X, and Bx = {(¥a,¥s)|aBb} on Y |, whose
extensions to F(X +Y) we denote by ax and Bx- ax and Bx are “cycle-
independent” equivalence relations in the notation of [DK]. There it was
shown that the commutator of congruences on free algebras, generated
by cycle-independent equivalence relations on the generators, is equal to
their intersection. For our purposes, it suffices to show directly, that

[QX7gx] :nggx‘

Lemma 2.3 (i) [ax,B,]=axNBy;
(ii) (evalo V)7 (ax) = a;
(1ii) (eval o V)~(B,) = B.

From this lemma, the characterization of [DK] follows immediately.
Theorem 2.4 [a,f] = (eval o V)7 (ax N B,)-

Proof of lemma: For (i), consider the canonical F(X +Y) —» F(X/ax +
Y). This homomorphism has kernel ay and a section g which is constructed
as follows: For each element e from X/ax pick a representative p(e) from
X. Extend p by setting p(y,) = y, to a map from X/ax+Y to X +Y, then

to a homomorphism F(X/ax +Y) — F(X +Y). Clearly ﬁ(ﬂ_’y) = B,,
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where (' is the congruence on F'(X/ax +Y) generated by 8. Now the result
follows from 2.1. Parts (ii) and (iii) are rather obvious. O

Given an element from F(X +Y), i.e. a term p(x;y) with x and y
denoting sequences of variables from X, resp. Y, we denote by p4(x;y)
its canonical value in 4, i.e. pA(x;y) := (eval o V)p(x;y). Let ¢ :=
Ker(eval o V), then we get:

Lemma 2.5 (a,b) € [a,] iff there ezist terms, p(x;y) and ¢(x;y) €
F(X +Y) such that

(i) p(x;y) eV(axNBy) a(x:y);

(i) pA(x;¥) = a and ¢*(x;y) = b.

Proof: We have

[0, 8] = (evalo V)~ (ax NBy)
= (evalo V)7 (eval o V) (eval o V)" (ax N QY)
= (evalo V)7 (e V(ax N gy))

O

Let p = p(x;y) and ¢ = ¢(x;y) be elements of F(X + Y). For any
6 € Con(A), we can define a representative function ¢ =09 : A — A
satisfying c o0 = o, § = Kero, and (a,0(a)) € 6 foralla € A. For
sequences of variables x in X and y in Y, we obtain new sequences x/6
and y /6 by replacing each z, and y, by z,(,) and y,) respectively. The
relation p 8x ¢ simply says that p(x/6;y) = ¢(x/6;y) is an equation in the
variety. Similarly, p fy ¢ says that p(x;y/6) = ¢(x;y/6) is an equation in
V. Therefore, another way of saying [a, 3] = 0 is the following:

Lemma 2.6 [a,8] = 0 if and only if for any two terms p(x;y), q¢(x;y) with

p(x/a;y) = q(x/e;y) and p(x;5/8) = q(x;y/B) equations in V, we may
deduce p* = ¢*.

Proof: [a, 8] = 0 if and only if for all (p,q) € ax AB,, p4 = ¢*. Now
apply the above discussion. O

Corollary 2.7 Suppose there are terms p and q such that the equations
p(w,w,y,z) = Q(w7w7y7z)
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and
p(w,y,z,z) = Q(w7y7z7z)
are satisfied, then for a,b,c,d € A,

p(a,b, ¢, d)[con(a,b), con(e, )la(a, b, c, d).

Proof: Let o = con(a,b), 8 = con(c,d), and consider the terms p =
P(Ta, To3 Yo, Ya) and ¢ = q(Ta, b3 Ye, ¥a) in F(X +Y). Clearly p (ax ABy) ¢
so pA[a, Blg* . D

Corollary 2.8 An algebra A is abelian, if for any two terms p, q with
P2, 2,0) = g(z,2,2,u) and p(z,9,2,2) = a(z,9,2,2) cquations in V(A)
and any a,b,c,d € A we have p(a,b,c,d) = ¢(a,b,c,d).

