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CONES OF G MANIFOLDS AND KILLING SPINORS WITH SKEW TORSION

ILKA AGRICOLA AND JOS HÖLL

Abstract. This paper is devoted to the systematic investigation of the cone construction for G mani-
foldsM , endowed with an invariant metric connection with skew torsion∇

c, a ‘characteristic connection’.
We show how to define a Ḡ structure on the cone M̄ = M × R+ with a cone metric, and we prove that
a Killing spinor with torsion on M induces a spinor on M̄ that is parallel w. r. t. the characteristic con-
nection of the Ḡ structure. We establish the explicit correspondence between classes of metric almost
contact structures on M and almost hermitian classes on M̄ , resp. between classes of G2 structures on
M and Spin(7) structures on M̄ . Examples illustrate how this ‘cone correspondence with torsion’ works
in practice.

1. Preliminaries

1.1. Introduction. Given a complete Riemannian spin manifold (M, g), the two most basic equations
that a spinor field ψ can fulfill are the parallelism equation and the Killing equation,

∇gψ = 0, ∇g
Xψ = µX · ψ for some µ ∈ R− {0},

where ∇g denotes the Levi-Civita connection. Berger’s holonomy theorem yielded that the Ricci-flat
manifolds with reduced Riemannian holonomy SU(n), Sp(n), G2, or Spin(7) were candidates for mani-
folds with parallel spinors, and indeed Wang proved in 1989 that these are the only manifolds admitting
parallel spinors, and determined the dimension of the space of parallel spinors [Wa89]. The geometric
meaning of the Killing equation stems from the fact that Riemannian Killing spinors realize the equality
case in Friedrich’s seminal estimate of the first eigenvalue of the Riemannian Dirac operator on compact
Riemannian manifolds of positive curvature [Fr80]. Independently, the Killing equation was investigated
in theoretical physics for supergravity theories in dimensions 10 and 11 [DNP84] and certain applications
in general relativity [Pe83]. The first non-trivial compact examples of Riemannian manifolds with Killing
spinors were found in dimensions 5 ≤ n ≤ 7 in 1980-1986 ([Fr80], [FG85], [DNP86]). The link to non-
integrable geometry and G structures was established shortly after; for instance, a compact, connected
and simply connected 6-dimensional Hermitian manifold is nearly Kähler if and only if it admits a Rie-
mannian Killing spinor [Gr90]. Similar results hold for Einstein-Sasaki structures in all odd dimension
and nearly parallel G2-manifolds in dimension 7 ([FK89], [FK90]).
The connection between these two spinorial field equations was recognized by Bryant in 1987, who
proved that the cone over the nearly Kähler manifold SU(3)/T 2 was an integrable G2 manifold, and
that the cone over the nearly parallel G2 manifold SO(5)/SO(3) was an integrable Spin(7) manifold
[Br87]. Bär generalized this idea in 1993, he proved that the cone (M̄ = M × R+, ḡ = r2g + dr2) of a
(compact) Riemannian spin manifold (M, g) with Riemannian Killing spinors is a (non-compact) Ricci-
flat Riemannian spin manifold with ∇ḡ-parallel spinors. We will loosely call this phenomenon the cone
correspondence. By combining this cone correspondence with Wang’s classification result, one obtains a
complete overview about all geometries that can carry Riemannian Killing spinors: together with results
by Hijazi [Hi86], the general picture is basically that the non-integrable geometries listed above are, beside
spheres, the only possible ones. A great deal of effort has been invested in the actual construction of
such non-integrable geometries. But while there is a rich supply of non-homogeneous Einstein-Sasaki
manifolds (see [GMSW04], [BG08], and many others) and nearly parallel G2 manifolds, compact nearly
Kähler manifolds have resisted so far all construction efforts in the non-homogeneous case, though they
are generally believed to exist.
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Since then, there has been a lot of progress on G structures on Riemannian manifolds and general
holonomy theory. Einstein-Sasaki manifolds, nearly Kähler 6-manifolds, and nearly parallel G2-manifolds
are only special instances of more general Riemannian manifolds with structure group U(n), SU(3), or
G2. These can be neatly divided in different classes, first through the study of their characterizing
differential equations ([CG90], [CM92], [FG82], [Fe86], [GH80]), later by more general concepts like
intrinsic torsion ([Sa89], [Sw00]) and, closely related, characteristic connections – these are, by definition,
invariant metric connections with skew torsion ([Fr03], [Ag06]). The integrable geometries covered by
Berger’s theorem correspond to the ‘trivial’ class (though, of course, they are highly non trivial objects).
Many examples of different classes were constructed and their special properties investigated in the
last decades. As a common feature, a certain, well-understood subclass of every possible G structure
admits a unique G invariant metric connection with skew torsion, the characteristic connection ∇c, and
it induces (with a 1/3 rescaling) a characteristic Dirac operator that generalizes the Dolbeault operator
on Hermitian manifolds and Kostant’s ‘cubic’ Dirac operator on naturally reductive homogeneous spaces
([Bi89], [AF04], [ABK12]).
Again, a big incentive to study G manifolds admitting a characteristic connection came from theoretical
physics, more precisely from superstring theory, where the characteristic torsion (by definition, it is a
3-form on the manifold) is interpreted as a higher order flux (see [St86], [GSW87] for the first publications
on the topic; for more details, we refer to the vast literature on string compactifications). Spinor fields
satisfying a generalized kind of Killing / parallelism equation with torsion (the precise equation depends
on the model) are identified with supersymmetry transformations. More recently, connections with skew
torsion and their Dirac operators are also considered for the spectral action principle and hypothetical
applications in cosmic topology [LT12].
It is well-known that the characteristic connection ∇c can admit a parallel spinor field in more situations
than for the Levi-Civita connection∇g, and that an analogue of Wang’s classification result is not possible.
For example, any G2 structure and any Spin(7) structure admitting a characteristic connection ∇c has a
∇c-parallel spinor field, just because G2 and Spin(7) are the stabilizers of a generic spinor in dimension 7
and 8, respectively ([FI02], [Iv04]). More recently, the twistor and Killing equations for the characteristic
connection were investigated in [ABK12] and [Be12]; we will speak of Killing spinors with torsion to
distinguish them from the Riemannian case. Again, the picture is roughly as follows: there are more
G manifolds admitting Killing spinors with torsion than in the Riemannian case, and their geometry is
less rigid (for example, they do not have to be Einstein, and the Killing number is not automatically
linked to the first eigenvalue of the characteristic Dirac operator). This richness in turn implies that a
classification is not possible. One further crucial difference to the Riemannian case is that the families
of manifolds admitting parallel spinors resp. Killing spinors with torsion are not disjoint any more, both
are described in the language of G structures sketched above and it is to be discussed in every situation
anew what can be said about particular spinor fields.

1.2. Outline. The main purpose of the present paper is to investigate the cone correspondence for G
manifolds admitting a characteristic connection. While doing so, several results are obtained that should
be of interest in other circumstances as well.
Section 2 is devoted to the general construction. Given a Riemannian manifold (M, g) we denote by
(M̄, ḡ) = (M ×R+, a2r2g + dr2) for some fixed a > 0 its cone (we sometimes call a the cone constant of
M̄). Of course, the cone does always exist and carries interesting geometric structures, but if one intends
to lift a Killing spinor with torsion from M to M̄ , one has to choose a suitably, depending on the Killing
number α. It is crucial that α is not allowed to vanish, i. e. there is no cone correspondence for parallel
spinor fields (but see Corollary 4.17 for an exception). The details of this ‘abstract’ cone correspondence
for most general metric connections with skew torsion are explained in Section 2.1. Section 2.2 introduces
the G structures that will be of particular interest in this article and their characteristic connections. For
metric almost contact structures, we prove a new criterion for the existence of a characteristic connection
(Lemma 2.5) and describe the corresponding Chinea-Gonzales classes. For almost hermitian structures,
G2 structures, and Spin(7) structures, we quickly recall about their characteristic connections a few facts
that we shall need later.
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In Section 2.3 we begin to sketch the details of the cone correspondence. SupposeM carries a G structure
with characteristic connection ∇c, and that we can define a Ḡ structure on the cone (M̄, ḡ) with charac-
teristic connection ∇̄c. Then an important obervation is that the lift of ∇c to M̄ is not the characteristic
connection ∇̄c of the Ḡ structure on M̄ ! This happens already in the classical case covered by Bär,
where the characteristic connection on M is not ∇g, while the Ḡ structure on M̄ is integrable, hence its
characteristic connection is equal to the Levi-Civita connection. Rather, we need as an intermediate step
another connection ∇ on M with torsion T such that its lift ∇̄ to M̄ with torsion T̄ is the characteristic
connection on M̄ with respect to the given Ḡ structure. The torsion T measures in some sense the
deviation of the Ḡ structure from the integrable case, i. e. the classical cone correspondence describes
the situations where T = 0, hence T̄ = 0 and ∇̄ = ∇ḡ. Lemma 2.9 describes the exact correspondence
between Killing spinors with torsion on M and ∇̄-parallel spinors on M̄ .
We then describe in detail the cone correspondence with torsion for two particular situations where M is
odd-dimensional. Section 3 treats the case whenM is a metric almost contact manifold. We construct an
almost hermitian structure on M̄ , describe explicitly the intermediate connection ∇ and prove that its lift
is the characteristic connection of the almost hermitian structure. We then establish the correspondence
between the different classes of structures onM and M̄ , first through equations (Theorem 3.10) and then
in terms of the different classes (3.11). These results synthesize several approaches to the definition of
(some) metric almost contact structures through the almost hermitian structures that they induce on the
cone ([Ok62], [Ou85]); for N = 0, the correspondence was proved independently in the recent preprint
[HTY12]. In Section 3.3, the spinor correspondence is described in detail. In [Be12], it was proved that
the Tanno deformation of a (2n + 1)-dimensional Einstein-Sasaki manifold and that the 5-dimensional
Heisenberg group carry Killing spinors with torsion. As an application, we prove in Section 3.4 that these
spinors lift to spinors on the cone (it turns out to be conformally Kähler) that are parallel with respect
to its characteristic connection. Section 3.5 specializes the previous results to metric almost contact
3-structures.
Section 4 is devoted to the case when M is a G2 manifold. We construct a Spin(7) structure on its
cone, describe explicitly the intermediate connection ∇ and prove again that its lift is the characteristic
connection of the Spin(7) structure. In 4.2 we establish the explicit correspondence between the different
classes on M and M̄ (Lemma 4.12 and Theorem 4.14); the results are slightly simpler than in the
contact case, because the number of classes is smaller. In 4.3 we establish again the details of the spinor
correspondence. In Corollary 4.17, we prove by a clever interpretation of the involved equations that the
∇c-parallel spinor defining the G2 structure onM lifts to a parallel spinor for the characteristic connection
of the Spin(7) structure on M̄ – thus, the spinor correspondence turns out to be as neat as one could
expect, and the use of the intermediate connection ∇ is not a draw back at all of the construction.
We end this outline with some words about the cone for even-dimensional manifolds M . The most
interesting case would be the lift from an almost hermitian structure on M to a G2 structure on M̄ . As
described in several recent publications ([Hi00], [St09]), the construction of a G2 structure requires the use
of Hitchin’s flow methods, and it is not very transparent how this could be generalized to cones without
having to solve a differential equation in the process. Thus, we reserve such thoughts to a separate,
upcoming publication.

1.3. Acknowledgements. Both authors thank Thomas Friedrich (Berlin) for his steady mathematical
interaction. Ilka Agricola acknowledges financial support by the DFG within the priority programme
1388 ”Representation theory”. Jos Höll thanks Philipps-Universität Marburg for a Ph.D. grant. He is
member of the ‘Graduate Center for Life and Natural Sciences’ of Philipps-Universität Marburg and of
the special graduate programme ‘Lie theory and complex geometry’ of the Department of Mathematics
and Computer Science.

2. The general construction

2.1. The cone construction. Consider a Riemannian spin manifold (M, g) equipped with a metric
connection ∇ with skew symmetric torsion T and connection form ω. We are interested in real Killing
spinors with respect to the given connection, ∇Xψ = αXψ with α ∈ R\{0}. The aim of this Section is
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to generalize Bär’s cone construction [Bä93] for Riemannian Killing spinors, i. e. the case when ∇ = ∇g.

