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Abstract. In [6] Tsay and Bagrodia present a correct and complete
proof rule for proving within UNITY statements of the form “(true 7→
p) ⇒ (true 7→ q). Their result is obtained by specializing a proof rule
due to Manna and Pnueli [5] and translating premises and conclusions
into the UNITY framework. However, specializing the rule from [5] is
not sufficient, details of the proof have to be invoked and modified.

Here we give a straightforward and selfcontained proof of a rule that
is more general in several respects. Firstly, our transition systems may
have an infinite number of transitions, and secondly, p and q may be any
temporal properties, as long as p is “observable” and q is “bounded”.

In particular, temporal properties such as 23Enabledi ⇒ 23Takeni, in
which Takeni is not naturally a state property, can be dealt with. Our
main tool is a predicate transformer “w(p,q)” that specializes to the well
known “wlt(q)” for p = true.

1 Definitions

1.1 Transition systems

Let G = (S, I, T ) be a transition system, i.e. S is a nonempty set, I ⊆ S, and
T a set of binary relations on S. Elements of S are called states, I is the set of
initial states and each t ∈ T is called a transition. We allow T to be countably
infinite. For any X ⊆ S and t ∈ T we set t(X) := {s ∈ S | ∃x ∈ X.(x, s) ∈ t}.
We assume that every transition is left total, that is for every s ∈ S and t ∈ T
there exists an s′ with (s, s′) ∈ t. G, S, I, and T will remain fixed for the rest of
this article.

1.2 Sequences, properties and temporal operators

If σ is any sequence of elements of S, we denote its i-th element by σi and its k-th
rest by σk. Thus σ = (σ0, σ1, . . .) and σk = (σk, σk+1, . . .). Each initial segment
u = (σ0, . . . , σk) is called a prefix of σ. In this case we write u � σ. Let S∗ be the
set of all finite and Sω the set of all infinite sequences over S. Let S∞ = S∗∪Sω.

Given U ⊆ S∗ and V ⊆ S∞, U · V consists of all concatenations u · v with
u ∈ U and v ∈ V . Sk is the set of all sequences of length k over S. We identify
S1 with S.



A state property p is a subset of S and a temporal property P is a subset of
Sω. Although we do not require that properties be presented syntactically, we
prefer to use the familiar logical connectives over the set theoretic operations.

Let P ⊆ S∗, and Q ⊆ Sω. The linear temporal connectives Init, ◦, 3, and 2

are defined as follows:

Definition 1 Temporal Operators.

Init(P ) = P · Sω

◦Q = S ·Q
3Q = S∗ ·Q

2Q =
∞⋂

n=0

Sn ·Q

The operator “Init” is usually dropped, that is if we use some P ⊆ S∗ as a
temporal property, we actually mean “Init(P )”.

Definition 2 observable, safety, bounded. A temporal property P is called
observable if there exists a subset P0 ⊆ S∗ such that P = P0 · Sω. P is called
safety if its complement is observable. We call P bounded, if for some k there
exists P0 ⊆ Sk so that P = P0 · Sω.

The above notion of safety agrees with the one introduced and investigated by
Alpern and Schneider in [1]. Note that a bounded property is an observable
safety property. If S is finite, the converse is also true.

1.3 Paths, traces, weak fairness

A path of the transition system G is a sequence σ ∈ Sω such that (σi, σi+1) ∈
⋃

T
for all i ∈ ω. σ is called weak fair, if for every t ∈ T and every i ∈ ω there exists
a j ≥ i with (σj , σj+1) ∈ t. In short: every transition of T is taken infinitely
often. With Sω

T we denote the set of all weak fair paths of G = (S, I, T ). If P is
a temporal property and σ ∈ Sω we sometimes say “σ satisfies P” for σ ∈ P .