As an example how to work with this characterization, consider the case
of a group G with normal subgroups A and B . Let a € A,b € B and let
a be the congruence relation given by A, 8 the congruence relation given

by B and define

P(%Y) = zazi ' yy s
and

q(x;y) =y 'ppzazy

Then p(x/o5y) = y; ‘e = q(x/a;y), and p(x;y/8) = zez;" = q(x;y/8);
pG = ab [, 3] ba = qG.

For rings use the terms p = (2, — zo)(y» — ¥0) and ¢ = (y» — yo)(za — Zo).

3 Another characterization of the commu-
tator

Both the shifting lemma and the cube lemma in the situations,



X

(87
]
V

a

require that a A 8 < é to throw (z,y) into § or, equivalently establish
that (z,y) € 6V (a A ). In many situations one would rather need to
establish the stronger result that (z,y) € 6§V [a,8]. This can indeed by
done provided that the configurations have preimages in F(X + Y'), since
there the required commutators are given by their meet, i.e. [QX,QY] =
ax A B,.

We shall look at such configurations and it will turn out that the shifting
lemma leads us to the well known “term-condition” and, in the same way,
the cube-lemma leads us to a second kind of term condition, involving
two terms. Both these term conditions characterize the commutator. A
condition very similar to the second one has also been found independently
by E. Kiss [K]. He called it the “two-term-condition”. His proof is based
on a four-variable version of a difference term.

Finally, in this chapter we shall use the “two-term-condition” to strengt-
hen somewhat a result connecting commutators with a homomorphism pro-
perty of the original 3-variable version of the difference term of [Gu].

Theorem 3.1 (Term-condition (Gu, Fr McK)) The commutator [a, ]
is closed under the following condition: If aca’, bGb' and p(a;b)[a, B]p(a;b’)
then p(a’; b)le, Blp(a’; b').

Proof: The stated relations give



p(a’;b) “ p(asb)

p(a’sb’) p(a;b’)

Pulling this diagram back into F(X 4+ Y) we obtain

p(x%y) ax p(xsy)
By eV (ax A By)
p(x’;y’) p(x5y’)

Thus the shifting lemma yields p(x';y’) € V(ax AB, )p(x';y') and, after
projecting onto 4, we get p(a’;b) [, 8] pA(a’;b’). O

In fact, it is known that the commutator is the smallest congruence
closed under the above condition. This, however, does not seem to follow
trivially from our definition of the commutator.

The cube-lemma may be used in an analogous way for the “two-term-
condition”. Here, our commutator definition gives us both directions with
relative ease:

Theorem 3.2 The commutator [a,] is the smallest congruence relation
closed under the following condition for aca’ and bBb':
If  p(a;b’) [, 8] q(a;b’)
p(a’;b) [a, 8] g(a’;b)
p(a’;b’) [a, 8] g(a’;b’)
then
p(a;b) [a,8] g(a;b).

Proof: To see that the commutator [«, 3] is closed under the condition,
consider the cube
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p(a;b)

q(a;b) l/
P(a;b, a’s b’

e

q(a’sb’)

q(a;b?)

&

By forming its preimage in F(X 4 Y) as in the previous theorem, we
obtain as before p(x;y) ¢ V (ax A By ) ¢(%;¥), which, after projection onto
A, yields the desired p(a;b) [a, (] g(a;b).

For the converse, assume (u v) € [ea,B] and let ¢ be the smallest
congruence relation closed under the given condition. We have to show
that (u,v) € ¢.

Since (u,v) € [a,(], by lemma 2.5 there exist p,q € F(X +Y) with
p* = u, ¢ = v, and p(x;y) ¢ V (ax A By )a(x;y). Thus there exists
T0y ...,y With

ro(X;y) = p(%;),

(X ¥) = ¢(x%3Y),
r;‘l =ri, for ¢ even, and
ri(% ¥ )(ax A By )i (%5y) for ¢ odd.

Thus, for ¢z odd, the equations
ri(x/a;y) = riq(x/05y)
ri(x;y/8) = ripa(x;y/8)
hold in the variety, and, since we only identify more variables,

ri(x/o;y/B) = rizi(x/o;y/B), as well.