As an intermediate tool, we define a connection ∇̃ on the spinor bundle by

∇̃Xψ = ∇Xψ + αX · ψ, with α ∈ R\{0}.
Denote by C(Rn) the Clifford algebra of Rn with respect to the standard negative definite euclidian
scalar product, and by ∆n the spin module of Spin(n). We consider the Clifford multiplication for
X ∈ Rn ⊂ C(Rn) in ∆n. It is the action of an element of Rn ⊂ spin(n)⊕Rn = spin(n+1) ⊂ C(Rn) in ∆n.
Let PSO(n)M be the SO(n)-principal bundle of frames, ΣM the spinor bundle and ρn : C(n) → GL(∆n)
the representation of the Clifford algebra, i. e. ρ∗|spin(n) is the spin(n) representation. Let PSpin(n)M be
the Spin(n)-principal bundle. For a local section h in PSO(n)M , we identify TM and PSO(n)M ×SO(n)R

n

via X = [h, η(dh(X))], where η is the solder form. The affine connection ∇̃ induces a connection in the
Spin(n+ 1)-principal bundle PSpin(n)M ×Spin(n) Spin(n+ 1) as follows. Let

Φ : PSpin(n)M → PSO(n), θ : Spin(n) → SO(n)

be the usual projections. We look at spin(n+1) ∼= spin(n)⊕Rn ⊂ C(n), the restriction of ρ∗ to spin(n+1),
and obtain for a local section k in PSpin(n)M with Φ(k) = h and ΣM ∋ ψ = [k, σ],

∇̃X [k, σ] = ∇X [k, σ] + α · [h, η(dhX)] · [k, σ]
= [k, dσ(X) + ρ∗(θ

−1
∗ (ω(dhX)) + αη(dhX)))σ].

Thus we get the spin(n+1)-valued 1-form ω̂ := Φ∗(θ−1
∗ ω+αη) on PSpin(n)M . We extend ω̂ to PSpin(n+1)M

as follows: For b ∈ PSpin(n)M we have TbPSpin(n+1)M = TbPSpin(n)M⊕dLb(R
n), where Lb : Spin(n+1) →

PSpin(n+1)M, g 7→ b · g and define

ω̂(dLbY ) := Y ∈ Rn ⊂ spin(n+ 1).

For any b ∈ PSpin(n)M we further extend ω̂ in a Spin(n+ 1) equivariant way. One checks that the given

form is a connection form. It is the connection form of the connection given by ∇̃. As in [Bä93], we
consider the SO(n+ 1)-principal bundle

PSO(n+1)M := PSO(n)M ×SO(n) SO(n+ 1)

and calculate the corresponding connection form ω̃ given by θ−1
∗ Φ∗ω̃ = ω̂ for the projections Φ :

PSpin(n+1)M → PSO(n+1)M and θ : Spin(n+ 1) → SO(n+ 1) and get

ω̃ =





ω −2αη

2αηt 0



 .

We now consider the cone (M̄, ḡ) = (M × R+, a2r2g + dr2) for some fixed a > 0 with principal SO(n)-
bundle of frames PSO(n+1)M̄ , Levi-Civita connection ∇̄ḡ with connection form ω̄ḡ and projection π :

M̄ →M . For simplicity, we will write X ∈ TM for a lift to M̄ of a vector field on M . We define a tensor
T̄ on M̄ from the torsion tensor T of ∇ via

T̄ (X,Y ) := T (X,Y ) for X,Y ⊥ ∂r, ∂ryT̄ = 0.

Looking at the corresponding skew symmetric 3-tensors and the metrics g, ḡ on M and M̄ , we have
a2r2T (X,Y, Z) = T̄ (X,Y, Z) for X,Y, Z ⊥ ∂r. From T̄ , we define on M̄ the connection

∇̄ := ∇ḡ +
1

2
T̄ ,

whose connection form is ω̄. For p ∈ M and s ∈ R+, the tangent bundle of M̄ splits into T(p,s)M̄ =

TpM ⊕R, where dπ(TM̄) = TM . Thus, for X ∈ TM ⊂ TM̄ , we will write ”X” instead of ”dπX”. With
a local orthonormal frame (X1, . . . , Xn) of M we have an isomorphism of the last two vector bundles
given by (Y ∈ Rn+1)

φ : π∗(P̃SO(n+1)M)×SO(n+1) R
n+1 → TM̄, [(X1, .., Xn, ∂r), Y ] 7→ [(

1

ar
X1, ..,

1

ar
Xn, ∂r), Y ].
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Thus we can view the connection ω̄ as a connection of π∗(P̃SO(n+1)M), which we again call ω̄.
We summarize the different principal bundles with corresponding connections and vector bundles in the
following table:

bundle connection form vector bundle manifold

PSO(n)M ω TM M

P̃SO(n+1)M ω̃ M

π∗(P̃SO(n+1)M) π∗ω̃ π∗(P̃SO(n+1)M)×SO(n+1) R
n+1 M̄

PSO(n+1)M̄ ω̄ T M̄ M̄

To determine ω̄ for a local frame h := (X1, .., Xn, ∂r) in π
∗(P̃SO(n+1)M), X ∈ TM̄ , we need to compute

(Y ∈ π∗(P̃SO(n+1)M)×SO(n+1) R
n+1)

φ−1(∇̄Xφ(Y )) = [h, d(η(dhY ))(X) + ω̄(dhX)η(dhY )].

Let h̃ := ( 1
ar
X1, ..,

1
ar
Xn, ∂r) be a local frame in PSO(n+1). For Y ∈ TM ⊂ π∗(P̃SO(n+1)M)×SO(n+1)R

n+1

we locally have Y = [h, (Y1, .., Yn, 0)
t] for functions Yi : M → R and thus φ(Y ) = [h̃, (Y1, .., Yn, 0)

t].
Therefore arφ(Y ) is independent of r and thus a lift of a vector field on M . Using the O’Neill formulas
[O’N83, p. 206], we compute for lifts X,Y of vector fields in TM and the Levi-Civita connection ∇̄ḡ of
M̄

∇̄ḡ
∂r
∂r = 0, ∇̄ḡ

∂r
X = ∇̄ḡ

X∂r =
1

r
X, ∇̄ḡ

XY = ∇g
XY − 1

r
ḡ(X,Y )∂r.

Adding the torsion tensor T̄ , this implies

∇̄∂r
∂r = 0, ∇̄∂r

X = ∇̄X∂r =
1

r
X, ∇̄XY = ∇XY − 1

r
ḡ(X,Y )∂r.

For X ∈ TM̄ and Y ∈ TM ⊂ π∗(P̃SO(n+1)M)×SO(n+1) R
n+1 we have

φ−1(∇̄∂r
φ(∂r)) = φ−1(∇̄∂r

∂r) = 0
!
= [h, d((0..0, 1)t)(∂r) + ω̄(dh∂r)(0..0, 1)

t] = [h, ω̄(dh∂r)(0..0, 1)
t]

and

φ−1(∇̄∂r
φ(Y )) = φ−1(∇̄∂r

1

ar
arφ(Y )) = φ−1(

1

ar
∇̄∂r

arφ(Y ) + (∂r
1

ar
)arφ(Y ))

= φ−1(
1

ar

1

r
(arφ(Y ))− 1

ar2
arφ(Y )) = 0

!
= [h, 0 + ω̄(dh∂r)(Y1, .., Yn, 0)

t]

and thus ω̄(dh∂r) = 0. Furthermore X = [h̃, ar(X1, .., Xn, 0)
t] = [h̃, arη(dhX)] and we get

φ−1(∇̄Xφ(∂r)) = φ−1(∇̄X∂r) = φ−1(
1

r
X) = φ−1([h̃, aη(dhX)]) = [h, aη(dhX)],

proving aη = ω̄ · ∂r. Since φ(Y ) = [h̃, (Y1, .., Yn, 0)
t], we have ḡ(X, arφ(Y )) = a2r2η(dhX)t · (Y1, .., Yn)t.

Furthermore we have

∇Xarφ(Y ) = [h̃, ar(d(Y1, ..Yn, 0)
t(X) + ar(ω(dhX)(Y1, .., Yn)

t, 0)t]

and obtain

φ−1(∇̄Xφ(Y )) = φ−1(
1

ar
∇̄Xarφ(Y )) = φ−1(

1

ar
∇Xarφ(Y )− 1

ar

1

r
ḡ(X, arφ(Y ))∂r)

= φ−1([h̃, d(Y1, .., Yn, 0)
t(X) + (ω(dhX)(Y1, .., Yn)

t, 0)t − aη(dhX)t(Y1, .., Yn, 0)
t(0, .., 0, 1)t]).

Combining all these results yields

ω̄ =





ω aη

−aηt 0



 .
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If one changes the orientation of M̄ (a local SO(M̄) frame is then given by ( 1
ar
X1, ...,

1
ar
X2,−∂r)), we

obtain the alternative connection form




ω −aη

aηt 0



 .

For a Killing spinor on M with real Killing number α, we thus choose the cone constant a = −2α for
α < 0 and a = 2α for α > 0. Hence, the cone depends on the Killing number and the construction only
makes sense if α ∈ R\{0}, as we had assumed from the beginning. In particular, the results cannot be
applied to ∇-parallel spinors (α = 0). The pullback of the connection ω̃ under the projection π : M̄ → M
is the same as the connection ω̄ on M̄ , thus their holonomy groups Hol(ω̃) and Hol(ω̄) are the same.
Since the second Stiefel-Whitney class of M̄ =M × R is given by [Th52, p.142]

w2(M̄) = w2(M) + w2(R) + w1(M)⊗ w1(R),

we conclude that M̄ is spin, since we assumed M to be spin.
Let us now have a closer look at spinors on M and M̄ . A parallel spinor of (M̄, ω̄) is the same as a
trivial factor of the action of the holonomy group Hol(ω̄) = Hol(ω̃) on ∆n+1. A Killing spinor on (M ,ω)
corresponds to a trivial factor of the action of the same group on the space ∆n.
For n = dim(M) odd, the spin representation splits into ∆n+1 = ∆+

n ⊕ ∆−
n . Changing the orientation

of M̄ (changing from negative to positive α and vice versa) means interchanging ∆+
n and ∆−

n . Thus, a
parallel spinor on M̄ is either in ∆+

n or in ∆−
n , giving either a Killing spinor with positive or with negative

Killing number α.
For n even, we have ∆n = ∆n+1 and, by interchanging the orientation, we obtain for any parallel spinor
in M̄ one Killing spinor with positive, and one with negative Killing number α. We summarize these
results in the following lemma:

Lemma 2.1. For a Riemannian spin manifold (M, g) with connection ∇ with skew symmetric torsion
T , consider the manifold (M̄, ḡ) with connection ∇̄ with skew symmetric torsion T̄ as constructed above.
The following correspondence holds:

• If n = dim(M) is odd, any ∇̄-parallel spinor on M̄ corresponds to a ∇-Killing spinor on M , with
either positive or negative Killing number 1

2a or − 1
2a.

• If n is even, any ∇̄-parallel spinor on M̄ corresponds to a pair of ∇-Killing spinors on M with
Killing number ± 1

2a.

Remark 2.2. For dimM even, one can write down the bijection between Killing spinors with torsion
with Killing numbers ±α explicitly: If ψ has Killing number α and decomposes into ψ = ψ+ +ψ− in the
spin bundle ΣM = Σ+M ⊕Σ−M , then ψ+ −ψ− is a Killing spinor with Killing number −α. This is the
same argument as in the Riemannian case [BFGK91, p.121].

Remark 2.3. The careful reader will have noticed that our cone is slightly more general than in [Bä93],
where the computations are done for cone constant a = 1. This stems from the fact that in the Riemannian
case, the Killing number is determined through n = dimM and Scalg (remember that the manifold has
to be Einstein), hence the cone can be normalized in such a way that a = 1. For our applications, this is
too restrictive.

2.2. G structures and their characteristic connections. Let (M, g) be an oriented Riemannian
manifold with Levi-Civita connection ∇g. By definition, a G structure on M is a G reduction of the
frame bundle of M to some closed subgroup G ⊂ SO(n). If M admits a metric connection ∇c with
skew symmetric torsion T c preserving the G structure, it will be called a characteristic connection. The
following result proves the uniqueness of the characteristic connection in many geometric situations:

Theorem 2.4 ([AFH12, Thm 2.1.]). Let G ( SO(n) be a connected Lie subgroup acting irreducibly
on Rn, and assume that G does not act on Rn by its adjoint representation. Then the characteristic
connection of a G structure on a Riemannian manifold (M, g) is, if existent, unique.
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This applies, for example, to almost hermitian structures (SU(n) ⊂ SO(2n)), G2 structures in dimension
7 and Spin(7) structures in dimension 8 (but not to metric almost contact structures).
Let us introduce the G structures considered in this article.

Metric almost contact structures. Let M be a n = 2k + 1 dimensional manifold. Given a Riemannian
metric g, a (1,1)-tensor φ : TM → TM , a 1-form η with dual vector field ξ of length one, and the
(2, 0)-tensor F defined by F (v, w) := g(v, φ(w)), we call (M, g, φ, η) a metric almost contact structure if

φ2 = −id+ η ⊗ ξ and g(φv, φw) = g(v, w)− η(v)η(w).

