7. Übungsblatt zur Vorlesung "Lineare Algebra II"

Abgabe: Mi, 21.05.2008, bis 18 Uhr, Lahnberge, Briefkästen Ebene D6

1. Sei (V, β) ein unitärer Raum mit Dim $V = n < \infty$.

Zeigen Sie: Zu jedem Automorphismus φ von V gibt es einen eindeutig bestimmten selbstadjungierten Automorphismus ψ und einen eindeutig bestimmten unitären Automorphismus χ , so daß gilt

$$\varphi = \psi \circ \chi$$
.

- 2. Geben Sie ein Beispiel einer Menge M und einer binären Relation R auf M, so daß gilt:
 - (i) R ist reflexiv aber nicht symmetrisch und nicht transitiv
 - (ii) R ist symmetrisch aber nicht reflexiv und nicht transitiv
 - (iii) R ist transitiv aber nicht reflexiv und nicht symmetrisch
 - (iv) R ist reflexiv und symmetrisch aber nicht transitiv
 - (v) R ist reflexiv und transitiv aber nicht symmetrisch
 - (vi) R ist symmetrisch und transitiv aber nicht reflexiv.
- 3. Sei V ein n-dimensionaler euklidischer Raum. Seien $\mathbf{b_1}, \ldots, \mathbf{b_n}$ und $\mathbf{b'_1}, \ldots, \mathbf{b'_n}$ Basen von V. Sei φ der durch $\varphi(\mathbf{b_i}) = \mathbf{b'_i}$ definierte Automorphismus von V. $\mathbf{b_1}, \ldots, \mathbf{b_n}$ und $\mathbf{b'_1}, \ldots, \mathbf{b'_n}$ heißen gleich orientiert genau dann, wenn Det $\varphi > 0$ gilt, andernfalls entgegengesetzt orientiert.
 - a) Zeigen Sie: Die Orientierung induziert auf der Menge der Basen von V eine Äquivalenzrelation. Bestimmen Sie die Äquivalenzklassen.
 - b) Sei ψ eine Drehung eines zweidimensionalen euklidischen Raums V. Sei ${\bf e_1},{\bf e_2}$ eine Orthonormalbasis. Zeigen Sie:

Zu ψ gibt es einen eindeutig bestimmten Winkel α mit $0 \le \alpha < 2\pi$, so daß ψ bezüglich $\mathbf{e_1}$ und $\mathbf{e_2}$ die Koordinatenmatrix

$$A := \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix}$$

hat. Für jede Orthonormalbasis $\mathbf{f_1}$, $\mathbf{f_2}$ von V welche gleich orientiert ist wie $\mathbf{e_1}$, $\mathbf{e_2}$ gilt: ψ hat auch bezüglich $\mathbf{f_1}$, $\mathbf{f_2}$ die Koordinatenmatrix A.

bitte wenden!!

4. Sei (V, β) ein n-dimensionaler unitärer (bzw. euklidischer) Vektorraum. Sei φ ein selbstadjungierter Endomorphismus.

Zeigen Sie: Es gibt Unterräume U_1, \ldots, U_r von V, so daß

$$V = U_1 \oplus \ldots \oplus U_r$$

und so daß $U_{\rho} \perp U_{\sigma}$ für $1 \leq \rho < \sigma \leq r$, und es gibt reelle Zahlen $\lambda_1, \ldots, \lambda_r$, so daß gilt

$$\varphi = \lambda_1 \pi_{u_1} + \ldots + \lambda_r \pi_{u_r}.$$

Dabei sei für einen Unterraum U π_u die orthogonale Projektion von V auf U.