Hence, passing back to A, the assumed condition on ¢ implies that for ¢ odd
TzAfT:":q)

and thus v = p4¢¢? =

a

Finally we use the last theorem to improve a result of [Gu|. According
o [Gu], Lemma 7.1, every congruence modular variety has a term ¢ such
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that ¢(z,y,y) = z is an equation in V and t(a,a,b) [e, @] b, if aab. Using
the two-term-condition, we can show:

Theorem 3.3 Let z; a y; 8 2z; fori=1,...,n and [a,B] > |3, 8] then for
every n-ary term f we have:

f(t(whyhzl)w .. 7t(wn7yn7zn)) [Oé,/B] t(f(wla' .. 7wn)7f(y17' .. 7yn)7f(zl7' . 7zn))

Proof: From the above mentioned properties of ¢ we get the equalities
ft(z1,21,21)y e o s 8@y 2y 20)) = HF(@1, -+ -y 20), F(215. -5 20), f(21,- -0y 20)),

f(l;(yhzhzl)w"7t(yn7zn7zn)) = t(f(y17"'7yn)7f(zl7"'7zn)7f(zl7"'7zn))7

f(t(y1,y1,21), v 7t(yn7yn7zn)) [/87/8] t(f(yh T 7yn)7f(y17 tee 7yn)7f(zl7 v 7zn))'
Thus, since [3,8] < [, ], theorem 3.2 yields:

f(t(whyhzl)w .t 7t(wn7yn7zn)) [Oé,/B] t(f(wla- .t 7wn)7f(y17- .t 7yn)7f(zla- .t 7zn))'

a

This improves a previous result [Gu], Theorem 9.1, where @ > 3 had to

be assumed instead of [, 3] > [3, 3]

4 A commutator for arbitrary varieties.

We may try to use 2.4 to define the commutator in an arbitrary variety,
i.e. define [a,f] := (eval o V)7 (ax A B,). This approach has certain
advantages, since it may be formulated category theoretically. This makes
certain properties easily derived from “abstract nonsense”:

1) [, 8] < a A B, (sub-meet);
2) a<a =la,pf] <lo,B], (monotonicity);
3) [e,B] = [B,a], (symmetry);

for any homomorphism ¢ : A — B, a,8 € Con(A), and 8,9 € Con(B)

—

4) ¢[a,B] < [$a, $B], (direct continuity);

which is equivalent under 1) through 3) to

5) [20,;—{;1/)] §Z[0,1/)], (inverse continuity).
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Join-distributivity and full compatibility with epimorphisms do not
seem to hold in the general non-modular case, although we did not come
up with any counterexamples. A weaker epimorphic condition does hold
though, and it together with join-distributivity would supply full compati-
bility with epimorphisms.

Lemma 4.1 For epzmorphzsm ¢ : A —» B, and congruences o, >

Kerg, $la, 8] = [po, 4.

Proof: Let T U, and V be the required variable sets isomorphic to B,
and define 6 : ¢> a, and o : ¢> B in Con(B).¢ induces natural epimor-

phisms,
m:F(Z) —» F(V) and n: F(X+Y) — F(T +7U),

defined as extensions of z, — Ve, Ta — tpe, and Yo — uge. Since ¢ is a
surjective set function, there exists a set-theoretical section p : B — A
with ¢ o p = idp. This set-theoretical section produces natural algebraic
sections for these natural epimorphisms and the following commutative
diagram.

n
F(X + X) F(T+70)
v
VA VB
m Y
F(2) F(V)
m
evaly evalp
A ¢ B

e
Since Ker¢p < a and (3, we obtain &« =¢p o =¢ § and B =¢ . The
naturality of our new homomorphisms then produces nay = 07, 78, =

fU, v8r < ayx, and ﬁfU < éy- Therefore,
Or Ny, = (nov)(0r Ayy)
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i(v(0r) A v(¥y,))
i(ax ABy)
i(ax) Ai(By)

0r N, and finally,

VANVANRVAN

(poevalyoVa) (ax ABy)
= (evalB oVpo n) (O‘X N gy)
(evalg o V)~ (07 AN y,)

6

o, 6 ).

a

Corollary 4.2 If the commutator also satisfies the join-distributivity con-
dition

[, BV 7] = [e, B] V [@,7],
then for any epimorphism ¢ : A —» B and o, € Con(A)

—

¢lo, B] = [pe, 98]

Proof: If 8 = Kerg, then by join-distributivity we get that

[0\/ a,f \/ﬂ] = [070 \/ﬂ] \ [0‘70 \/ﬂ] = [070] \ [075] \ [aae] \ [aaﬂ]'
Joining with 6 produces

vV a,8VE=0Va/pl,
and applying g_i;gives us
POV a,0VB =¢(0VI[0VabVpE])=¢(0Vap])=0¢[p].