In [Bl02, Thm 4.1.D], D. Blair shows that φ(ξ) = 0 and η ◦ φ = 0. Since

g(v, φ(w)) = g(φ(v), φ2(w)) + η(v)η(φ(w)) = g(φ(v),−w + η(w)ξ) = −g(φ(v), w),
for all v, w ∈ TM , F is actually a 2-form. In terms of the Levi-Civita connection ∇g on M , the Nijenhuis
tensor of a metric almost contact structure is defined by

N(X,Y, Z) := g((∇g
Xφ)(φ(Y ))− (∇g

Y φ)(φ(X)) + (∇g

φ(X)φ)(Y )− (∇g

φ(Y )φ)(X), Z)

+ η(X)g(∇g
Y ξ, Z)− η(Y )g(∇g

Xξ, Z).

The classification of metric almost contact structures is, alas, relatively involved. For future reference, we
recall in the following table the exact definition of the different classes of of n-dimensional metric almost
contact manifolds given by Chinea and Gonzalez [CG90].

class defining relation

C1 (∇g
XF )(Y, Z) = 0, ∇gη = 0

C2 dF = ∇gη = 0

C3 (∇g
XF )(Y, Z)− (∇g

φXF )(φY, Z) = 0

C4 (∇g
XF )(Y, Z) = − 1

n−3 [g(φX, φY )δF (Z)− g(φX, φZ)δF (Y )

−F (X,Y )δF (φZ) + F (X,Z, δF (φY )], δF (ξ) = 0

C5 (∇g
XF )(Y, Z) =

1
n−1 [F (X,Z)η(Y )− F (X,Y )η(Z)]δη

C6 (∇g
XF )(Y, Z) =

1
n−1 [g(X,Z)η(Y )− g(X,Y )η(Z)]δF (ξ)

C7 (∇g
XF )(Y, Z) = η(Z)(∇g

Y η)(φX) + η(Y )(∇g
φXη)(Z), δF = 0

C8 (∇g
XF )(Y, Z) = −η(Z)(∇g

Y η)(φX) + η(Y )(∇g
φXη)(Z), δη = 0

C9 (∇g
XF )(Y, Z) = η(Z)(∇g

Y η)(φX)− η(Y )(∇g
φXη)(Z)

C10 (∇g
XF )(Y, Z) = −η(Z)(∇g

Y η)(φX)− η(Y )(∇g
φXη)(Z)

C11 (∇g
XF )(Y, Z) = −η(X)(∇g

ξF )(φY, φZ)

C12 (∇g
XF )(Y, Z) = η(X)η(Z)(∇g

ξη)(φY )− η(X)η(Y )(∇g
ξη)(φZ)

The most important classes are

• C3 ⊕ ..⊕ C8, the normal structures characterized by N = 0,
• C6 ⊕ C7, the quasi Sasaki structures: normal structures satisfying dF = 0,
• C6, the α-Sasaki structures: normal structures with αF = dη for some constant α,
• Sasaki structures: α-Sasaki structures with δF (ξ) = n− 1.

Other classifications we will not consider here are formulated in terms of the Niejenhuis tensor or by
considering the direct (not the twisted) productM ×R ([CM92] and [Ou85]). It turns out that the tensor
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α(X,Y, Z) := (∇g
XF )(Y, Z) will be a useful tool for the investigation of metric almost contact structures.

It satisfies the general formula

(1) α(X,Y, Z) = −α(X,Z, Y ) = −α(X,φY, φZ) + η(Y )α(X, ξ, Z) + η(Z)α(X,Y, ξ).

This implies

α(X,Y, φY ) = −α(X,φY, φ2Y ) + η(Y )α(X, ξ, φY ) = −α(X,Y, φY ) + 2η(Y )α(X, ξ, φY ),

so we have

(2) α(X,Y, φY ) = η(Y )α(X, ξ, φY ).

A metric almost contact structure admits a characteristic connection if and only if its Nijenhuis tensor
is skew symmetric and ξ is a Killing vector field, and it is then unique [FI02, Thm 8.2]. If it exists, its
torsion tensor is given by

T = η ∧ dη + dFφ +N − η ∧ (ξyN),

where dFφ := dF ◦φ. We shall now prove a useful criterion for the existence of a characteristic connection.

Lemma 2.5. A metric almost contact manifold (M, g, φ, η) admits a characteristic connection if and
only if

(∇g
Y F )(Y, φX) + (∇g

φY F )(Y,X) = 0.

Proof. There exists a characteristic connection if and only if the Niejenhuis tensor N is skew symmetric
and ξ is a Killing vector field. Since we have

g(∇g
Y ξ, Z) = −F (∇g

Y ξ, φZ) = (∇g
Y F )(ξ, φZ) = (∇g

Y η)(Z)

and (∇g
XF )(Z, Y ) = g((∇g

Xφ)Y, Z), the Niejenhuis tensor on M may be written as

N(X,Y, Z) = α(X,Z, φY )− α(Y, Z, φX) + α(φX,Z, Y )− α(φY, Z,X)

+ η(X)α(Y, ξ, φZ) − η(Y )α(X, ξ, φZ).

Thus N is skew symmetric if

0 = N(X,Y, Y ) = α(X,Y, φY )− α(Y, Y, φX)− α(φY, Y,X) + η(X)α(Y, ξ, φY )− η(Y )α(X, ξ, φY ).

With equation (2), N is skew symmetric if and only if

(3) 0 = α(Y, Y, φX) + α(φY, Y,X) + η(X)α(Y, ξ, φY ).

ξ is a Killing vector field if 0 = g(∇g
Xξ, Y ) + g(∇g

Y ξ,X) = α(X, ξ, φY ) +α(Y, ξ, φX), and this is satisfied
if and only if α(Y, ξ, φY ) = 0. Together with condition (3) we obtain the condition

0 = α(Y, Y, φX) + α(φY, Y,X).

To see that this is also sufficient, set X = ξ. �

Definition 2.6. In analogy to the almost hermitian and the G2 case, we shall call a metric almost contact
manifold admitting a characteristic connection a metric almost contact manifold with torsion.

With the above lemma we can easily prove

Theorem 2.7. Consider a metric almost contact manifold (M, g, φ, η). If it is of class

(1) C1 ⊕ C3 ⊕ C4 ⊕ C6 ⊕ C7, there exists a characteristic connection.
(2) C2, C5, C9, C10, C11 or C12 there is no characteristic connection.
(3) C8 there exists a characteristic connection if and only if ξ is a Killing vector field.

Proof. We check the different cases:
In C1 we have α(X,X, Y ) = α(X,Z, ξ) = 0 and we thus get α(Y, Y, φX) + α(φY, Y,X) = 0.
For a structure given by α in the class C2 we have

α(X,Y, Z) + α(Y, Z,X) + α(Z,X, Y ) = α(X,Y, ξ) = 0,
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and equation (2) yields

α(Y, Y, φX) + α(φY, Y,X) = α(Y, Y, φX)− α(Y,X, φY )− α(X,φY, Y )

= α(Y, Y, φX) + α(Y, φY,X)
(1)
= −α(Y, φY, φ2X) + α(Y, φY,X)

= 2α(Y, Y, φX).

Thus the condition α(Y, Y, φX) + α(φY, Y,X) = 0 implies 0 = α(Y, Y, φ2X) = −α(Y, Y,X) since
α(Y, Y, ξ) = 0. Therefore α has to be also of class C1, which implies α = 0.
In C3 we have α(X,Y, Z) = α(φX, φY, Z) and get

α(Y, Y, φX) + α(φY, Y,X) = α(Y, Y, φX)− α(φY,X, Y )

=α(Y, Y, φX)− α(φ2Y, φX, Y ) = α(Y, Y, φX) + α(Y, φX, Y ) = 0

since α(ξ,X, Y ) = 0 in C1 ⊕ ...⊕ C10.
A structure is of class C3 ⊕ ... ⊕ C8 if and only if N = 0 thus we just have to check the condition
α(Y, ξ, φY ) = 0, which is satisfied in C4 and C6.
C5 is given by the condition α(X,Y, Z) = δη

n−1 (F (X,Z)η(Y ) − F (X,Y )η(Z)) such that the condition

α(Y, ξ, φY ) = 0 implies δη = 0 and thus α = 0.
For (c, b) = (1,−1) in C7, (c, b) = (−1,−1) in C8, (c, b) = (1, 1) in C9 and (c, b) = (−1, 1) in C10 we have

α(X,Y, Z) = cη(Z)α(Y,X, ξ) + bη(Y )α(φX, φZ, ξ)

and get α(X,Y, ξ) = cα(Y,X, ξ) and α(X,φY, ξ) = bα(X,φY, ξ), implying (1 − cb)α(Y, φY, ξ) = 0. Thus
in C7 and C10 the vector field ξ is Killing. Since in C7 we have N = 0, we have a characteristic connection
here. In C8 we have a characteristic connection if and only if ξ is Killing. In C9 and C10 we have b = 1
and thus

α(Y, Y, φX) + α(φY, Y,X) =− η(Y )α(φY,X, ξ) + cη(X)α(Y, φY, ξ) − η(Y )α(Y, φX, ξ)

=− 2η(Y )α(φY,X, ξ) + cη(X)α(Y, φY, ξ).

For X = ξ the condition α(Y, Y, φX) + α(φY, Y,X) = 0 implies α(Y, φY, ξ) = 0 and thus we have
0 = α(φY,X, ξ) and also 0 = α(φ2Y,X, ξ) = −α(Y,X, ξ) since α(ξ,X, Y ) = 0. So we have already α = 0.
C11 is given by the condition α(X,Y, Z) = −η(X)α(ξ, φY, φZ) and thus with α(ξ, ξ,X) = 0 we get

α(Y, Y, φX) + α(φY, Y,X) = η(Y )α(ξ, φY,X).

Because α(ξ, φY,X) = 0 already implies α(ξ, Y,X) = 0, we obtain in this case immediately α = 0.
In C12 we have α(X,Y, Z) = η(X)η(Y )α(ξ, ξ, Z) + η(X)η(Z)α(ξ, Y, ξ) and thus 0 = α(Y, Y, φX) +
α(φY, Y,X) = η(Y )2α(ξ, ξ, φX) gives us α = 0. �

Remark 2.8. The conditions for a metric almost contact structure to admit a characteristic connection
in Theorem 2.7 are sufficient but not necessary. In [Pu12] C. Puhle proves that in the case n = 5, there are
structures of class C10 ⊕C11 (in his class W4) carrying a characteristic connection. Thus a structure with
characteristic connection is never of pure class C10 nor of class C11, but it can be of mixed class C10⊕C11.
But more detailed descriptions are possible in some cases. For example, if we set Y = ξ, the equation
0 = α(Y, Y, φX) + α(φY, Y,X) immediately implies that a structure with characteristic connection is of
class C1 ⊕ ...⊕ C11.
Almost hermitian structures. Let (M, g) be a 2m-dimensional Riemannian manifold equipped with a
(1, 1)-tensor

J : TM → TM with J2 = −IdTM , and g(JX, JY ) = g(X,Y ).

We define a 2-form Ω(X,Y ) := g(X, JY ). Then (M, g, J,Ω) is called an almost hermitian manifold. In
terms of the Levi-Civita connection ∇g on M , the Nijenhuis tensor of M is defined to be

N(X,Y, Z) = g((∇g
XJ)(JY ), Z)− g((∇g

Y J)(JX), Z) + g((∇g
JXJ)(Y ), Z)− g((∇g

JY J)(X), Z).

Almost hermitian structures were classified by Gray and Hervella in [GH80] into four classes χ1 ⊕ χ2 ⊕
χ3 ⊕ χ4. An almost hermitian manifold admits a characteristic connection if and only if it is of class
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χ1 ⊕χ3 ⊕χ4 [FI02] and it is always unique (either by explicit computation as in [FI02] or by the general
Theorem 2.4); manifolds of class χ1⊕χ3⊕χ4 are sometimes called Kähler manifolds with torsion, although
they are evidently not Kählerian. Their characteristic torsion is given by (see for example [Ag06])

T = N + dΩJ ,

where dΩJ := dΩ ◦ J . For a nearly Kähler manifold (class χ1), this connection was first introduced
and investigated by A. Gray; on Hermitian manifolds (N = 0, i. e. class χ3 ⊕ χ4) it is sometimes called
the Bismut connection [Bi89]. Almost hermitian manifolds of class χ4 are locally conformally Kähler
manifolds.

G2 structures. Let (M, g, ) be a 7-dimensional oriented Riemannian manifold. M is said to carry a G2

structure if it admits a reduction to G2 ⊂ SO(7); alternatively, this amounts to the choice of a generic
3-form φ. With respect to a local orthonormal frame e1, . . . , e7, such a 3-form can locally be written as

φ = e123 + e145 + e167 + e246 − e147 − e347 − e356.

