
Generating Algebraic Laws from Imperative
Programs

H� Peter Gumm

Dept� of Mathematics� Philipps Universit�at Marburg
gumm�mathematik�uni�marburg�de

Abstract� The use of veri�ers for proving the correctness of concrete
programs is well known and has been amply described in the literature�
Here we focus on further� perhaps more general tasks such veri�ers can
perform� Given a program that is assumed to be correct� we derive a
set of axioms for the data structures involved� In the simplest case� we
study an abstract program interchanging the contents of two variables�
The veri�cation conditions generated by our veri�er� NPPV� are a set
of equations specifying quasigroups� Other examples reveal the notion of
�strategy� from the veri�cation of an abstract game playing program� or
show the correspondence between inductive proofs of numeric properties
and veri�cation of a program searching for a counterexample� Finally we
apply NPPV on Wand�s example showing the incompleteness of Hoare�s
logic� We also give a simpli�ed proof of Wand�s result�

� Algorithm � Data Structure � Control

According to standard de�nitions ���� an algorithm is a detailed and explicit

instruction for the stepwise solution of a given problem� This means that there
must be given a repertoire of elementary �or atomic	 steps which are to be com

bined according to the instructions of the algorithm� In a general sense it is of
course allowed to think of atomic steps such as �add a cup of �our�� �stir��
and of combinations of instructions such as �add a cup of �our then stir until

smooth�� but we shall not deal with recipes� rather with algorithms computing
functions over sets of data�

Here an atomic step consists of calculating a data value according to a given
set of operations and storing the result in a memory cell� In describing how to
combine such elementary steps a small set of instructions including composition
� � 	� conditional �if�then�else	 and loops �while or repeat	 is commonly
used�

This way a separation of concerns is achieved� A data structure de�nes the
admissible atomic steps and a control structure determines how these steps are
to be combined to yield the desired algorithm� This view is stated very succinctly
in the well known slogan �algorithm � data structure � control��

The border separating data structure and control may slide towards either side
depending on the application� As an example we may assume to have multiplica

tion ��� of natural numbers available as elementary arithmetical instruction� yet



we may also get by with the operators of Presburger arithmetic �� succ��� �	 and
construct an algorithm for multiplication� All programming languages provide
mechanisms to augment the data structure by such de�ned functions�

The main purpose of this article is a demonstration together with a set of
some succinct examples that show how Wirth�s �equation� may be solved for
an unknown data structure too� That is� given the speci�cation of an algorithm
and given a control structure� automatically determine axioms for a data struc

ture required to ful�l the speci�cation� A vehicle for �nding these examples is a
program veri�er �NPPV	 that we have constructed for educational purposes and
used in many courses on program veri�cation� With its help we can not only
semi
automatically verify concrete programs� but also investigate �abstract pro

grams� and reveal relationships between programs� speci�cations� invariants and
data structure requirements� As a simple example� for instance� we shall show
that a program to interchange the value of two variables works correctly pre

cisely if the data structure contains a quasigroup operation� or that the failure of
a program to �nd a counterexample to a conjecture leads to an induction axiom
for the data type�

NPPV �New Paltz Program Veri�er	� has been implemented on an IBM com

patible PC and has been developed for� and successfully used in courses devoted
to the mathematics of program veri�cation and abstract data types� The software
is embedded in an �integrated development environment� with built
in editor�
pull
down menus and pop
up windows� It is freely available for demonstration
and course use�

� Data Structures

De�nition� �Signature�� A many�sorted signature is a triple �S�F � � 	 where

� S is a set �whose elements are called sorts	
� F is a set �of operation symbols	� and
� � � F �� S� � S is a map associating with every f � F a tuple of argument
sorts and a result sort�

De�nition� �Data Structure�� A data structure of signature �S�F � � 	 is a
tuple A � �A�F 	� consisting of a family A � �As	s�S of nonempty sets together
with a family of fundamental operations F � �fA	f�F so that the type assignment
� is respected� i�e� if � �f	 � ��s�� � � � � sn	� s	� then fA � As� � � � � � Asn �� As�

Examples of data structures are groups of sort �fGg� f���� � eg� � 	 where �
speci�es that�

� � G� G �� G
�� � G �� G
e � �� G�

The two
element Boolean algebra is �fIBg� f��	�
� true� falseg	� Presburger
arithmetic is the data structure �fIN� IBg� f�� succ� � ���g	� and standard arith

metic is �fIN� IBg� f�� �� � �����g	 where in the latter three data structures the
signature is evident�



��� Terms

Terms are expressions built from variables and fundamental operations� Assum

ing that for each sort s � S we are given a set of variables V ars� we can de�ne
recursively the notion of a term of type s�

