8. Übungsblatt zur Algebra

Abgabe: Do, 11.12.2008, bis 18 Uhr, Lahnberge, Briefkästen Ebene D6

- 1. Sei $S := \mathbb{Z} \backslash p\mathbb{Z}$ für eine Primzahl p.
 - (a) Bestimmen Sie \mathbb{Z}_S explizit.
 - (b) Bestimmen Sie die Einheitengruppe sowie sämtliche Ideale von \mathbb{Z}_S .
- 2. Seien R ein kommutativer Ring mit 1 und $r \in R$. Sei (X r) das vom Polynom X r in R[X] erzeugte Ideal. Zeigen Sie, daß es einen natürlichen Isomorphismus von R[X]/(X-r) nach R gibt.
- 3. Es seien R ein Integritätsbereich und R[X] der Polynomring über R. Weiter sei R^* die Gruppe der Einheiten in R. Zeigen Sie:
 - (a) Zu $a \in R^*$ und $b \in R$ gibt es genau einen Automorphismus φ von R[X] mit $\varphi_{|R} = \operatorname{Id}_R$ und $\varphi(X) = aX + b$.
 - (b) Jeder Automorphismus φ von R[X] mit $\varphi_{|R} = \operatorname{Id}_R$ erfüllt $\varphi(X) = aX + b$ mit $a \in R^*$ und $b \in R$, ist also von der in (a) angegebenen Form.
 - (c) Bestimmen Sie Aut($\mathbb{Z}[X]$) und Aut($\mathbb{Q}[X]$).
- 4. Sei R ein Integritätsbereich.
 - (a) Bestimmen Sie die Einheitengruppe des Polynomrings R[X].
 - (b) Sei R[[X]] der Ring der formalen Potenzreihen über R, d.h.

$$R[[X]] := \{ f : \mathbb{N}_0 \longrightarrow R \}$$

mit der komponentenweisen Addition und Multiplikation gemäß

$$(fg)(s) := \sum_{k=0}^{s} f(k)g(s-k)$$

für alle $f, g \in R[[X]]$ und $s \in \mathbb{N}_0$. Bestimmen Sie die Einheitengruppe von R[[X]].