Here and subsequently, we do not distinguish between vectors and covectors and abbreviate the k-form
ei1 ∧ .. ∧ eik as ei1..ik . G2 manifolds were classified by Fernández and Gray in [FG82] into four classes
W1 ⊕W2 ⊕W3 ⊕W4.
Friedrich and Ivanov proved that there is a characteristic connection if and only if the structure is of class
W1 ⊕ W3 ⊕W4; these manifolds are sometimes called G2 manifolds with torsion or G2T manifolds for
short. In [FI02] a concrete description of the torsion can be found (we do not need the explicit formula
here). We will often used the skew symmetric endomorphism P (X, .) introduced in [FG82],

φ(X,Y, Z) = g(X,P (Y, Z)).

Spin(7) structures. In a similar spirit, an 8-dimensional oriented Riemannian manifold (M, g) is called a

Spin(7) manifold if it has a reduction to Spin(7) ⊂ SO(8), and this is equivalent to the choice of a 4-form
Φ which, in a local frame e1, . . . , e8, can be written as

Φ = φ+ ∗φ, and φ = e1278 + e3478 + e5678 + e2468 − e2358 − e1458 − e1368.

We define a skew symmetric endomorphism P (X,Y, .) on TM via

g(P (X,Y, Z), V ) = Φ(X,Y, Z, V ).

We extend the metric g to 3-forms on TM in the usual way, i. e. g(W1 ∧W2 ∧W3, V1 ∧ V2 ∧ V3) =
det(g(Wi, Vi)) for Vi,Wj ∈ TM . For 3-forms ξ =

∑

i<j<k

ξijkeijk and η =
∑

i<j<k

ηijkeijk let η(ξ) be defined

as

η(ξ) :=
∑

i<j<k

ξijkη(ei, ej, ek) =
∑

i<j<k

ξijkηijk = g(η, ξ).

We define p(X) via

g(X,P (ξ)) = g(p(X), ξ)

for X ∈ TM and a 3-form ξ on M (P (ξ) is well defined, since P is totally skew symmetric). Spin(7)
manifolds were classified by Fernández in [Fe86]: they split in the two classes U1 and U2. S. Ivanov proves
in [Iv04] that such a manifold always carries a characteristic connection.

2.3. The cone correspondence for spinors. Let the cone (M̄, ḡ) overM with Levi-Civita connection
∇̄ḡ carry a Ḡ structure and assume that there is a connection ∇ on M such that its lift ∇̄ to M̄ with
torsion T̄ is the characteristic connection on M̄ with respect to the given Ḡ structure.

Given a G structure onM , we shall construct an induced Ḡ structure on M̄ in the following sections. We
will see that the characteristic connection ∇c on M (with torsion T c) does not lift to the characteristic
connection ∇̄ on M̄ (with torsion T̄ , introduced by a connection ∇ on M with torsion T ). In particular
the lift T c of the characteristic torsion to M̄ is not the characteristic torsion on M̄ . So the tensor T c−T



CONES OF G MANIFOLDS AND KILLING SPINORS WITH SKEW TORSION 11

is not zero and will play an important role in the following. We want to study the Killing equation with
torsion as discussed in [ABK12]: For the family of connections (s ∈ R)

∇s
XY = ∇g

XY + 2sT c(X,Y ),

a spinor ψ is called a Killing spinor with torsion if it satisfies the equation

∇s
Xψ = αXψ

for some Killing number α ∈ R−{0} and some value of s. This definition includes the choice that we do
not view a parallel spinor (α = 0) as a special case of a Killing spinor. A priori, solutions of this equation
with α ∈ C− R are conceivable, but we are not aware of any. In any event, the cone construction would
not work for such an α.
The case s = 1

4 corresponds to the characteristic connection; however, there are many geometric situations

in which the Killing equation holds for values s 6= 1/4. The connection ∇̄s on M̄ is then given by
∇̄s = ∇̄ḡ +2sT̄ . We obtain the following correspondence between connections on M̄ and connections on
M :

Connections on M Connections on M̄

∇s = ∇g + 2sT c ∇̄ḡ + 2sT c = ∇̄s − 2s(T̄ − T c)

∇g + 2sT = ∇s + 2s(T − T c) ∇̄s = ∇̄ḡ + 2sT̄

A direct application of Lemma 2.1 implies:

Lemma 2.9. For α ∈ R− {0}, we have the following correspondence between

spinors on M spinors on M̄

∇s
Xψ = αXψ ∇̄s

Xψ − sXy(T̄ − T c)ψ = 0

∇s
Xψ + sXy(T − T c)ψ = αXψ ∇̄s

Xψ = 0

For dim(M) odd, there is one spinor on M with either α = 1
2a or α = − 1

2a.

If dim(M) is even, there is a pair of spinors with Killing numbers α = ± 1
2a on M .

In particular for s = 1
4 we obtain the following correspondence:

spinors on M spinors on M̄

∇c
Xψ = αXψ ∇̄Xψ = 1

4Xy(T̄ − T c)ψ

∇c
Xψ = αXψ − 1

4Xy(T − T c) ψ ∇̄Xψ = 0

In the following sections we look at the corresponding structures on M̄ , their classifications and the
correspondences of spinors on M and M̄ .

3. Metric almost contact structures – almost hermitian structures on the cone

3.1. Preparations. Let (M, g, φ, η) be an n-dimensional metric almost contact structure. As in Section
2.1 we construct the twisted cone M̄ over M and define an almost hermitian structure J on M̄ via

J(ar∂r) := ξ, J(ξ) := −ar∂r and J(X) = −φ(X) for X ⊥ ξ, ∂r.

The identity φ2 = −Id + η ⊗ ξ immediately implies J2 = −Id.
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Definition 3.1. If M admits a characteristic connection ∇c with skew symmetric torsion T c satisfying
∇cφ = ∇cη = 0, we define a connection ∇ with skew symmetric torsion T

T := T c − 2aη ∧ F and thus ∇XY = ∇c
XY − a(η ∧ F )(X,Y, .).

In particular: If the almost metric contact structure is Sasakian and the Killing number happens to satisfy
|α| = 1/2 (like in the Riemannian case), the cone is constructed with a = 1, and thus T c = η∧dη = 2aη∧F
and ∇ = ∇g, the Levi-Civita connection. Thus, ∇ and T measure in some sense the difference to the
Riemannian Sasakian case.
Although the role of T is clearly exposed in Section 2.3, this is not sufficient to determine T completely.
Rather, the formula for T has to be found by trying a suitable Ansatz, the motivation for which comes
precisely from the Riemannian case just described. Since T is unique, the definition is justified a posteriori
by yielding the desired correspondence.

Theorem 3.2. If (M, g, φ, η) is an almost contact metric structure, (M̄, ḡ, J) is an almost hermitian
manifold.
If furthermore M admits a characteristic connection, consider the connection ∇ defined above. Then the
appendant connection ∇̄ on M̄ is almost complex, ∇̄J = 0.

Remark 3.3. This shows in particular that ∇̄ is the unique characteristic connection of M̄ with respect
to J . Furthermore, the theorem includes the claim that the existence of a characteristic connection for
the almost contact metric structure on (M, g, φ, η) suffices to imply that the induced almost hermitian
structure on M̄ does also admit a characteristic connection.

We first prove

Lemma 3.4. On M , Definition 3.1 implies

(4) (∇Y φ)X = ag(Y,X)ξ − aη(X)Y,

and we have

a) aφ(X) = −∇Xξ,
b) ξ is a Killing vector field, g(∇Y ξ,X) = −g(∇Xξ, Y ) and thus its integral curves are geodesics,
c) dη = 2aF + ξyT .

Proof of Lemma 3.4. Using the definition ∇ = ∇c − aη ∧ F with the equation ∇cφ = 0, we directly
compute (∇Y φ)X = ag(Y,X)ξ − aη(X)Y . Identity (4) and φ(ξ) = 0 imply for X ∈ TM

aX − ag(X, ξ)ξ = −(∇Xφ)ξ = ∇X(φ(ξ)) − (∇Xφ)ξ = φ(∇Xξ).

Since ∇Xξ ⊥ ξ, applying φ yields

aφ(X) = φ(aX − ag(X, ξ)ξ) = −∇Xξ.

Since g(X,φ(Y )) = −g(φ(X), Y ), we can conclude from equation (4) the statement b) of the lemma,
which is also a consequence of Theorem 8.2 in [FI02]. For X,Y ∈ TM , we obtain with statement a)

dη(X,Y ) = Xη(Y )− Y η(X)− η([X,Y ]) = Xg(Y, ξ)− Y g(X, ξ)− g([X,Y ], ξ)

= g(∇XY, ξ) + g(Y,∇Xξ)− g(∇YX, ξ)− g(X,∇Y ξ)− g([X,Y ], ξ)

= T (X,Y, ξ)− g(Y, aφ(X)) + g(X, aφ(Y )) = T (X,Y, ξ) + 2aF (X,Y )

which finishes the proof. �

Proof of Theorem 3.2. One easily checks that ḡ(JX, JY ) = ḡ(X,Y ) for X,Y ∈ TM̄ and thus J is an
almost hermitian structure.
We have to show ∇̄J = 0, meaning 0 = ∇̄Y (J(X)) − J(∇̄YX). To do so, we distinguish the following
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cases:
If X ∈ TM , X ⊥ ξ and Y ∈ TM we have

∇̄Y (J(X))− J(∇̄YX) = −∇̄(φ(X)) − J(∇YX − 1

r
ḡ(Y,X)∂r)

= −∇Y (φ(X)) +
1

r
ḡ(Y, φ(X))∂r − J(∇YX) +

1

ar2
ḡ(Y,X)ξ

= −(∇Y φ)(X)− φ(∇YX) + a2rg(Y, φ(X))∂r − J(∇YX) + ag(Y,X)ξ.

With identity (4) and since η(X) = 0, φ(ξ) = 0 we get

∇̄Y (J(X))− J(∇̄YX) = −aη(X)Y − φ(∇YX) + a2rg(Y, φ(X))∂r − J(∇YX)

= −φ(∇YX + ag(Y, φ(X))ξ)− J(ag(Y, φ(X))ξ +∇YX),

which is equal to zero if ∇YX + ag(Y, φ(X))ξ is perpendicular to ξ and ∂r. Obviously it is perpendicular
to ∂r. We have g(∇YX + ag(Y, φ(X))ξ, ξ) = 0 if

0 = g(∇YX, ξ) + g(Y, aφ(X)) = −g(X,∇Y ξ) + g(Y, aφ(X)) = g(X, aφ(Y )) + g(Y, aφ(X)) = 0.

If X ∈ TM , X ⊥ ξ and Y = ∂r we have ∇̄Y (J(X))− J(∇̄YX) = 1
r
J(X)− J(1

r
X) = 0.

If X = ξ, Y = ∂r we get

∇̄Y (J(X))− J(∇̄YX) = ∇̄∂r
(−ar∂r)− J(

1

r
ξ) = −a∂r − ar∇̄∂r

∂r + a∂r = 0.

Given X = ξ and Y = ξ we have

∇̄Y (J(X))− J(∇̄YX) = −∇̄ξ(ar∂r)− J(∇ξξ −
1

r
ḡ(ξ, ξ)∂r) = −aξ + aξ = 0.

If X = ξ, Y ∈ TM , Y ⊥ ξ we have

∇̄Y (J(X))− J(∇̄YX) = −∇̄Y (ar∂r)− J(∇Y ξ −
1

r
ḡ(Y, ξ)∂r) = −aY + J(aφ(Y )) = −aY + aY = 0.

Given X = ∂r, Y ⊥ ξ, Y ∈ TM we get

∇̄Y (J(X))− J(∇̄YX) = ∇̄Y (
1

ar
ξ)− J(

1

r
Y ) = − 1

ar
aφ(Y )− J(

1

r
Y ) = 0.

In the case X = ∂r and Y = ξ we have

∇̄Y (J(X))− J(∇̄YX) = ∂̄ξ(
1

ar
ξ)− J(

1

r
ξ) =

1

ar
∇ξξ −

1

ar2
ḡ(ξ, ξ)∂r + a∂r = −a∂r + a∂r = 0.

The last case is given by X = Y = ∂r. Then we have ∇̄∂r
( 1
ar
ξ) = − 1

ar2
ξ + 1

ar
∇̄∂r

ξ = 0. �

Let (M, g) be a Riemannian manifold such that the above constructed manifold (M̄, ḡ) carries an almost
hermitian structure J . We have J(∂r) ⊥ ∂r. We consider the manifold M =M ×{1} ⊂ M̄ and define for
X ∈ TM : ξ := aJ(∂r), η(X) := g(X, ξ) and φ(X) := −J(X) + ḡ(J(X), ∂r)∂r . We get an almost contact
structure on M :

φ2(X) = − J(−J(X) + ḡ(J(X), ∂r)∂r) + ḡ(J(−J(X) + ḡ(J(X), ∂r)∂r), ∂r)∂r

= −X + ḡ(X, J(∂r))J(∂r) = −X + g(X, ξ)ξ = −X + η(X)ξ

and

g(φ(X), φ(Y )) =
1

a2
ḡ(−J(X) + ḡ(J(X), ∂r)∂r,−J(Y ) + ḡ(J(Y ), ∂r)∂r)

=
1

a2
(ḡ(J(X), J(Y ))− ḡ(X, J∂r)ḡ(Y, J(∂r))) = g(X,Y )− η(X)η(Y ).