De�nition	� �i	 Every variable v � V ars is a term of type s�

�ii	 If � �f	 � ��s�� � � � � sn	� s	 and ti is a term of type si for every i � n� then
f�t�� � � � � tn	 is a term of type s�

�iii	 Given a term u of type s and a variable v � V ars� then for every term t�
t�v�u� denotes the term obtained by replacing every occurrence of variable v
in t by the term u�

��� Logical expressions

Data types used for programming are always assumed to extend the Boolean data
type� � Boolean expressions are simply terms of type IB� Boolean expressions are
used in programs to determine the �ow of control� Predicate logic expressions

extend Boolean expressions by allowing quanti�ers � and � that is�

De�nition
� �i	 Every Boolean expression is a predicate logic expression�

�ii	 If p� q are predicate logic expressions� then so are p � q� p 	 q� and 
p�

�iii	 If p is a predicate logic expression� and x is a variable� then �x�p and x�p
are predicate logic expressions�

��	 States

A state is an assignment of values to variables� More precisely� a state � is a
family of mappings �s � V ars �� As� Given a variable x of type s� we write
��x	 instead of �s�x	� The canonical extension of � to a map from terms to values
is also denoted by �� �In functional programming terminology this extension is
often called eval� �	

Given state �� variable v and value M we let � � �v � M � denote the �new�
state �� with ���v	 � M � and ���w	 � ��w	 for every w �� v� Observe that for
any state �� terms t� r and variable v �

��t�v�r�	 � �� � �v � ��r	�	�t	�

Unfortunately� it turns out that any su�ciently rich model of computation
will allow calculations that never terminate� We therefore include a pseudo
state
�� pronounced �bottom� or �unde�ned�� A nonterminating computation is then
said to return ��

� Even if the Boolean operations are only derived operations� such as in the C language�



� Control

The purpose of a �sequential	 calculation is to proceed from an initial state �
to a �nal state �� in which certain variables have some desired value� A program
calculating the gcd of two numbers� e�g�� is started in any state �x � M � y � N �
where variables x and y are assigned positive integer values M � resp� N � and is
supposed to reach �nal state in which a variable z is assigned gcd�M�N 	� Thus
a program is �the description of	 a state transformation�
	�� Commands

Control structures describe state transformations and their combinations� Given
a state� a command speci�es how the next state is to be achieved� With ��C�� we
describe the state transformation speci�ed by commandC� so ��C����	 is the state
achieved after starting the execution of C in state �� We set ��C����	 � � for all
commands C�

	�� Assignment

The most basic command is given by a variable v and a term t� The phrase

v �� t

is called an assignment and it is meant to denote the map transforming state �
to � � �v � a�� where a is the value of t in state �� i�e�

��v �� t����	 � � � �v � ��t	��

Non
con�icting assignments my be executed in parallel

v�� � � � � vn �� t�� � � � � tn�

where the values of v�� � � � � vn are updated with the �simultaneously computed	
values of t�� � � � � tn respectively� i�e�

��v�� � � � � vn �� t�� � � � � tn����	 � � � �v� � ��t�	� � � � �� �vn � ��tn	��

	�	 Sequencing

Given commands C� and C� the sequential execution of ��rst C�� then C��� is
described by �C� � C��� that is

��C��C��� � ��C��� � ��C����

At this point we note that assignment and sequencing alone do not add �compu

tational power� going beyond the evaluation of terms in the data type� That is� a
sequence of assignments can always be replaced by one single parallel assignment�



	�
 Skip

Occasionally it is convenient to have a command skip available� skip denotes
the identity state transformation and could be simulated by a trivial assignment
v �� v� Clearly� ��� is associative with two
sided unit skip �

	�� Conditionals

Given a Boolean expression B and two commands C� and C�� the command

if B then C� else C�

will be the same as C� when started in a state where B is true and C� otherwise�
that is �

��if B then C� else C�����	 �

�
��C�����	� if ��B����	 � true

��C�����	� if ��B����	 � false�

A �complex	 command built from assignments using only sequencing and condi

tionals is called a �straight line program�� Note� that in the case of a �nite set
A every map f � A��A� �more generally� every operation on A	 can be realized
with a straight
line program P � If A � fa�� � � � � arg� and the desired map is
given as a� �� b�� � � � � ar �� br� let P be the straight line program

if x � a� then z �� b�
else if x � a� then z �� b�

� � �
else z �� br

With straight line programs we therefore go beyond evaluation of terms� i�e�
the computational mechanism a�orded by Universal Algebra� unless there is an
�if
then
else� at the term level� Such algebras are well studied� they are called
functionally complete� A term simulating the if
then
else is usually introduced as

d�a� b� c	 �

�
c� if a � b
a� if a �� b�

	� While

Given a Boolean expression B and a command C� the command

while B do C

speci�es a computation that repeatedly executes C� as long as B is satis�ed� Such
a computation need not terminate� It might in fact be de�ned as a countable
sequence of if
commands �

if B then C else skip �
if B then C else skip �
� � �



If after �nitely many steps a state is reached satisfying 
B� then that state is the
result of the computation� otherwise the result is the state ��

The given constructs su�ce to specify all functions that are computable over
a given data structure� Moreover� by structural induction it is not hard to see
that every program C may be transformed into an equivalent program containing
only a single while
loop� i�e� into a program of the form

I � while B do D

where I is a sequence of assignments and D is a straight
line program�

� The Hoare Calculus


�� Speci�cations

The purpose of a program is to achieve a desired state transformation� A speci�c�

ation is a �declarative� description of such a transformation� that is it speci�es
the desired net e�ect of a transformation without concerning itself about how
this e�ect is achieved using the available commands�

The classical method of C�A�R�Hoare ��������	presents a speci�cation as a pair
�P�Q	 of expressions in the predicate logic over the underlying data structure�
The idea is that a command C satis�es the speci�cation �P�Q	� if for any state �
satisfying P the state achieved after executing C satis�es Q� However� the pos

sibility that ��C����	 � � must be taken into account� so we distinguish between
partial correctness

fPgC fQg ��� ����� j� P � ��C����	 �� �	� ���C����	 j� Q	�

and total correctness�

�P �C �Q � ��� ����� j� P 	� ���C����	 �� �� ��C����	 j� Q	�

Thus given a speci�cation �P�Q	� it may be considered the programmers job to
solve it by �nding a program X such that fPgX fQg� or even �P �X �Q � is true�


�� Hoare rules

C�A�R� Hoare has presented a calculus to derive theorems of the form fPgC fQg�
where �P�Q	 is a speci�cation and C a program� There are two general logical
rules� an assignment axiom and one rule for every control construct �



Logical rules�
P �� P� fPgC fQg

fP �gC fQg
�pre
strengthening	

fPgC fQg� Q� Q�

fPgC fQ�g
�post
weakening	

Axiom�
P � Q�v�t�
fPg v �� t fQg

�assignment axiom	

Structural rules�
fPgC� fRg� fRgC� fQg

fPgC� � C� fQ
�g

�sequence rule	

fP �BgC� fQg� fP � 
BgC� fQg
fPg if B then C� else C� fQg

�conditional rule	

P � I� fP �BgC fIg� I � 
B � Q
fPg while B do C fQg

�while rule	

The rules can be formulated in several equivalent ways� Here they are presented
in a form that makes them appropriate for backward proof� that is� given a pro

gramX� speci�cation �U� V 	� to check that fUgX fV g is true� proceed according
to the form of X and use the rules backwards� If X is a while loop� use the while

rule� ifX is an assignment� use the assignment rule� etc� There are� unfortunately�
several rules where a logical formula appears in the premise� but not in the con

clusion� In a backwards proof� this formula will have to be guessed� This concerns
the logical rules� the sequence
rule and the while
rule� Fortunately it turns out
that except for the while
rule� the unknown expressions in the premises can be
chosen in a standard way� as so called weakest preconditions�

The logical expression I in the while
rule is called an invariant� There is no
standard way to guess a proper invariant in a backwards proof� although a num

ber of heuristics are available� We shall see later that �nding a proper invariant
is at least as hard as �nding a proper induction hypothesis in an inductive proof�

The rules are easily seen to be correct� Since the premises contain predicate
logic expressions that must be shown valid in the data structure� it is clear that
logical completeness of the above set is out of the question� However� we can
ask for relative completeness� that is completeness under the assumption of an
oracle for the valid formulas of the data structure� It turns out that the rules are
indeed relative complete in that sense� provided the data structure is expressive�
a notion introduced below�




�	 Weakest liberal precondition

Given a set W � S of states and a program C� the weakest liberal precondition

of C and W is de�ned as

wlp�C�W 	 �� f� � S j ��C����	 �Wg�

Usually S will be denoted by a logical expression Q� so we set correspondingly

wlp�C�Q	 �� f� � S j ��C����	 j� Qg�

For a straight line program C and a logical expression Q� wlp�C�Q	 is again
de�nable by a logical expression �

wlp�x �� t� Q	 � Q�x�t�
wlp�C� � C�� Q	 � wlp�C�� wlp�C�� Q		
wlp�if B then C� else C�� Q	 � �B � wlp�C�� Q		 	 �
B �wlp�C�� Q		

If C is a while
loop� wlp�C�Q	 need not be �rst order de�nable� Notice that
according to our characterization of the while
loop as a countable sequence of
conditionals� we can always write it as a countable disjunction

wlp�while B do C�Q	 �
��
n��

wlp�Dn� Q	�

where Dn is the straight line program consisting of the n
fold iteration of the
command �if B then C else skip ��


�
 Expressiveness and completeness

A data structure is called expressive� if the previous in�nite disjunction is always
�rst order de�nable� It turns out that standard arithmetic is expressive� whereas
Presburger arithmetic is not� For expressive data structures� the Hoare calculus
is relatively complete���� For a program C over an expressive data structure we
therefore have �

fPgC fQg �� P � wlp�C�Q	�

� Mechanizing the Hoare calculus

The Hoare calculus is meant to be used on practical programs such as programs
that search or sort arrays� calculate number theoretic functions� play games or
that use clever tricks to implement an algorithm e�ciently� Given a speci�cation
and a nontrivial algorithm� a paper and pencil veri�cation of the corresponding
program using the Hoare rules may present a formidable task� Typically� early
versions of the program contain bugs� �rst attempts at formulating an invariant
for a while
loop are incorrect� leading to a new proof attempt for every small
correction� Each backwards proof attempt in turn produces a plethora of logical
expressions� so called �veri�cation conditions� that have to be shown valid in the



data structure� For this reason� it is absolutely necessary� to have some machine
support� if the calculus is to be useful�

In a somewhat weaker sense the same holds true in the teaching of program

veri�cation� It is very hard to go beyond some very trivial examples because of
the sheer number of veri�cation conditions that are freshly generated with each
proof attempt�

��� NPPV

For the above reasons we have implemented the program veri�er NPPV� The ac

ronym stands for �New Paltz Program Veri�er�� This MS
DOS Program presents
a user interface familiar from virtually all programming language implementa

tions� collectively termed as �interactive development environment� �IDE	�

To be speci�c� the main screen shows an editor window in which the program
together with its speci�cation can be edited� A menu bar above the main window
provides the most important commands� such as �edit�� �prove� or �help�� Oth

ers lead to further pull
down sub
menus� all in all providing a comfortable proof
development environment�

��� Annotated programs

In order to prove partial correctness of a program� NPPV expects as input a
speci�cation consisting of

� a precondition�
� a program� in which every while loop is annotated with an invariant
� a postcondition�

If desired� the user may additionally include after any semicolon ���an in�

termediate assertions� i�e� a logical expression that he expects to be true at that
point in the program� Annotations appear within comment braces �f� and �g��

Such an annotated program is entered and edited in NPPV�s main window�
Syntactical and similar errors are immediately detected with the cursor placed
at the o�ending position and a meaningful error explanation at the bottom of the
screen�

Each annotation must be an open formula in an extension of the language
over the data type used in the program� Essentially� it must be a Boolean formula�
but in addition to the program variables �also called mutable variables	 and to
the fundamental operations� formulas in annotations may contain extra variables
and functions not declared for the data type� Those so called logic variables and
Skolem functions may not be read or written by the program� As a convention�
NPPV expects logic variables to start with an uppercase letter�

To see the need for this distinction� consider a speci�cation that asks for a
program to exchange the contents of the variables x and y� Thus we are looking
for a program C solving the following speci�cation where the logic variables M
and N stand for some arbitrary but �xed values �

fx �M � y � NgC fx � N � y � Mg�



If M and N were program variables� then the program

M ��N

would be a solution� If C was allowed merely to read M and N � then we still
would have the unintended solution

x ��N � y ��M�

Rather we intended to specify a program C which does not contain M or N and
which satis�es

�M�N�fx � M � y � NgC fx � N � y � Mg�

We shall never use quanti�ers explicitly in our speci�cations� Existential quanti

�ers can be eliminated through Skolemizations� universal quanti�ers are assumed
to bind every free logical variable�

��	 Veri�cation conditions

Given an annotated program� i�e� a construct fPgC fQg� where every while
loop
in C is annotated with an invariant� we could attempt to calculate wlp�C�Q	 and
check whether this is implied by P � However� we have seen that wlp�C�Q	 need
not exist when C contains a while loop� Even if it did� the resulting logical
expression� if not valid� would hardly give us a clue as to the source of the error�
Therefore we use a �localized� approach� First� we replace the wlp
function by
the simpler function pre� de�ned on annotated programs as

pre�x �� t� Q	 � Q�x�t�
pre�C� � C�� Q	 � pre�C�� pre�C�� Q		
pre�if B then C� else C�	 � �B � pre�C�� Q		 	 �
B � pre�C�� Q		
pre�whileB do fIgC�Q	 � I

Then we generate a set of simple logical expressions� so called veri�cation con�

ditions �

vc�P� x �� t� Q	 � fP � Q�x�t�g
vc�P�C� � C�� Q	 � vc�P�C�� R	� vc�R�C�� Q	

where R � pre�C�� Q	
vc�P� if B then C� else C�� Q	 � vc�P �B�C�� Q	� vc�P � 
B�C�� Q	
vc�P� whileB dofIgC�Q	 � fP � Ig � vc�B � I� C� I	� fI � 
B � Qg�

