12. Übungsblatt zur Vorlesung "Lineare Algebra I"

Abgabe: Do, 24.01.2008, bis 18 Uhr, Lahnberge, Briefkästen Ebene D6

1. Bestimmen Sie zu den folgenden Matrizen die Eigenwerte und die zugehörigen Eigenräume.

a)
$$A = \begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix}$$

b)
$$B = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

c)
$$C = \begin{pmatrix} a+3 & 5a+2 & 0 \\ 2a & -2a+1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, a \in \mathbb{R}$$

- 2. Es sei $A \in \mathfrak{M}(n; K)$ und $\lambda \in K$ ein Eigenwert von A. Beweisen Sie:
 - a) Gilt $A^2 = A$, so folgt $\lambda \in \{0, 1\}$.
 - b) Gilt $A^r = 0$ für ein $r \in \mathbb{N}$, so folgt $\lambda = 0$.
- 3. a) Seien x_1, \ldots, x_n Elemente eines Körpers K. Es ist

$$V(x_1, \dots, x_n) = \begin{pmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{pmatrix} \in \mathfrak{M}(n; K)$$

die Vandermonde-Matrix von x_1, \ldots, x_n . Zeigen Sie:

Det
$$(V(x_1, ..., x_n)) = \prod_{1 \le i \le j \le n} (x_j - x_i).$$

b) Es ist $\mathbb{R}^{\mathbb{N}}$ der Vektorraum der reellen Folgen $(a_n)_{n\geq 1}$. Bestimmen Sie zur Abbildung

$$\Phi: \mathbb{R}^{\mathbb{N}} \longrightarrow \mathbb{R}^{\mathbb{N}}$$
$$(a_n)_{n \ge 1} \longmapsto (a_{n+1})_{n \ge 1}$$

die Eigenwerte und die zugehörigen Eigenräume.

4. Sei V ein Vektorraum über dem Körper K mit $\text{Dim } V = n \geq 2$. Sei $f: V \to K$ eine lineare Abbildung mit $f \neq 0$. Sei $\mathbf{0} \neq \mathbf{h} \in \text{Kern } f$. Sei $\varphi: V \to V$ definiert durch $\varphi(\mathbf{v}) = \mathbf{v} + f(\mathbf{v})\mathbf{h}$. Bestimmen Sie die Eigenwerte, die zugehörigen Eigenräume und die Determinante der linearen Abbildung φ .