Conversely to Theorem 3.2, one proves:

Theorem 3.5. Consider the manifold M̄ equipped with a connection ∇̄ with skew symmetric torsion T̄
being the lift of a connection ∇ with torsion T on M . If the connection ∇̄ is almost complex on M̄ , we
have (∇Xφ)(Y ) = ag(X,Y )ξ − aη(Y )X and thus the characteristic connection ∇c on M =M × {1} has
torsion T c = T + 2aη ∧ F .
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From now on we assume that M and M̄ admit an almost contact structure and an almost hermitian
structure, respectively, both admitting characteristic connections ∇c and ∇̄ as introduced above.

3.2. The classification of metric almost contact structures and the corresponding classifica-

tion of almost hermitian structures on the cone. We look at the classification of the geometric
structures on M̄ and M . We first prove the following two lemmata.

Lemma 3.6. The Nijenhuis tensor N̄ of the almost hermitian structure on M̄ restricted to TM and the
Nijenhuis tensor N of the almost contact structure on M are related via a2r2N = N̄ . Furthermore, the
following conditions are equivalent:

• ∂ryN̄ = 0,
• dη(X,φY ) + dη(φX, Y ) = 0 on TM ,
• ξyN = 0.

In particular N = 0 if and only if N̄ = 0.

Remark 3.7. In [HTY12], T. Houri, H. Takeuchi, and Y. Yasui considered hermitian manifolds M̄ with
a vanishing Nijenhuis tensor N̄ . They showed that in this case N = 0 and thus M is a normal almost
contact manifold, which also is an immediate consequence of Lemma 3.6.

Remark 3.8. Since N = 0 if and only if N̄ = 0, the condition N̄ = 0 is sometimes used for the definition
of an almost contact metric manifold to be normal (see for example [CG90]).

Proof of Lemma 3.6. Since we have

ḡ((∇̄ḡ
XJ)Y, Z) = ḡ((∇̄XJ)Y +

1

2
(J̄T (X,Y )− T̄ (X, JY )), Z) = −1

2
(T̄ (X,Y, JZ) + T̄ (X, JY, Z)),

the Nijenhuis tensor of M̄ is given by

N̄(X,Y, Z) = ḡ((∇̄ḡ
XJ)(JY ), Z)− ḡ((∇̄ḡ

Y J)(JX), Z) + ḡ((∇̄ḡ
JXJ)(Y ), Z)− ḡ((∇̄ḡ

JY J)(X), Z)

= T̄ (X,Y, Z)− T̄ (JX, JY, Z)− T̄ (JX, Y, JZ)− T̄ (X, JY, JZ),

whereas the Nijenhuis tensor on M is

N(X,Y, Z) = g((∇g
Xφ)(φ(Y ))− (∇g

Y φ)(φ(X)) + (∇g

φ(X)φ)(Y )− (∇g

φ(Y )φ)(X), Z)

+ η(X)g(∇g
Y ξ, Z)− η(Y )g(∇g

Xξ, Z).

Identity (4) implies

g((∇g
Xφ)(Y ), Z) = ag(X,Y )η(Z)− ag(X,Z)η(Y )− 1

2
(T (X,φ(Y ), Z) + T (X,Y, φ(Z)))

and hence we obtain for N(X,Y, Z) =

ag(X,φ(Y ))η(Z)− 1

2
T (X,φ2(Y ), Z))− 1

2
T (X,φ(Y ), φ(Z))

− ag(Y, φ(X))η(Z) +
1

2
T (Y, φ2(X), Z)) +

1

2
T (Y, φ(X), φ(Z))

ag(φ(X), Y )η(Z) − ag(φ(X), Z)η(Y )− 1

2
T (φ(X), φ(Y ), Z))− 1

2
T (φ(X), Y, φ(Z))

− ag(φ(Y ), X)η(Z) + ag(φ(Y ), Z)η(X) +
1

2
T (φ(Y ), φ(X), Z)) +

1

2
T (φ(Y ), X, φ(Z))

+ η(X)g(∇c
Y ξ, Z)−

1

2
η(X)T c(Y, ξ, Z)− η(Y )g(∇c

Xξ, Z) +
1

2
η(Y )T c(X, ξ, Z),

which is the same as

= T (X,Y, Z)− 1

2
η(Y )T (X, ξ, Z)− 1

2
η(X)T (ξ, Y, Z)− T (X,φ(Y ), φ(Z))

− T (φ(X), Y, φ(Z))− T (φ(X), φ(Y ), Z)− aη(Y )g(φ(X), Z) + aη(X)g(φ(Y ), Z)

− 1

2
η(X)T (Y, ξ, Z)− η(X)aF (Z, Y ) +

1

2
η(Y )T (X, ξ, Z) + η(Y )aF (Z,X).
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For X ∈ TM we have J(X) + η(X)ar∂r = J(X − η(X)ξ) = −φ(X − η(X)ξ) = −φ(X). Since ∂ryT̄ = 0
for X,Y, Z ∈ TM we get

(5) T̄ (J(X), Y, Z) = −a2r2T (φ(X), Y, Z)

and also T̄ (J(X), J(Y ), Z) = a2r2T (φ(X), φ(Y ), Z) etc. With this result we have

N(X,Y, Z) =
1

a2r2
(T̄ (X,Y, Z)− T̄ (JX, JY, Z)− T̄ (JX, Y, JZ)− T̄ (X, JY, JZ))

and thus we get the desired result N̄(X,Z,Z) = a2r2N(X,Y, Z) for X,Y, Z ∈ TM .
By definition of the Nijenhuis tensor we have ∂ryN̄ = 0 if and only if for X,Y ∈ TM

0 = T̄ (ξ, JX, Y ) + T̄ (ξ,X, JY ) ⇐⇒ 0 = T (ξ, φX, Y ) + T (ξ,X, φY ).

The relations ξyT = dη − 2aF and

F (φX, Y ) + F (X,φY ) = g(φX, φY ) + g(X,φ2Y ) = 0

imply that ∂ryN̄ = 0 holds if and only if dη(φX, Y )+dη(X,φY ) = 0. In [FI02] the identity N(X,Y, ξ) =
dη(X,Y )− dη(φX, φY ) is proved and we get

N(φX, Y, ξ) = dη(φX, Y ) + dη(X,φY )− η(X)dη(ξ, φY ).

The identity ξyT = dη − 2aF implies ξydη = 0 and thus dη(φX, Y ) + dη(X,φY ) = 0 if and only if
N(φX, Y, ξ) = 0. Since N is skew symmetric we have N(ξ, Y, ξ) = 0 and thus N(φX, Y, ξ) = 0 is
equivalent to ξyN = 0. �

Lemma 3.9. For Z ∈ TM̄ let ZM be the projection of Z onto TM . Then we have

δΩ(Z) = −(δF − a(n− 1)η)(ZM ).

Proof. For X,Y, Z ∈ TM̄ we have

(∇̄ḡ
XΩ)(Y, Z) = (∇̄XΩ)(Y, Z)− Ω(−1

2
T̄ (X,Y ), Z)− Ω(Y,−1

2
T̄ (X,Z)) =

1

2
(T̄ (X, JY, Z) + T̄ (X,Y, JZ)).

For a local ONB {e1, .., en = ξ} of TM we get the local ONB {ē1 = 1
ar
e1, .., ēn = 1

ar
en, ēn+1 = ∂r} of

TM̄ . In this basis and for Z ∈ TM̄ we compute

δΩ(Z) = −
n+1
∑

i=1

(∇̄ḡ
ēi
Ω)(ēi, Z) = −1

2

n−1
∑

i=1

T̄ (
1

ar
ei,

1

ar
Jei, Z)−

1

2
T̄ (

1

ar
ξ,−∂r, Z)−

1

2
T̄ (∂r, J∂r, Z).

Since ∂ryT̄ = 0, with equation (5) and the fact that φ(en) = 0, we have

δΩ(Z) =
1

2

n−1
∑

i=1

T (ei, φei, ZM ) =
1

2

n−1
∑

i=1

(T c(ei, φei, ZM )− 2a(η ∧ F )(ei, φei, ZM ))

=
1

2

n−1
∑

i=1

(T c(ei, φei, ZM )− 2aη(ZM )F (ei, φei)) =
1

2

n
∑

i=1

T c(ei, φei, ZM ) + aη(ZM )(n− 1)

= −(δF − a(n− 1)η)(ZM ),

finishing the proof. �

We consider the Gray-Hervella classification [GH80] of almost hermitian structures, given in Section
2.2. Since we want to work with characteristic connections, we will only consider structures of class
χ1 ⊕ χ3 ⊕ χ4. We first translate the conditions of this classification for the almost hermitian structure
on M̄ to conditions of the almost contact structure on M . For the discussion of the classification of
almost contact structures and the correspondences to the classification of almost hermitian structures see
Theorem 3.11.

Theorem 3.10. We have the following correspondence between Gray-Hervella classes of almost hermitian
structures on the cone M̄ and defining relations of almost contact metric structures on M :
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Class of M̄ defining relation on M̄ corresponding relation on M

Kähler ∇̄ḡJ = 0 (∇g
XF )(Y, Z) = aη(Y )g(X,Z)

−aη(Z)g(X,Y )

χ3 δΩ = N̄ = 0 N = 0, δF = a(n− 1)η

(∇̄ḡ
XΩ)(Y, Z) = −1

n−1 [ḡ(X,Y )δΩ(Z) (∇g
XF )(Y, Z) =

δF (ξ)
n−1 (g(X,Z)η(Y )

χ4 −ḡ(X,Z)δΩ(Y )− ḡ(X, JY )δΩ(JZ) −g(X,Y )η(Z))

+ḡ(X, JZ)δΩ(JY )]

χ1 ⊕ χ3 δΩ = 0 δF = a(n− 1)η

χ3 ⊕ χ4 N̄ = 0 N = 0

Furthermore, a structure on M̄ is never nearly Kähler (of class χ1) nor of mixed class χ1 ⊕ χ4.

Proof. We have

aη(Y )g(X,Z)− aη(Z)g(X,Y ) = aη ∧ F (X,Y, φZ) + aη ∧ F (X,φY, Z).
Kähler case: Since the characteristic connection on M̄ is unique, we have the following equivalences

∇̄ḡJ = 0 ⇔ ∇̄ḡ = ∇̄ ⇔ T̄ = 0 ⇔ T = 0 ⇔ T c = 2aη ∧ F.
For a metric connection ∇̃ with skew symmetric torsion T̃ on M one calculates

(∇̃XF )(Y, Z) = (∇g
XF )(Y, Z)−

1

2
T̃ (X,φY, Z)− 1

2
T̃ (X,Y, φZ).

Thus, T c = 2aη ∧ F implies (∇g
XF )(Y, Z) = aη ∧ F (X,Y, φZ) + aη ∧ F (X,φY, Z) and conversely the

condition (∇g
XF )(Y, Z) = aη ∧ F (X,Y, φZ) + aη ∧ F (X,φY, Z) yields

(∇̃XF )(Y, Z) = (aη ∧ F − 1

2
T̃ )(X,φY, Z) + (aη ∧ F − 1

2
T̃ )(X,Y, φZ).

The uniqueness of the characteristic connection ∇c on M thus implies T c = 2aη ∧ F .

Case χ3: Consider an almost hermitian structure on M̄ of class χ3 defined by δΩ = N̄ = 0. With Lemma

3.6 and 3.9 we have N̄ = δΩ = 0 if and only if N = 0 and δF − a(n− 1)η = 0.

Case χ4: The defining relation for the class χ4 of an almost hermitian manifold M̄

(∇̄ḡ
XΩ)(Y, Z) =

−1

n− 1
[ḡ(X,Y )δΩ(Z)− ḡ(X,Z)δΩ(Y )− ḡ(X, JY )δΩ(JZ) + ḡ(X, JZ)δΩ(JY )]

translates with Lemma 3.9 for X,Y, Z ∈ TM̄ into

1

2
T̄ (X,Y, JZ) +

1

2
T̄ (X, JY, Z) =

1

n− 1
[ḡ(X,Y )(δF (ZM )− a(n− 1)η(ZM ))− ḡ(X,Z)(δF (YM )− a(n− 1)η(YM ))

− ḡ(X, JY )(δF ((JZ)M )− a(n− 1)η((JZ)M )) + ḡ(X, JZ)(δF ((JY )M )− a(n− 1)η((JY )M ))].