A path α with α0 ∈ I is called a trace of G. For a transition system G we
write G |= P and say “G satisfies P”, if every weak fair trace of G satisfies P ,
that is if I · Sω ∩ Sω

T ⊆ P .
In the following we shall use the letters u, v, w for elements (words) of S∗,

p, q for state properties, P,Q,R for subsets of S∗ or of Sω, σ, τ for paths and
α, β, γ for traces of G. All paths and traces that we consider will be assumed to
be weak fair with respect to T .

1.4 UNITY

UNITY is a methodology for the specification and verification of transition sys-
tems. In K.M. Chandy and J. Misra’s original presentation [2], T consists of



a finite set of conditional parallel assignments, thus, in particular, transitions
are deterministic. UNITY logic is not quite a subset of temporal logic. Given
state properties p and q, the following are UNITY properties together with their
semantically equivalent temporal logic counterparts :

initially p := Init(p) (1)
invariant p := 2p (2)
p unless q := 2((p ∧ ¬q) ⇒ ◦(p ∨ q)) (3)

p 7→ q := 2(p ⇒ 3q) (4)

The operator “ 7→”, pronounced “leads to”, is the main connective for expressing
progress. Its proof theory is based on an operator “ensures” which describes how
progress is achieved with a single transition:

p ensures q := (p unless q) ∧ ∃t ∈ T. t(p ∧ ¬q) ⊆ q.

“p ensures q” is not a temporal property, since it is easy to come up with transi-
tion systems G and G′ having the same weakly fair traces but different ensures-
properties.

The above definition of the UNITY operators is purely extensional. In con-
trast to this, Chandy and Misra [2] introduce the UNITY operators via proof
rules. The rules for “7→” are :

p ensures q
p 7→ q

p 7→ q, q 7→ r
p 7→ r

∀k∈K .(pk 7→ q)
(∃k∈K .pk) 7→ q

In [3] and [4] it has been shown that these rules are correct and complete with
respect to the above extensional definition of “7→”. In particular, the statement
“infinitely often p” (23p) can be expressed in UNITY as “true 7→ p”.

The above definitions of UNITY properties “invariant”, “unless” and “ 7→”,
can straightforwardly be extended to the case where p and q are arbitrary tem-
poral properties; “initially p” can be extended to the case where p ⊆ S∗. Thus
P is observable iff P = initially P0 for some P0 ⊆ S∗.

2 Rules for conditional progress

Conditional properties provide an extension of UNITY logic useful for describing
properties of components within a given context. Y.-K. Tsay and R.L. Bagrodia
argue in [6] that strong fairness can be expressed within UNITY using temporal
properties of the form “(true 7→ p) ⇒ (true 7→ q)” where p and q are state
properties. The main result of their paper is a sound and complete rule for
proving temporal properties of this form:

Theorem 3 Tsay, Bagrodia. With some map M from S into a wellfounded
partial order (W,�), the following is a sound and complete rule for proving
statements of the form “(true 7→ p) ⇒ (true 7→ q)” in UNITY :

M � r unless q
p ∧ (M = r) 7→ (M ≺ r) ∨ q

(true 7→ p) ⇒ (true 7→ q)



Tsay and Bagrodia’s proof invokes a sound and complete proof rule given by
Manna and Pnueli in [5] for proving statements of the form “2[(r∧23p) ⇒ 3q]”.
When this rule is specialized to the case at hand, they show that all premises
may be transformed into UNITY expressions.

Unfortunately though, applying Manna and Pnueli’s rule is not enough. The
argument in [6] requires to invoke and modify details of Manna and Pnueli’s
proof, thus making the paper not selfcontained.

Secondly, the type of temporal property commonly used to specify strong
fairness for a transition t,

23Enabledt ⇒ 23Takent,

does not immediately fit the above framework, since Takent is not a state prop-
erty, but rather a property of consecutive pairs of states. In fact, written as a
temporal property, Takent = t · Sω.