4.1 then produces the desired result. O

Theorem 4.3 Let X and Y be disjoint sets, o € Eq(X) and 3 € Eq(Y).
Then in F(X +Y) we have :

lax,By] = ax NG,
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Proof: Suppose (p,q) € ax N B3, then p(x/a;y) = ¢(x/e;y) and
p(x;y¥/8) = q(x;y/B) are equations in V. Let A = F(X' 4+ Y') and
B = F(X?+Y?) be two disjoint copies of F(X+Y). Let a',a?, 3", 8% be the
equivalence relations on X!, X2?,Y',Y? corresponding to « and 3, and let
similarly (ax)! and (QY)2 be the equivalences on A and B corresponding to
ay and to B,. In F(A+ B) we must now consider the congruence relations
a, and B, generated by (ax)' and (QY)2. Next we modify p(x,y) and
g(x,y) by replacing the x’s and the y’s by the corresponding variables
from X' and Y?, yielding terms p = p(x';y?) and § = ¢(x';y?). We
now have that p(x'/a’;y?) = ¢(x'/a';y?) and p(x';y*/8%) = q(x*;y*/5%)
hence p ay N B, ¢. Finally, since (eval o V)p = p and (eval o V)¢ = g, it
follows that (p, q) € (eval o V)7 (a,u N B,) = [ax,B]- O
Corollary 4.4 For any set U and congruence relations, o and 3, on F(U),
which are generated by equivalence relations on U, we have

[, 8] = A7 (A 2 B)

where

A:FU)+FU)— F(U)
18 the codiagonal and
pi: FU) — FU)+ FU), i = 1,2
are the canonical injections.

Proof: We now have 4 := F(U), X,Y, and Z set-isomorphic to 4, and

the following commutative diagram,

eval + eval

F(X+Y) FU)+ F(U)
A\ A
F(2) eval FU)

where (eval + eval) takes X and Y back to F(U).
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[, 8] = (eval o V)7 (ax ABy)

= ( o (eval 4 eval))” (ax A QY)

< A7((eval + eval)”(ax) A (eval + eval)”(8,))
A7 (pran M25)
[,ul o, 123], by the theorem

< [A” pra,A” p33], by continuity

[, B].

a

Corollary 4.5 Join-distributivity ts equivalent to the following condition
on congruences on F(X +Y):
For all equivalence relations o on X, and #,7 on Y,

ax N(By Vay) < (ax ABy) V(ax Ayy)-

Proof: By the theorem, ax A (8, V7y), (ax A By ), and (ax A7, ) are
the commutators of their respective congruences in F(X + Y). Thus the
condition is necessary. Conversely, if it holds, we have for any A in the
variety and any «, 8,7 € Con(4),

[,VA] = (evalo V)7 (ax A(By Vay))

< (eval o V)7 ((ax A QY) V(ax A 1}’))
(eval o V)7 (ax A By )V (eval o V)7 (ax A7vy)
28] V o]

O
This join-distributivity condition can be expressed as a Mal’cev type
implication, thus we think that it is false in general.

Corollary 4.6 If the variety is congruence modular, then the commutator
18 join-distributive.
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Proof: In a modular lattice, any distributive equality between three
variables implies that these variables generate a distributive sublattice. It
is an easy calculation to see that for any disjoint sets, X and Y, and any

equivalence relations, a € Fq(X) and 8,7 € Eq(Y), in Con(F(X +Y)):

QY A (QX vly) = QY A (QX \ (QY /\1}’))‘

a

The extreme cases: [a,3] = 0 and [o,3] = a A B can be characterized
though.