For X ∈ TM̄ we have ḡ(∂r, JX) = −ḡ(J∂r, X) = −ḡ(J∂r, XM ) = −a2r2g( 1
ar
ξ,XM ) = −arη(XM ) and

for X ∈ TM we have (JX)M = −φX .
In the case where X = ∂r and Y, Z ∈ TM , the defining relation is equivalent to

0 = arη(Y )(δF (−φZ)− a(n− 1)η(−φZ))− arη(Z)(δF (−φY )− a(n− 1)η(−φY )).
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This is satisfied if and only if 0 = (η(Y )δF (φZ)− η(Z)δF (φY )) = η ∧ (δF ◦ φ)(Y, Z). Taking Y = ξ we
receive the condition F ◦ φ = 0, which obviously is sufficient too.
If X = Y = ∂r, Z ∈ TM the defining relation leads to

0 = δF (Z)− a(n− 1)η(Z)− arη(Z)(δF (
1

ar
ξ)− n− 1

r
),

which is the same as 0 = δF (Z)− η(Z)δF (ξ) = −δF (φ2Z), already being satisfied if δF ◦ φ = 0.
The case Y = Z = ∂r leads to 0 = 0.
Given Y = ∂r and X,Z ∈ TM we get

1

2ar
T̄ (X, ξ, Z) =

1

n− 1
[arη(X)δF (−φ(Z)) − a2r2F (X,Z)(δF (

1

ar
ξ)− a(n− 1)

1

ar
)].

Since we already have the condition δF ◦ φ = 0 this is equivalent to

dη(X,Z)− 2aF (X,Z) = (ξyT )(X,Z) =
2

n− 1
F (X,Z)(δF (ξ)− a(n− 1)).

This is the same as dη = 2
n−1δF (ξ)F . At last we look at X,Y, Z ∈ TM . Again we already have δF ◦φ = 0

−1

2
T (X,Y, φZ)− 1

2
T (X,φY, Z)

=
1

n− 1
[g(X,Y )(δF (Z)− a(n− 1)η(Z))− g(X,Z)(δF (Y )− a(n− 1)η(Y ))]

= g(X,Y )(
δF

n− 1
− aη)(Z)− g(X,Z)(

δF

n− 1
− aη)(Y ).

Furthermore we have

−1

2
(T (X,Y, φZ) + T (X,φY, Z)) = −1

2
T c(X,Y, φZ)− 1

2
T c(X,φY, Z) + aη(X)F (Y, φZ) + aη(Y )F (φZ,X)

+ aη(X)F (φY, Z) + aη(Z)F (X,φY )

= − (∇g
XF )(Y, Z) + aη(Y )g(φZ, φX) + aη(Z)g(X,φ2Y )

= − (∇g
XF )(Y, Z) + aη(Y )g(Z,X)− aη(Z)g(X,Y ).

Thus we get the equation

(∇g
XF )(Y, Z) = g(X,Z)

δF

n− 1
(Y )− g(X,Y )

δF

n− 1
(Z).

Since δF ◦ φ = 0 we have δF = δF (ξ)η and obtain

(∇g
XF )(Y, Z)η(Y )− g(X,Y )(

δF (ξ)

n− 1
+ 2a)η(Z) =

δF (ξ)

n− 1
(g(X,Z)η(Y )− g(X,Y )η(Z)).

We summarize this result: An almost hermitian structure on M̄ , given by an almost contact structure
on M is of class χ4 if and only if

(∇g
XF )(Y, Z) =

δF (ξ)

n− 1
(g(X,Z)η(Y )− g(X,Y )η(Z)), δF ◦ φ = 0 and dη = 2

δF (ξ)

n− 1
F.

The first condition implies the others: For some local orthonormal basis e1, . . . , en = ξ of TM we have

δF (X) = −
n
∑

i=1

(∇g
ei
F )(ei, X) = −

n
∑

i=1

δF (ξ)

n− 1
(g(ei, X)η(ei)− η(X))

= −δF (ξ)
n− 1

(−nη(X) + η(X)) = δF (ξ)η(X)

and thus the condition (∇g
XF )(Y, Z) =

δF (ξ)
n−1 (g(X,Z)η(Y )− g(X,Y )η(Z)) implies δF ◦ φ = 0. Since ξ is

a Killing vector field and thus (∇g
XF )(ξ, φY ) = −F (∇g

Xξ, φY ) = g(∇g
Xξ, Y ) is skew symmetric in X and

Y we have

dη(X,Y ) = (∇g
Xη)(Y )− (∇g

Y η)(X) = (∇g
XF )(ξ, φY )− (∇g

Y F )(ξ, φX) = 2(∇g
XF )(ξ, φY )
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and with condition (∇g
XF )(Y, Z) =

δF (ξ)
n−1 (g(X,Z)η(Y )− g(X,Y )η(Z)) we already get dη = 2 δF (ξ)

n−1 F .

Case χ1 ⊕ χ3: The condition for a structure of class χ1 ⊕ χ3 can be obtained directly from Lemma 3.9.

Case χ3 ⊕ χ4: An almost hermitian structure on M̄ is of class χ3 ⊕ χ4 if and only if N̄ = 0. Due to
Lemma 3.6, this is equivalent to N = 0.

Case χ1 ⊕ χ4: The condition for an almost hermitian structure to be of class χ1 ⊕ χ4 is the same as for
the class χ4, setting X = Y :

1

2
T̄ (X, JX, Y ) =

1

n− 1
[ḡ(X,X)(δF (YM )− a(n− 1)η(YM ))− ḡ(X,Y )(δF (XM )− a(n− 1)η(XM ))

+ ḡ(X, JY )(δF ((JX)M )− a(n− 1)η((JX)M ))].

The equation is still linear in Y but not in X . We set X = V + b∂r for b ∈ R and V ∈ TM :

1

2
T̄ (V, JV, Y ) +

b

2ar
T̄ (V, ξ, Y ) =

1

n− 1
[(b2 + a2r2g(V, V ))(δF (YM )− a(n− 1)η(YM ))

− (bḡ(∂r, Y ) + a2r2g(V, YM ))(δF (V )− a(n− 1)η(V ))

+ (ḡ(V, JY )− barη(YM ))(−δF (φV ) +
b

ar
δF (ξ)− b(n− 1)

r
)].

This is satisfied for any b if and only if

1

2
T̄ (V, JV, Y ) =

1

n− 1
[a2r2g(V, V )(δF (YM )− a(n− 1)η(YM ))

− a2r2g(V, YM )(δF (V )− a(n− 1)η(V )) + ḡ(V, JY )(−δF (φV ))]

and
1

2ar
T̄ (V, ξ, Y ) =

1

n− 1
[−ḡ(∂r , Y )(δF (V )− a(n− 1)η(V ))

+ ḡ(V, JY )(
δF (ξ)

ar
− (n− 1)

r
) + arη(YM )δF (φV )]

(6)

and
0 = δF (YM )− η(YM )δF (ξ) = δF (YM − η(YM )ξ) = −δF (φ2(YM )),

where the last equation is satisfied if and only if δF ◦ φ = 0.
For Y ∈ TM with the condition δF ◦ φ = 0 equation (6) leads to

1

2
T (ξ, V, Y ) = F (V, Y )(

δF (ξ)

n− 1
− a).

Since ξyT = dη − 2aF we have dη = 2 δF (ξ)
n−1 F and thus dF = 0.

With Theorem 8.4 in [FI02] this implies N = 0 and the structure is already of class χ4. Thus a structure
is never of class χ1 or of mixed class χ1 ⊕ χ4. �

We now compare the result of Theorem 3.10 with the 12 classes of almost contact structures given in
Section 2.2. As in the whole article we just consider manifolds admitting a characteristic connections
(recall that Theorem 2.7 formulates the criterion for its existence).

Theorem 3.11. If the almost hermitian structure on M̄ is

• of class χ3, then the almost contact structure on M is of class C3 ⊕ .. ⊕ C8 but not of class
C3 ⊕ C4 ⊕ C5 ⊕ C7 ⊕ C8 or of class C6.

• of class χ1⊕χ3, then the almost contact structure on M is not of class C1 ⊕ ..⊕C5⊕C7⊕ ..⊕C12
nor of class C6.

The almost hermitian structure on M̄ is

• Kähler if and only if the almost contact structure on M is α-Sasaki (of class C6) and δF (ξ) =
a(n− 1).
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• of class χ4 if and only if the almost contact structure on M is an α-Sasaki structure.
• of class χ3 ⊕χ4 if and only if the almost contact structure on M is of class C3 ⊕ ..⊕C8 and there
exists a characteristic connection.

Furthermore the structure on M is Sasaki if and only if the almost hermitian structure on M̄ is of class
χ4 with δΩ(ξ) = (a− 1)(n− 1).

Proof. If the structure on M̄ is of class χ3, we have N = 0 and thus the structure on M is of class
C3 ⊕ ..⊕ C8. Furthermore, δF (ξ) = a(n− 1) holds, but on C3 ⊕ C4 ⊕ C5 ⊕ C7 ⊕ C8 we have δF (ξ) = 0 and
a structure on M of class C6 implies a structure on M̄ of class χ4.
A structure on M̄ of class χ1⊕χ3 implies on M the relation δF (ξ) 6= 0, but on C1 ⊕ ..⊕C5⊕C7⊕ ..⊕C12
we have δF (ξ) = 0 and again a structure on M of class C6 implies a structure on M̄ of class χ4.
With Theorem 3.10, a structure on M̄ is Kählerian if and only if (∇g

XF )(Y, Z) = aη(Y )g(X,Z) −
aη(Z)g(X,Y ) holds on M , which is equivalent for the almost contact structure to be of class C6 with
δF (ξ) = a(n− 1).
The condition of Theorem 3.10 for a structure of class χ4 onM is equivalent to the definition of an almost
contact structure on M̄ to be of class C6.
In C3⊕..⊕C8 we have N = 0, which together with the existence of a characteristic connection is equivalent
to the property that the structure on M̄ is of class χ3 ⊕ χ4.
A structure on M is Sasaki if and only if it is of class C6 and δF (ξ) = n− 1. Due to Theorem 3.10 this
is equivalent to the condition for the structure on M̄ to be of class χ4 with δΩ(ξ) = (a− 1)(n− 1). �

Remark 3.12. If we construct M̄ with a = 1, we obtain a Kählerian structure, and (∇g
XF )(Y, Z) =

η(Y )g(X,Z)− η(Z)g(X,Y ) defines a Sasakian structure on M . This is the classical case treated by Bär
in [Bä93].

3.3. Corresponding spinors on metric almost contact structures and their cones. We shall
now work out in detail the abstract spinor correspondence stated in Lemma 2.9 for the case that M
carries a metric almost contact structure. The following result serves as a preparation.

Lemma 3.13. Given a metric almost contact structure with characteristic connection on M , the lift of
η ∧ F to its cone M̄ is given by

1

a3r3
(∂ryΩ) ∧ Ω.

Proof. Since ∂ry[
1

a3r3
(∂ryΩ)∧Ω] = 0 we just need to show the equality on TM . For X,Y ∈ TM we have

F (X,Y ) = g(X,φY ) = − 1

a2r2
ḡ(X, JY + η(Y )ar∂r) = − 1

a2r2
Ω(X,Y )

and

η(X) = g(X, arJ∂r) =
1

ar
Ω(X, ∂r)

which proves F = − 1
a2r2

Ω and η = − 1
ar
∂ryΩ on TM . �

We recall the definition of the connections

∇s
XY = ∇g

XY + 2sT c(X,Y ) and ∇̄s
XY = ∇̄ḡ

XY + 2sT̄ (X,Y )

for s ∈ R from Section 2.1. Theorem 3.2 yields T c = T +2aη∧F and since T̄ = a2r2T and T c = a2r2T c,
we get T c − T̄ as the lift of 2a3r2η ∧ F to M̄ . With Lemma 3.13 we obtain T c − T̄ = 2

r
(∂ryΩ) ∧ Ω.

Theorem 3.14. Assume that the almost contact metric manifold (M, g, φ, η) admits a characteristic
connection and is spin. Then there is for α = 1

2a or α = − 1
2a:

(1) A one to one correspondence between Killing spinors with torsion

∇s
Xψ = αXψ

on M and parallel spinors of the connection ∇̄s + 4s
r
(∂ryΩ) ∧ Ω on M̄ with cone constant a

∇̄s
Xψ +

2s

r
(Xy(∂ryΩ) ∧ Ω)ψ = 0,
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(2) A one to one correspondence between ∇̄s-parallel spinors on M̄ with cone constant a and spinors
on M satisfying

∇s
Xψ − 2asXy(η ∧ F )ψ = αXψ.

In particular, for s = 1
4 we get the correspondence

spinors on M spinors on M̄

∇c
Xψ = αXψ ∇̄Xψ = − 1

2rXy((∂ryΩ) ∧ Ω)ψ

∇c
Xψ = αXψ + a

2Xy(η ∧ F )ψ ∇̄Xψ = 0

Remark 3.15. Since ∇̄ = ∇̄ḡ + 1
2 T̄ is the characteristic connection of the almost hermitian structure on

M̄ , we can write
T̄ = N̄ + dΩJ ,

where dΩJ = dΩ ◦ J . Thus one can rewrite all equations above. For example the correspondence (1) of
Theorem 3.14 is given with spinors on M̄ satisfying

∇̄ḡ
Xψ + sXy[N̄ + dΩJ +

2

r
(∂ryΩ) ∧ Ω]ψ = 0.