Each veri�cation condition is associated with a certain identi�able place in the
program� Veri�cation conditions are propagated through straight line subpro

grams� If this is not desired� an intermediate assertion fRg can be placed after
a semicolon ���� In this case we calculate

vc�P�C� � fRgC�� Q	 � vc�P�C�� R	 � vc�R�C�� Q	

It can be shown that the given annotated program satis�es its speci�cation if and
only if all these veri�cation conditions are valid� More precisely� we have�



Theorem�� Let �P�Q	 be a speci�cation and C a program over data type D	 Let
C� be an annotated version of C	 If every veri�cation condition in vc�P�C�� Q	
is valid in D
 then fPgC fQg is true	 If D is expressive
 then the converse holds


i	e	 if fPgC fQg is true then there is an annotation C� of C by loop invariants

such that all veri�cation conditions in vc�P�C�� Q	 are valid in D	

Proof	 One direction follows by a straightforward induction over the structure of
annotated program C�� For the other direction we assume that D is expressive�
so wlp�C�Q	 always exists� Given that fPgC fQg� we have to �nd an annotated
version C� of C such that every veri�cation condition in vc�P�C�� Q	 is valid� We
set C� � CQ� where for arbitrary C�Q we de�ne

�x �� t	Q � x �� t

�C� � C�	Q � CR
� � CQ

� �where R � wlp�C�� Q	

�if B then C� else C�	Q � if B then CQ
� else CQ

�

�while B do C	Q � while B do fIgCIwhere I � wlp�while B do C�Q	

With this annotation we �nd for every C�Q that pre�CQ� Q	 � wlp�C�Q	�
Now assume fPgC fQg� i�e� P � wlp�C�Q	� By induction over the structure of
C we need to show that every veri�cation condition in vc�P�CQ� Q	 is true�

� The cases C � x �� t and C � if B then C� else C� are straightforward�
� Let C � C� � C�� then fPgC� fRg and fRgC� fQg with R � wlp�C�� Q	 �

pre�CQ
� � Q	� Every veri�cation condition in vc�P�C

R
� � R	 and in vc�R�C

Q
� � Q	

is valid by induction hypothesis� Since CQ � �C� � C�	Q � CR
� � CQ

� � the
claim is true for C� � C��

� Suppose C � while B do C� and I � wlp�C�Q	� then clearly P � I� From
fIgC fQg and the identity

��while B do C��� � ��if B then �C� � while B do C�	 else skip��

we conclude I�
B � Q and fI �BgC� � while B do C� fQg� and therefore
fI �BgC� fIg� By the inductive hypothesis� all veri�cation conditions in
vc�I �B�CI

� � I	 are valid� so the same is true for vc�P�C�Q	�

NPPV will prove many of these veri�cation conditions by itself and list the
remaining ones with the remark� �Remains to prove � �� The user will have to
decide whether she accepts them as true� or whether she wants to store them in
a log
�le for later inspection�

��
 Example� Swapping variables

As a �rst example we consider two versions of a program exchanging the values
of two variables� The �rst �and standard	 solution uses a temporary variable�

� x � A and y � B�

temp �� x �

x �� y �

y �� temp

� x � B and y � A �



The second version shows that two integer values may be interchanged without
an auxiliary variable� Both versions can be entered into NPPV as shown and will
be automatically proved correct�

� x � A and y � B�

x �� x�y �

y �� x�y �

x �� x�y

� x � B and y � A �

��� Example� Gauss

As a further example� we consider a program adding all natural numbers below
a �xed number N� A correctly annotated program �annotations are enclosed in
braces 	 is�

� N 	 
 �

begin

i �� 
 �

sum �� 
 �

while i � N do � sum � i�i����� and i �� N �

begin

i �� i���

sum �� sum � i

end

end

� sum � N�N����� �

Aside from the pre
 and postcondition the program contains as annotation a
loop invariant� Whilst the principal conjunct of this invariant seems clear� the
second conjunct� i �� N would typically be forgotten in a �rst proof attempt�
The resulting veri�cation condition

sum�i�i����� and i 	� N ��	 sum�N�N�����

is not a tautology� Strengthening the invariant by and i �� N yields i � N in
the premise� and the tautology is automatically proved by the system� In fact�
NPPV proves all veri�cation conditions except for one �

i � N ��	 i��� �� N�

This means that NPPV cannot decide whether the formula

�i��N�i � N � �i� �	 � N

is a tautology in the data structure� Since we have not speci�ed whether i and N

are supposed to be integers �so far they might be assumed real	� we see that it is
perfectly correct� for NPPV to leave us with the above veri�cation condition� All
that is by default assumed for the algebraic operations ���� �� � and � is that
they satisfy the axioms of a commutative ring with unit�



�� Verifying abstract program transformations

NPPV does not restrict the user to a �xed set of data structures� New operations
and relations may be freely introduced� This feature opens the door to verifying
not just �xed programs� but rather general program transformations�

As an example consider the transformation from recursive into sequential
programs� Recursive programs are usually easier to specify than sequential ones�
but recursive executions often require extra resources in time and space� There

fore� many methods have been invented to transform recursive programs into
sequential ones� As a �rst example we will here only consider the transformation
of tail
recursive programs into sequential ones�

Consider the recursive de�nition of a function f in terms of already available
functions g� r and a relation P � The recursive de�nition is tail�recursive� if it is
of the form

f�x	 �

�
g�x	� if P �x	
f�r�x		� else�

An imperative program to compute the same function f is given below� It has
already been annotated with the proper pre
 and postconditions and a loop

invariant�

� x � M �

WHILE not Px� DO � fx� � fM� �

x �� rx��

x �� gx�

� x � fM� �

The veri�cation conditions generated by NPPV are �

Px� �	 fx��gx�

not Px� �	 fx��frx���

which is precisely the requirement of tail
recursivity�

��� Verifying incompleteness

M� Wand ��� has presented a data structure W over which the Hoare calculus is
incomplete� From our earlier remarks it follows that W is not expressive� The
signature of W extends the Boolean signature by

g �W ��W
Z�� Z�� R �W �� IB

and the operations are de�ned on the set W � IN� f� �g via

g�n� i	 �� �n ���� i	�
Z��x	 �� x � �� 	�
Z��x	 �� x � �� �	� and
R�x	 �� k� x � ��k� 	�



�
g c

Z�
g

� c
g

� c
g

� c
g

� c
g

� � � �

�
g c

R

Z�
g

� c
R

g
� c

g
� c

g
� c

R
g

� � � �

Wand considers the following program CW over W�

while 
�Z��x	 	 Z��x		 do x ��g�x	

It is obvious that wp�CW � Z��x		 � f�n� 	jn � INg� which is the upper copy of
IN in the �gure� so in particular the Hoare triple fR�x	gCW fZ��x	g is valid�

Assuming that this can be proven in the Hoare calculus� we submit the an

notated program to NPPV� We have to supply the while
loop with an invariant�
which� if it exists� must be a logical expression with at most x as free variable�
NPPV allows us to enter such an �unknown� expression� so we enter

� Rx� �

WHILE not Z
x� or Z�x�� DO � Ix� �

x �� gx�

� Z
x� �

NPPV generates the following veri�cation conditions

Rx� �	 Ix�

Ix� and not Z
x� or Z�x�� �	 Igx��

Ix� and Z�x� �	 Z
x�

from which we conclude that Ix� describes the same set as before� namely
f�n� 	jn � INg�

Using the Beth
de�nability theorem���� Wand shows that the above set is not
de�nable� contradicting the existence of an expression Ix�� We shall now give
an elementary proof of this result�

De�nition� We call a subset S � W thin� if
P�

�n�i��S
�
n
converges� Comple


ments of thin sets are called thick�

Lemma�� Every de�nable set in Wand�s algebra is either thick or thin	

Proof	 Thin sets form an order ideal� in particular� they are closed under �nite
unions and subsets of thin sets are thin� The set of all thin or thick subsets
of W therefore forms a Boolean algebra B� The basic predicates Z�� Z� and R
de�ne sets in B� therefore all quanti�er free expressions in W de�ne sets in
B� The proof is �nished� if we can show that W allows quanti�er elimination�
i�e� every logical expression is equivalent in W to a quanti�er free expression�
For this it su�ces to show that for every variable x and Boolean expression
B�x� � � �	 we can �nd another Boolean expression B� not containing x� so that



W j� B� � x�B�x� � � �	� Since B�x� � � �	 may be transformed into disjunctive
normal form and since  distributes over 	� we may actually assume thatB�x� � � �	
is of the form L� � � � �� Ln� where each Li is atomic or negated atomic� Now in
W every atomic Boolean expression contains at most one free variable� hence

�x�L� � � � �� Ln	� L� � � � �� Lk � �x�Lk�� � � � �� Ln	�

where Lk��� � � � � Ln are those Li whose free variable is x� This expression clearly
is equivalent either to L� � � � �� Lk � true or to L� � � � �� Lk � false�

Corollary �� W is not expressive and Hoare�s calculus is incomplete over W	

Proof	 I � wp�C�Z�	 is not �rst order de�nable� since it is neither thin nor thick�

� Data Structure � Algorithm 	 Control

NPPV�s proof
component will either succeed in proving a given veri�cation
condition� or simplify it to a �hopefully	 simpler but logically equivalent state

ment� It will not force the user to prove these remaining statements� rather collect
them into an �axioms �le��

This gives rise to a novel perspective on program veri�cation� Given a pro

gram together with an appropriate annotation� a set of data structure axioms
will be generated such that

the algorithm satis�es
the speci�cation

� the data structure ax

ioms are satis�ed�

Thus� given a desired algorithm� a data structure may be tailored so that the
algorithm computes the desired function� We shall give a number of examples�

�� Gauss

Recall that the proof of the summation program succeeded automatically except
for one veri�cation condition that NPPV could not prove� This was the condition

i � N �	 i�� �� N�

All that NPPV assumes about the operations �� � and the relations �� resp� �� is
that they form an ordered commutative ring with unit� The unproved veri�cation
condition can be thus interpreted as an axiom for the data structure needed to
make the program work� In other words� the unproved property tells us that
Gauss�s summation formula is true provided the ring carries a discrete order�

For good reasons one might argue that we have proven Gauss�s theorem rather
than simply proving that the program sums all numbers up to N � So what we
actually should be specifying in the postcondition is that

sum �
NX
�

i�

Since the
P

operator is not de�ned in NPPV� we simply specify in the postcon


dition �



� sum � sumToN� �

and in the invariant �

� sum�sumToi� and i �� N ��

In addition to the previous

i � N ��	 i�� �� N

NPPV now generates the two conditions �

sumTo
�� 


i � N �	 sumToi��� � sumToi��i

which we are ready to accept as the de�nition of the summation operator�

�� Swap� revisited

Let us now investigate the reasons what made the earlier tricky exchange program
work� In order to do that we formulate the same program structure using abstract
terms p� q� r �

� x � A and y � B �

x �� px�y�

y �� qx�y�

x �� rx�y�

� x � B and y � A �

NPPV generates the following veri�cation condition �

qpA�B��B� � A

rpA�B��A� � B

On close inspection we �nd that these are precisely the de�ning equations
of a quasigroup� To emphasize this� let us replace p� q and r with in�x symbols
�� �� and n� We see that the equations specify that � should be a binary operation
which is both left
 and right
cancellative� i�e�

A � B� � B � A

A � A � B� � B�

Thus we �nd that the content of two variables can be switched by a sequence
of three assignments� i� the underlying data structure contains a quasiqroup
operation�



�	 An abstract two�person game

Suppose we have a two
person game given by


 a set S of �game
	states

 subsets Init� T erminal � S

 a relation R � S � S characterizing the legal moves� such that
�� �� Terminal� ��� �R���

A game starts in an initial state with two opposing players taking turns to move�
A player wins if his move reaches a terminal state� We are looking for conditions
that guarantee a win for the �rst player�

In the following program we model the players with the two
element data type

Player � �You� Me �� � ��

Let myMove and yourMove be the functions realizing the moves of the play

ers� that is once Y ou are in state s you move to yourMove�s	� similarly� the func

tion myMove determines my moves� We assume that yourMove�myMove � R�

The abstract game
playing program� together with the stipulation that Me
should win is �

� Inits� �

turn �� Me�

WHILE not Terminals� DO

IF turn � Me

THEN

BEGIN s �� myMoves� � turn �� You END

ELSE

BEGIN s �� yourMoves�� turn �� Me END �

IF turn � Me

THEN winner �� You

ELSE winner �� Me

� winner � Me �

When verifying this program� we have to supply an invariant for the loop� In
the absence of any further information about the rules of the game� we invent an
abstract predicate depending on the relevant variables� Pplayer�s��

NPPV generates four veri�cation conditions� which we simplify slightly using
the trivial axioms of the Player
data type� t � Y ou 	 t � Me and 
�t �
Y ou � t � Me	�

Inits� ��	 Ps�Me�

Ps�Me� ��	 not Terminals�

Ps�Me� ��	 PmyMoves��You�

Ps�You� and not Terminals� ��	 PyourMoves��Me�

Let MyPos resp� Y ourPos be the sets de�ned by the unary predicates
P �s�Me	� and P �s� Y ou	� Note that in order to guarantee a win for every pos

sible legal move the opponent �Y ou	 might make� the function yourMove must



be considered a nondeterministic function� whereas myMove can be thought of
as a Skolem function� choosing an appropriate new state if one exists� With this
in mind� the above axioms can be reformulated in set language as�

Init �MyPos
MyPos � Terminal � �
�s�MyPos�s��Y ourPos�sR s�

�s�Y ourPos��s��S � sRs� � s� �MyPos

Thus the set MyPos� if it exists� can be called a strategy� In order not to lose� I
must �and can	 always make a move resulting in a state within Y ourPos�

�
 Programming � Proving

From the examples that we have seen so far� it may appear that programming
is as hard �and in fact the same type of activity	 as proving a mathematical
theorem� In a very abstract sense we can demonstrate this fact using NPPV�

Assume that X�n	 is a property of natural numbers� X�n	 is obviously true�
if and only if a program P that starts at  and checks all numbers until it �nds
one that does not satisfy X� will never stop� In this abstract framework we can
write the program P where the fact that P never stops can be speci�ed by the
postcondition False� Thus we obtain �

� True �

n �� 
 �

WHILE Xn� DO

n �� n��

� False �

NPPV will require us to annotate the loop with an invariant� Since it is not
clear what this invariant should be� we just add an abstract predicate I�n	� which
may depend on n� the only variable in the program� The veri�cation conditions
that NPPV generates show very succinctly the connection between programming
and theorem proving �

I
�

In� �	 In���

In� �	 Xn��

�� Abstract invariants

The last example shows quite clearly� that it is futile to hope for a widely ap

plicable method for �nding proper invariants� Still there are ways to proceed and
a veri�er may be helpful in this� Firstly� given a speci�cation and a program
we may use as invariant an abstract predicate I�x�� � � � � xn	 where x�� � � � � xn
are all variables occurring in the program� The veri�er will then generate a set
of veri�cation conditions and the problem becomes to show that they are not
contradictory�



In case where a programC is to compute a function f�x	� the speci�cation will
typically be fx � AgC fz � f�A	g� A while
loop calculating f�A	 will modify
x� z and perhaps some auxiliary variables� but maintain an invariant specifying
how at each moment f�A	 can be recovered from x� z� and the auxiliary variables�
With an abstract function r� then r�x� � � � � z	 � f�A	 should be attempted as an
invariant� where the �� � �� stand for the auxiliary variables�

The resulting veri�cation conditions can be seen as a set of axioms for a data
structure required to make the algorithm work� If a data structure exists making
these axioms true� then the program can be accepted as a correct implementa

tion of the speci�cation� The next step will be to implement the data structure
conforming to the axioms�

In the following we apply this method in showing how an arbitrary linearly
recursive function may be implemented by a sequential program with the aid of
a stack� To be speci�c� a function f is linear recursive� if it is of the form

f�x	 �

�
g�x	� if P �x	
h�f�r�x		� x	 else�

An example of a linear recursive function is the previously discussed function
sumTo� Moreover� every primitive recursive function is linearly recursive� The
following program purports to implement the function f in general� using a stack�
We have annotated the loops with invariants stating that in the �rst loop� f�A	
can somehow be recovered from f�x	 and s �by some as yet unknown function
prod	 whereas during execution of the second loop� f�A	 is recoverable in the
same way from z and s�

� x � A �

BEGIN

s �� empty�

WHILE not Px� DO � prodfx��s� � fA� �

BEGIN

s �� pushx�s��

x �� rx�

END �

z �� gx��

WHILE s �	 Empty DO � prodz�s� � fA� �

BEGIN

z �� hz�tops���

s �� pops�

END

END

� z � fA� �

To simplify matters� let us assume that the axioms for the �stack�
data type� are
known to NPPV �in practice� they can be supplied in a �theory �le�	� then we
remain with the veri�cation conditions �



prodx�empty� � x

prodx�pushy�s�� � prodhx�y��s�

These equations can be considered as the de�ning equations for the unknown
function prod� From the freeness axioms for the stack
operations empty and push
it follows that they unambiguously de�ne a total function� Thus we have shown
that a proper invariant for the program exists� which is all we need to know�


 Conclusion

The scope of program veri�cation techniques can be extended beyond their
original goals which was verifying correctness of individual programs� Assuming
correctness of an implementation� axioms for a required data structure can be
inferred� If these axioms are not contradictory� the data structure can be imple

mented in a second step� applying the same method again�

Mechanical program veri�ers play an essential role in that task� They can
be designed to handle abstract program schemata and thereby aid theoretical
understanding and discussion of the mathematical foundations and interrelations�

References

	� Apt� K�R�
 Ten years of Hoare�s logic
 A Survey � Part I� ACM Trans� Progr� Lang�
and Systems ��	�	� ��	����

�� Beth� E�W�
 Formal methods� D� Reidel� Dordrecht�Holland 	���
�� Cook� S�A�
 Soundness and completeness of an axiom system for program veri�ca�

tion� SIAM Joun� on Comp� ��	��� ����
�� Gumm� H�P�� Sommer� M�
 Einf�uhrung in die Informatik� Addison Wesley� �nd ed�

	�
�� Hoare� C�A�R�
 An axiomatic basis for computer programming� Communications

of the ACM ���	�� �������
�� Wand� M�
 A new incompleteness result in Hoare�s system� Journ� ACM ���	���

	���	��

This article was processed using the LATEX macro package with LLNCS style