Theorem 4.7 The following are equivalent for a variety, V:

(i) V satisfies [, 3] = aNf;
(i) V satisfies [o, ] = a;
(iii) There are quaternary terms po,...,p, such that V satisfies:
L = pO(w7y7z7u)7 and pn(w7y7z7u) =Ys
pi(z,y,7,y) = pixa(z,y,7,y),  for i odd;
pi(w7w7yaz) = pi+1(w7w7y7z) and
)
(

Proof: (i) < (ii) is obvious, since [a A B,a A B] < [a, 8] S a A S.
Assume (ii). Then in the two-generated free algebra, A := F(a,b) we
have by 4.4:

(a,b) € [cona(a,b),cona(a,b)] =V (conp(z,y) A conp(z,u))

where B := F(z,y,z,u), and V is given by the extension of Vz = Vz =«
and Vy = Vu =b. If ¢ := KerV = conpg(z,z) V cong(y,u), then we have
as in 2.5:

(a,b) € [cona(a,b),cona(a,b)] iff (z,y) € (¢ V (conp(z,y) A cong(z,u))).

From this, (iii) easily follows.

Conversely, assume there are quaternary terms as in (iii). Then for any
A €V, any 6§ € Con(A), and any (a,b) € 0, we have in F(X +Y), the
terms p;(@q, b, Ya,Ys) for + = 1,...,n. The assumed properties of these
terms give us
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Pi€Pit1 for i even
pi(0x A Oy )pit1 for i odd.

Therefore (a,b) € [6,6] by 2.5. O
Corollary 4.8 A congruence semidistributive variety satisfies [0,60] = 0.

Proof: Note that the quaternary terms in 4.3 express the fact that,
in F(z,y,z,u), the congruences a = con(z,z) V con(y,u), 8 = con(z,y),
v = con(z,u) satisfy

(@aVB)A(aVy) <aV(BAY),
which is also implied by semidistributivity, since a V3 =a V~y. O
Corollary 4.9 If [0,6] = 8 then there exist ternary terms to,...,t, with

r=to(z,y,2) and t,(z,y,2) = y;
ti(z,y,2) = tip1(z,y,2), for i odd;
ti(w7w7y) = ti+1(w7w7y)7 and
ti(z,y,y) = tizi(z,y,y) for i even.

Proof: Just identify the second and fourth variables. O
Note that this Mal’cev condition is also used in [HM] to characterize
congruence-semidistributivity in locally finite varieties.

Theorem 4.10 A variety satisfies [p,v] = 0 if and only if for any two
disjoint sets, X and Y, any equivalence relations, a on X and B on'Y, and
any two terms p(x;y) and ¢(x;y) in F(X +Y):

of
. p(x/a5y) = q(x/a;y) and p(x;5/8) = q(x;y/8)
then

p(x3y) = q(x;y).
Corollary 4.11 The following varieties satisfy [p,v] = 0:
0) Sets;

1) Semigroups;

18



2) Rectangular bands [ i.e. (zy)z = z(yz) = 2z [;
3) Semilattices;
4) any absolutely free variety.

One should note that this “commutator” is not invariant with respect
to subvarieties: A € W <V, and o, € Con(A) imply [o,Blw > [e, B]v.
Indeed, the largest binary operation defined on C'on(A) for each A in V that
is submeet and satisfies the full epimorphism condition is clearly varietal
dependent. In the same vein as 4.5 one can show that invariance with re-
spect to subvarieties is equivalent to the following condition on congruences
on F(X+Y)with X =Y:

For all equivalence relations o, € Eg(X) and fully-invariant congru-

ences, ¥ € Con(F (X + X)),

(BEVax) AN (EVE,) =2V (ax ABy).

It is easy to see that we always have ay V(XA B,) > U A(ax V B,), thus,
a similar argument as in 4.6 shows that the commutator in a congruence
modular variety is invariant with respect to subvarieties.

Epilog: The “real” commutator for an arbitrary variety of algebras still
lacks an algebraic description. The full epimorphism property implies that
it is smaller than ours; how much smaller is an open problem.
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