Equivalently, one can use the description of T c onM given by T c = η∧dη+dFφ+N−η∧ (ξyN) ([FI02])
to rewrite the second correspondence. Note that this also implies that T̄ = N̄ + dΩJ is the lift of

a2r2T = a2r2(T c − 2aη ∧ F ) = a2r2(η ∧ (dη − 2aF ) + dFφ +N − η ∧ (ξyN))

to M̄ , in particular we have ∂ry(N̄ + dΩJ ) = 0.

3.4. Examples. In this Section, we shall discuss several examples of metric almost contact structures
and the special spinor fields that exist on them and on their cones. In particular, we shall describe sereval
situations where the cone carries a parallel spinor field for the characteristic connection ∇̄ of its almost
hermitian structure.

Example 3.16. For a metric almost contact manifold (M, g, φ, η), the deformation

gt := tg + (t2 − t)η ⊗ η, ξt :=
1

t
ξ, ηt := tη, t > 0

is often used for different purposes and constructions. It was introduced by Tanno [Ta68], which explains
why it is either called Tanno deformation or D-homothetic deformation. It has the property that if
the original manifold is K-contact or Sasaki, then the deformed manifold (M, gt, ξt, ηt, φ) has again this
property.
In [Be12, Cor.2.18] it was proved that any Sasakian η-Einstein manifold (with certain weak relations
between the curvature parameters) carries Killing spinors with torsion, while Einstein-Sasaki manifolds
can never admit Killing spinors with non trivial torsion [ABK12]. Since any η-Einstein manifold can be
Tanno deformed into an Einstein manifold ([Ta67], [Ta68]), it is thus sufficient to restrict our attention to
Tanno deformations of Einstein-Sasaki manifolds. It is well-known that these carry Riemannian Killing
spinors [FK89].
In [Be12], the Killing spinors with torsion on the Tanno deformation of an Einstein-Sasaki manifold
(M, g, φ, η) of dimension n = 2k + 1 ≥ 5 are constructed as follows. Consider the one dimensional
subbundles of the spinor bundle Σt of (M, gt) defined by

L1(Σt) := {ψ ∈ Σt | φ(X)ψ = −iXψ ∀X ⊥ ξ}, L2(Σt) := {ψ ∈ Σt | φ(X)ψ = iXψ ∀X ⊥ ξ}.
Define ǫ = ±1 to be the number satisfying e1φ(e1)...ekφ(ek)ξψ = ǫik+1ψ for a local orthonormal frame
e1, φ(e1), .., ek, φ(ek), ξ on M . Theorem 2.22 from [Be12] then states that the spinors ψ1 ∈ L1(Σt) and
ψ2 ∈ L2(Σt) are Killing spinors with torsion for st =

k+1
4(k−1) (

1
t
− 1) with Killing numbers

(∗) β1,t =
ǫ

2

2kt− (k + 1)

t(k − 1)
=
ǫ

2
(1 − 4st) and β2,t = (−1)k+1β1,t
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respectively. For t = 1, there is no deformation, and indeed the parameter st is then zero and the two
spinors are just classical Riemannian Killing spinors. Since (M, gt, ξt, ηt, φ) with fundamental 2-form Ft

is Sasakian, the characteristic torsion of ∇c is given by T c = ηt ∧ dηt = 2ηt ∧ Ft. Thus, the Killing
equation

∇gt
Xψi + st(XyT c)ψi = βi,tXψi, i = 1, 2

can equivalently be reformulated as

∇gt
Xψi +

1

4
(XyT c)ψi − (1− 4st)

1

4
(XyT c)ψi = βi,tXψi.

If 1 − 4st = 0, both Killing numbers βi,t vanish by equation (∗) and the Killing equation is reduced to
∇cψi = 0 – the spinor fields ψi are ∇c-parallel and, as observed before, the cone construction is not
possible. The condition 1 − 4st > 0 is equivalent to t > k+1

2k and we observe that in this case, the last
equation is exactly of the form treated in Theorem 3.14, case (2) for s = 1/4 and a = 2|βi,t| = 1−4st > 0.
Recall that we know from Theorem 3.11 that the cone (M̄, ḡt) of the Tanno deformation is a locally
conformally Kähler manifold (class χ4). Hence, we can conclude from Theorem 3.14, case (2):

Theorem 3.17. Let (M, g, φ, η) be an Einstein Sasaki manifold of dimension 2k + 1 ≥ 5. Consider its
Tanno deformation (M, gt, ξt, ηt, φ) for t > k+1

2k and the cone (M̄, ḡt, Jt), constructed with cone constant
a = 1−4st > 0, and endowed with the conformally Kähler structure described before. Then the two Killing
spinors with torsion on (M, gt, ξt, ηt, φ) induce each a spinor on the cone (M̄, ḡt, Jt) that is parallel with
respect to its characteristic connection ∇̄.

Although Killing spinors with torsion do exist on (M, gt, ξt, ηt, φ) for 0 < t < k+1
2k , Theorem 3.14, case

(2) cannot be applied because the signs do not match. Of course, case (1) does still hold and therefore we
obtain a spinor field satisfying a more complicated equation on M̄ . For t = 1 (meaning st = 0), Theorem
3.17 is the classical cone correspondence between Riemannian Killing spinors on Einstein-Sasaki manifolds
and Riemannian parallel spinors on their cone [Bä93].

Example 3.18. We shall now prove the existence of parallel spinors on the cone for a manifold that
is not Sasaki and that cannot be deformed into a manifold carrying Riemannian Killing spinors. The
Heisenberg group H is defined to be the following Lie subgroup of Gl(4,R):

H :=















































1 u v z

0 1 0 x

0 0 1 y

0 0 0 1

















: u, v, x, y, z ∈ R































.

The vector fields u1 = ∂u, u2 = ∂x + u∂z, u3 = ∂v, u4 = ∂y + v∂z , and u5 = ∂z form a basis of the left
invariant vector fields. For ρ > 0 we consider the metric ([KV85])

gρ =
1

ρ
(du2 + dx2 + dv2 + dy2) + (dz − udx− vdy)2

and get an orthonormal frame e1 =
√
ρu1, e2 =

√
ρu2, e3 =

√
ρu3, e4 =

√
ρu4 and e5 = u5. On H , there

exists a left-invariant spin structure such that e1e2e3e4e5ψ = iψ for all spinor fields ψ, which is the one
we choose. We consider the almost contact structures given by ξ := e5 and the fundamental 2-forms

F1 := e1 ∧ e2 − e3 ∧ e4 and F2 := −(e1 ∧ e2 + e3 ∧ e4).
It is a lengthy, but routine calculation to determine the class of these metric almost contact structures.
Together with Theorem 3.11, the final result is:

Lemma 3.19.

(1) (H, gρ) is never an Einstein manifold ∀ρ > 0 and its Tanno deformation is again a metric in the
same family of metrics.

(2) The structure F1 is of class C7 and the structure F2 is of class C6 (for ρ = 2, F2 is Sasakian).
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(3) The almost hermitian structure on M̄ induced by F1 is hermitian (mixed class χ3 ⊕ χ4) and the
almost hermitian structure on M̄ induced by F2 is locally conformally Kähler (class χ4). With
respect to the orthonormal frame Xi :=

1
ar
ei for i = 1, . . . , 5 and X6 := ∂r, they are given by

Ω1 = −X1 ∧X2 +X3 ∧X4 +X5 ∧X6 and Ω2 = X1 ∧X2 +X3 ∧X4 +X5 ∧X6.

In particular, Ni = N̄i = 0 and dFi = 0 for i = 1, 2. Becker-Bender calculates in [Be12] that the
characteristic connection for both structures is given by T c = −ρ(e1 ∧ e2 + e3 ∧ e4)∧ e5. One checks that
dη = −ρ(e1 ∧ e2 + e3 ∧ e4), hence dη = ρF2, whereas F1 is not proportional to dη. She also proves that
ψ1 and ψ2, defined via the equations

φ2(X)ψ1 = −iXψ1 ∀X ⊥ ξ and φ2(X)ψ2 = iXψ2 ∀X ⊥ ξ,

where φj is the (1, 1) tensor to the 2-form Fj for j = 1, 2, are Killing spinors with torsion for s = − 3
4

with Killing number ρ and −ρ respectively:

∇− 3

4

X ψ1 = ρXψ1 and ∇− 3

4

X ψ2 = −ρXψ2.

If we set ρ1 = ρ, ρ2 = −ρ, we can rewrite these equations as

∇c
Xψi − (XyT c)ψi = ρiXψi.

On the other hand, let us consider again the equation from Theorem 3.14, case (2), for s = 1/4:

∇c
Xψ − a

2
Xy(η ∧ F )ψ = αXψ.

Since a has to be chosen as a = 2|α| = 2|ρi| = 2ρ, we conclude that both Killing spinors ψ1, ψ2 with
torsion on the Heisenberg group satisfy this equation for the structure F = F2. Therefore, their lifts to
the cone are parallel for the characteristic connection of the conformally Kähler structure Ω2. We see at
once that the argument can be generalized as follows:

Lemma 3.20. Let (M, g, φ, η) be an α-Sasaki structure (class C6) satisfying dη = λF for some λ > 0
and admitting a Killing spinor with torsion with Killing number α = λ or α = −λ for s = −3/4 . Then
its cone is a locally conformally Kähler manifold (class χ4), and the spinor lifts to a parallel spinor on
M̄ with respect to its characteristic connection.

Let us have a closer look at the characteristic connections ∇̄i, induced by the connections∇i with torsions
T i = T c−2aη∧Fi onM , and the s-dependent connections ∇̄s,i := ∇̄g+2sT̄ i (i = 1, 2). Since F1 6= F2, we
see that the characteristic connections ∇̄i (of the almost hermitian structures Ωi) on M̄ do not coincide,
despite the fact that the characteristic connections (of the metric almost structures Fi) coincide on M ,
i = 1, 2. This illustrates neatly the subtle dependence of the construction on the underlying geometric
structure, not only its characteristic connection.
The equivalence of the characteristic connections for F1 and F2 on M implies that the connections
∇̄s,i + 4s

r
(∂ryΩi) ∧ Ωi are the same for i = 1, 2, s = −3/4. As discussed above, this connection is in

turn just the characteristic connection of the locally conformally Kähler structure Ω2, hence we have the
following relation between the Kähler forms:

dΩJ2

2 = −3 [dΩJi

i +
2

r
(∂ryΩi) ∧ Ωi] i = 1, 2.

In particular, we can apply Theorem 3.14, case (1) for i = 1 and can state that the differential equation
for the two ∇̄2-parallel spinors on M̄ can equally be written

0 = ∇̄− 3

4
,1

X ψ − 3

2r
Xy((∂ryΩ1) ∧Ω1)ψ = ∇̄ḡ

Xψ − 3

4
Xy[dΩ1 +

2

r
(∂ryΩ1) ∧ Ω1]ψ.

Example 3.21. Another example (see [Be12]) is given by the homogeneous space M := SO(3) ×
SL(2,R)/SO(2) with the embedding

SO(2) ∋ A(t) :=





cos t − sin t

sin t cos t



 7→
[

A(t), A

(

t

2

)−1
]

.
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As an orthonormal basis of a reductive complement of so(2) in so(3)× sl(2,R) we choose

e1 := D1





















0 0 0

0 0 −1

0 1 0











, 0











, e2 := D1





















0 0 1

0 0 0

−1 0 0











, 0











, e5 :=











c1











0 −1 0

1 0 0

0 0 0











, c2
1

2





0 −1

1 0















,

e3 :=
1

2
D2



0,





1 0

0 −1







 , e4 :=
1

2
D2



0,





0 1

1 0







 ,

such that c1 + c2 6= 0, D2
1 = c1(c1 + c2), D

2
2 = −c2(c1 + c2) and the numbers c1, −c2 and (c1 + c2) have

the same signature. We consider the almost contact structure (M, ξ, F ) defined via

ξ := e5 and F = e1 ∧ e2 + e3 ∧ e4.
Then the characteristic connection ∇c has torsion T c = −c1e1 ∧ e2 ∧ e5 − c2e3 ∧ e4 ∧ e5.
Lemma 3.22. The almost contact structure (M, ξ, F ) is normal. Furthermore, the almost hermitian
structure on M̄ , constructed with a = −c1−c2

4 , induced by the almost contact structure (M, ξ, F ) is of
class χ3 and thus the structure (M, ξ, F ) is of mixed class C3 ⊕ ..⊕ C8.
Proof. One uses Theorem 3.10 and proves that the almost contact structure (M, ξ, F ) is normal, satisfies
δF = (−c1 − c2)η and never satisfies (∇g

XF )(Y, Z) = aη(Y )g(X,Z)− aη(Z)g(X,Y ). Thus, the structure
on M̄ is never Kähler and for a = −c1−c2

4 it really is of class χ3. �

In this example we only have Killing spinors with torsion satisfying ∇s
Xψ = αXψ for α = 0. But since

the construction of M̄ explicitly depends on 2α = a 6= 0, we cannot lift these spinors to M̄ .