Finally, Manna and Pnueli’s proof on which Theorem 1 is based, works only
for transition systems with finitely many transitions. We shall therefore gener-
alize the above to the following:

Theorem 4. Let P be observable and Q = Q0 ·Sω bounded with Q0 ⊆ Sk. With
some map M from Sk into some wellfounded partial order (W,�) the following
rule is correct and complete:

M � r unless q
P ∧ (M = r) 7→ (M ≺ r) ∨Q

23P ⇒ 23Q

As a special case we consider state properties p1, . . . , pn together with the con-
dition “true 7→ p1 ∧ . . . ∧ true 7→ pn”. This is equivalent to 23P where P is
the observable property P = p1 · S∗ · p2 · . . . · S∗ · pn · Sω. A slight modification
of the general proof is needed to yield the following corollary:

Corollary 5. With a map M̃ from S into some wellfounded partial order (W̃ ,�)
and a map ξ : W̃ → {1, . . . , n} the following rule is correct and complete:

M̃ � r unless q

pξ(r) ∧ (M̃ = r) 7→ (M̃ ≺ r) ∨ q

(true 7→ p1 ∧ . . . ∧ true 7→ pn) ⇒ (true 7→ q)

2.1 Weak temporal implication

The main tool in our proof is an operator w( , ) which is a weak form of a
temporal implication.

Definition 6. Let P ⊆ S∗ and Q ⊆ Sk then

w(P,Q) := {u ∈ Sk|∀σ ∈ Sω
T .σ ∈ Init(u) ∩3P ⇒ σ ∈ 3Q}.



Note that for p = true, w(p, q) specializes to the well known weakest-leads-to,
wlt(q). Moreover, the operator w( , ) is monotone in the second and antitone in
the first argument. The following properties will be of relevance in this note:

Lemma 7. w(P,Q) satisfies:

(i) w(P,Q) ⊇ Q
(ii) w(P,Q) unless Q
(iii) P ∧ w(P,Q) 7→ Q

Proof: For (i), let u ∈ Q. If σ ∈ Init(u), then σ ∈ Q. Hence u ∈ w(P,Q).
For (ii), let σ |= w(P,Q) ∧ ¬Q, thus (σ0, . . . , σk−1) ∈ w(P,Q)−Q. We need

to show σ1 |= w(P,Q), i.e. (σ1, . . . , σk) ∈ w(P,Q). So let τ ∈ Sω
T be a path with

(σ1, . . . , σk) � τ and τ |= 3P . Then σ0 · τ is also a path from Sω
T , satisfying 3P ,

hence σ0 · τ |= 3Q. But (σ0, . . . , σk−1) � σ0 · τ , so σ0τ 6|= Q, hence τ |= 3Q.
For (iii), suppose σ |= P ∧ w(P,Q), then u � σ for some u ∈ w(P,Q). Then

σ |= 3P , so by definition of w(P,Q), σ |= 3Q.

Lemma 8. If G |= 23P ⇒ 23Q, then for every R ⊇ Q with w(P,R) = R we
have G |= 2R.

Proof: Assume, R ⊇ Q with w(P,R) = R is given, but G 6|= 2R. For any chosen
map φ : ω → T we show how to construct a trace

α = w0u0w1u1 . . .

such that for all i ≥ 0

1. ui ∈ Sk −R
2. uiwi+1ui+1 contains no subword from Q
3. uiwi+1 contains a subword from P
4. wi+1 contains a transition from φ(i + 1)

From 4. and 3. it will follow that α can be constructed as a weak fair trace
satisfying 23P . From 1. and 2. and the fact that Q ⊆ R ⊆ Sk it follows
that u0w1u1w2 . . . |= 2¬Q, hence α |= 32¬Q, contradicting the assumption
G |= 23P ⇒ 23Q.

Let us now begin constructing α. From the assumption G 6|= 2R, we obtain
a weak fair trace w0u0 · σ with u0 ∈ Sk −R.

Assume now that for some n ≥ 0 we have already found a path

σ = u0w1u1 . . . wnun · τ

such that 1. through 4. are satisfied for 0 ≤ i ≤ n. We shall show how to construct
wn+1un+1.

From un ∈ Sk − R, we get un ∈ Sk − w(P,R), so we can find a weak fair
path σ′ with un � σ′, σ′ |= 3P and σ′ |= 2¬R. This permits us to choose a
prefix vn+1 = unwn+1 � σ′ large enough so that



– vn+1 contains a subword pn+1 ∈ P
– wn+1 contains a transition from φ(n + 1).

Let now un+1 be the word consisting of the k subsequent letters of σ′, i.e. such
that unwn+1un+1 � σ′. Then 1. - 3. follow from the inductive assumption and
from the fact that σ′ |= 2¬R and from R ⊇ Q. 4. is part of the construction of
wn+1.

We note in passing, that the converse of this lemma is also true. To show
this, consider

w∞(P,Q) := {u ∈ Sk|∀σ ∈ Sω
T .σ ∈ Init(u) ∩23P ⇒ σ ∈ 3Q}.

It is easy to verify that R = w∞(P,Q) is a fixed point of the map w(P, )
containing Q. From G |= 2R it follows G |= 23P ⇒ 23Q.

2.2 Measuring progress

The above fixed point of w(P, ) can also be constructed by a transfinite iteration:

M0 = Q

Mα+1 = w(P,Mα), and

Mβ =
⋃

α≺β

w(P,Mα), if β is a limit ordinal.

We now turn to the proof of theorem 2. Correctness of the rule is easy and left
to the reader. Let

W = {α ∈ Ord|∀β ≺ α.Mα 6= Mβ}
M(u) = min{α ∈ W |u ∈ Mα}

Note that M(u) will always be 0 or a successor ordinal. Assuming G |= 23P ⇒
23Q, Lemma 2 yields that the above map M : Sk → γ is well defined on
the reachable part of Sk, that is on all k-tuples u for which there exists a weak
fair trace σ, containing u as a subword. For all other k-tuples of Sk, M may
be defined arbitrarily, say 0. We have to show that for any ordinal r ∈ W the
premises of the rule in theorem 2 are true.

We use ordinal induction to show “M � r unless Q”. The case r = 0 is
trivial, since M0 = Q.

Suppose the claim is true for all α ≺ r. If r = α+1 then Mr = w(P,Mα) and
Mr unless Mα by lemma 1. Since Mr ⊇ Mα ⊇ Q and by induction hypothesis,
we get Mr unless Q, that is M � r unless Q.

The premise “P ∧ M � r 7→ M ≺ r ∨ Q” is similarly shown by induction.
M0 = Q, so P ∧M � 0 7→ Q. If r = α + 1 then P ∧Mr = P ∧w(P,Mα) and the
statement follows from Lemma 2(iii).

Finally, we indicate how to modify M to yield the corollary. We have to
measure the progress of the individual state properties pi on those subsets of S
where M is constant. For s ∈ Mα+1 −Mα we therefore define

ξ(s) := max{j|s ∈ w(pj · S∗ · . . . · S∗ · pn · Sω,Mα)}.



Let N = {1, . . . , n}. We consider W̃ = W ×N with the lexicographic order and
define M̃(s) = (M(s), ξ(s)) and ξ : W̃ → N as the second projection. With this
it is straightforward to verify the corollary.

3 Conclusion

We have given a correct and complete rule for temporal properties of the form
23P ⇒ 23Q when P and Q are temporal properties with P observable and Q
bounded.

In comparison with a corresponding result by Tsay and Bagrodia for state
properties p and q, our proof is selfcontained, and our results are more general in
two ways: Firstly, we can deal with transition systems having an infinite number
of transitions, and secondly, we can deal with more general types of temporal
properties.
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