3.5. Metric almost contact 3-structures. Let M be a manifold of dimension n = 4m − 1 with 3
metric almost contact structures given by ξi, ηi and φi for i = 1, 2, 3. Looking at the cone M̄ , we define
the three almost hermitian structures

J1(ar∂r) := ξ1, J1(ξ1) = −ar∂r, J1(V ) = −φ1(V ) for V ⊥ ξ1, ∂r,

J2(ar∂r) := ξ2, J2(ξ2) = −ar∂r, J2(V ) = −φ2(V ) for V ⊥ ξ2, ∂r,

J3(ar∂r) := −ξ3, J3(ξ3) = ar∂r , J3(V ) = −φ3(V ) for V ⊥ ξ3, ∂r.

Conversely, let M̄ be a 4m dimensional manifold with three almost hermitian structures J1, J2 and J3.
We can define three almost contact structures

ξ1 := +aJ1(∂r), φ1(X) := −J1(X) + ḡ(J1(X), ∂r)∂r.

ξ2 := +aJ2(∂r), φ2(X) := −J2(X) + ḡ(J2(X), ∂r)∂r.

ξ3 := −aJ3(∂r), φ3(X) := +J3(X)− ḡ(J3(X), ∂r)∂r.

on M =M × {1} ⊂ M̄ . We can apply Theorem 3.2 to each of these structures and prove

Theorem 3.23. The three almost hermitian structures on M̄ satisfy the relation J1J2 = −J2J1 = J3 if
and only if ξ1, ξ2 and ξ3 are orthonormal and the almost contact structures on M satisfy the following

φ3φ2 = −φ1 + η2 ⊗ ξ3, φ2φ3 = +φ1 + η3 ⊗ ξ2, φ1φ3 = −φ2 + η3 ⊗ ξ1,(7)

φ3φ1 = +φ2 + η1 ⊗ ξ3, φ2φ1 = −φ3 + η1 ⊗ ξ2, φ1φ2 = +φ3 + η2 ⊗ ξ1,(8)

where ηi is the dual to ξi for i = 1, 2, 3. If and only if there are characteristic connections ∇c,i on
M for each of the three almost hermitian structures (ηi, φi) such that the corresponding connections ∇i

constructed in Definition 3.1 coincide ∇1 = ∇2 = ∇3 =: ∇, we have for the appendant connection ∇̄:
∇̄J2 = ∇̄J3 = ∇̄J1 = 0. In this case additionally we get the commutator relations

[ξ1, ξ2] = 2aξ3 − T (ξ1, ξ2), [ξ2, ξ3] = 2aξ1 − T (ξ2, ξ3), [ξ3, ξ1] = 2aξ2 − T (ξ3, ξ1).
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Proof. Given three almost hermitian structures satisfying the relation J1J2 = −J2J1 = J3, we compute

φ3(φ2(X)) = −J3(J2(X)) + ḡ(J3(J2(X)), ∂r)∂r + ḡ(J2(X), ∂r)J3(∂r)− ḡ(J3(X), ∂r)ḡ(J3(∂r), ∂r)∂r

= −φ1(X)− ḡ(X, J2∂r)J3(∂r) = −φ1(X)− a2g(X, J2∂r)J3(∂r)

= −φ1(X) + g(X, ξ2)ξ3,

and similarly for the other relations. Conversely, given three almost hermitian structures satisfying
equations (7) and (8) we plug in ξ1, ξ2, and ξ3 and, with φi(ξi) = 0 for i = 1, 2, 3, we obtain immediately

φ1(ξ2) = ξ3, φ1(ξ3) = −ξ2, φ2(ξ1) = −ξ3, φ2(ξ3) = ξ1, φ3(ξ1) = ξ2, φ3(ξ2) = −ξ1.
Since all φi leave the vector space V := span(ξ1, ξ2, ξ3) invariant and since they are orthonormal, they
also leave V ⊥ invariant. For X ⊥ ξ1, ξ2, ξ3, ∂r we have

J1(J2(X)) = φ1(φ2(X)) = φ3(X) = J3(X) = −φ2(φ1(X)) = −J2(J1(X)).

For ξ1 we obtain

J1(J2(ξ1)) = −J1(φ2(ξ1)) = J1(ξ3) = −φ1(ξ3) = ξ2 = J2(ar∂r) = −J2(J1(ξ1)) = φ3(ξ1) = J3(ξ1)

and similarly for ξ2, ξ3 and ∂r. For a connection as in Theorem (3.2), we have that all almost hermitian
structures are parallel under ∇̄ and for X,Y ∈ TM

[X,Y ] = ∇̄ḡ
XY − ∇̄ḡ

YX = ∇̄XY − ∇̄YX − T̄ (X,Y ).

Thus the commutator relations are given by

[ξ1, ξ2] = a2[J1(∂r), J2(∂r)] = a2(∇̄J1(∂r)J2(∂r)− ∇̄J2(∂r)J1(∂r))− T̄ (ξ1, ξ2)

= a2(J2(∇̄J1(∂r)∂r)− J1(∇̄J2(∂r)∂r))− T̄ (ξ1, ξ2)

= a2(J2(J1(∂r))− J1(J2(∂r)))− T̄ (ξ1, ξ2)

= −2a2J3(∂r)− T̄ (ξ1, ξ2) = 2aξ3 − T (ξ1, ξ2).

The other relations are to be calculated similarly. �

Remark 3.24. If we rescale the metric such that a = 1 and if T = 0, we have 3 Kählerian structures
on M̄ and thus 3 Sasakian structures on M . Then the commutator relations in Theorem 3.23 make
sure that the structures on M form a 3-Sasakian structure. This is Lemma 5 of [Bä93]: A one to one
correspondence between hyperkähler structures on M̄ and 3-Sasaki structures on M .

Remark 3.25. We emphasize that it is not necessary that the three characteristic connections ∇c,i, i =
1, 2, 3 coincide in order to apply Theorem 3.23, only the connections ∇i with torsion T i = T c,i−2aηi∧Fi

have to be equal. If M is a 3-Sasakian manifold, T i = 0 for i = 1, 2, 3 and thus ∇1 = ∇2 = ∇3 = ∇g. In
this case there exists a special G2 structure on M which will be discussed in Example 4.21.

4. G2 structures – Spin(7) structures on the cone

4.1. Preparations. Let (M, g, φ, P ) be a G2 manifold (see Section 2.2). We cite a classical, but for us
crucial result by Fernandez and Gray:

Lemma 4.1 ([FG82, Lemma 2.7]).

∗φ(V,W,X, Y ) = g(P (V,W ), P (X,Y ))− g(V,X)g(W,Y ) + g(V, Y )g(W,X)

= φ(V,W, P (X,Y ))− g(V,X)g(W,Y ) + g(V, Y )g(W,X).

Remark 4.2. In [FG82] this formula is stated differently,

∗φ(V,W,X, Y ) = −g(P (V,W ), P (X,Y )) + g(V,X)g(W,Y )− g(V, Y )g(W,X).

This is due to the standard 3-form φ used by Fernández and Gray, which corresponds to the orientation
opposite to ours. This changes the sign of the Hodge operator.

Now we are able to prove
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Lemma 4.3. For any metric connection ∇ with skew torsion on M , the G2 form φ satisfies

(∇Z ∗ φ)(V,W,X, Y ) = (∇Zφ)(V,W, P (X,Y )) + (∇Zφ)(X,Y, P (V,W )).

If ∇ satisfies ∇φ = a ∗ φ for some a > 0, we have the simplified relation

(∇Z ∗ φ)(V,W,X, Y ) = a[φ(X,Y, V )g(Z,W )− φ(X,Y,W )g(Z, V )

+φ(V,W,X)g(Z, Y )− φ(V,W, Y )g(Z,X)].

Proof. For any metric connection with skew torsion we have

(∇Z ∗ φ)(V,W,X, Y ) =Z ∗ φ(V,W,X, Y )− ∗φ(∇ZV,W,X, Y )− ∗φ(V,∇ZW,X, Y )

− ∗φ(V,W,∇ZX,Y )− ∗φ(V,W,X,∇ZY ).

Since ∇ is metric, g is parallel and with Lemma 4.1 we get

=Zφ(V,W, P (X,Y ))− φ(∇ZV,W, P (X,Y ))− φ(V,∇ZW,P (X,Y ))− φ(V,W, P (∇ZX,Y ))

− φ(V,W, P (X,∇ZY ))− φ(V,W,∇ZP (X,Y )) + φ(V,W,∇ZP (X,Y )).

We have φ(V,W, (∇ZP )(X,Y )) = g(P (V,W ), (∇ZP )(X,Y )) = (∇Zφ)(X,Y, P (V,W )) and thus we get

(∇Z ∗ φ)(V,W,X, Y ) = (∇Zφ)(V,W, P (X,Y )) + (∇Zφ)(X,Y, P (V,W )).

The condition ∇φ = a ∗ φ implies

(∇Z ∗ φ)(V,W,X, Y ) = −a ∗ φ(P (X,Y ), Z, V,W )− a ∗ φ(P (V,W ), Z,X, Y )

and aplying once again Lemma 4.1 yields

(∇Z ∗ φ)(V,W,X, Y ) =

= −aφ(P (X,Y ), Z, P (V,W ))− aφ(P (V,W ), Z, P (X,Y )) + ag(P (X,Y ), V )g(Z,W )

−ag(P (X,Y ),W )g(Z, V ) + ag(P (V,W ), X)g(Z, Y )− ag(P (V,W ), Y )g(Z,X)

= a[φ(X,Y, V )g(Z,W )− φ(X,Y,W )g(Z, V ) + φ(V,W,X)g(Z, Y )− φ(V,W, Y )g(Z,X)],

which finishes the proof. �

We define a 4-form on the cone M̄ via

Φ(∂r, X, Y, Z) := a3r3φ(X,Y, Z), Φ(X,Y, Z,W ) := a4r4 ∗ φ(X,Y, Z,W )

for X,Y, Z,W ∈ TM . Since ∂ryΦ locally is a G2-structure on ∂⊥r , Φ is a Spin(7)-structure on M̄ . As in
Section 3, given a characteristic connection on M with respect to φ, we construct a connection ∇ with
skew symmetric torsion T on M such that its lift ∇̄ to M̄ with torsion T̄ is the characteristic connection
on M̄ with respect to Φ. Since we have T = T̄|TM and ∂ryT̄ = 0, we have T̄ = T = 0 in case of a

parallel Spin(7) structure with respect to the Levi-Civita connection on M̄ , and thus ∇ is the Levi-Civita
connection on M .

Definition 4.4. Let (M, g, φ) be a G2T manifold with characteristic connection ∇c. We define a metric
connection ∇ with skew symmetric torsion T via

T := T c − 2a

3
φ.

As in the metric almost contact case (see the comments in Definition 3.1), T cannot be computed
abstractly, but it is found through an educated guess and justified a posteriori from its properties.

Theorem 4.5. The connection ∇ satisfies

∇φ = a ∗ φ,
and Φ is parallel with respect to ∇̄, the appendant connection on M̄ .
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Proof. We have for the Riemannian connection ∇g on M

∇Xφ(Y, Z,W ) = Xφ(Y, Z,W )− φ(∇g
XY, Z,W )− φ(Y,∇g

XZ,W )− φ(Y, Z,∇g
XW )

−1

2
φ(T (X,Y ), Z,W )− 1

2
φ(Y, T (X,Z),W )− 1

2
φ(Y, Z, T (X,W ))

= (∇c
Xφ)(Y, Z,W ) +

1

2
φ((T c − T )(X,Y ), Z,W )

+
1

2
φ(Y, (T c − T )(X,Z),W ) +

1

2
φ(Y, Z, (T c − T )(X,W ))

and because ∇cφ = 0 we have

∇Xφ(Y, Z,W ) =

=
1

2
[(T c − T )(X,Y, P (Z,W )) + (T c − T )(X,Z, P (W,Y )) + (T c − T )(X,W,P (Y, Z))]

=
a

3
[φ(X,Y, P (Z,W )) + φ(X,Z, P (W,Y )) + φ(X,W,P (Y, Z))].

With Lemma 4.1 we obtain

a ∗ φ(X,Y, Z,W ) =
a

3
[∗φ(X,Y, Z,W ) + ∗φ(X,Z,W, Y ) + ∗φ(X,W, Y, Z)]

=
a

3
[φ(X,Y, P (Z,W )) + φ(X,Z, P (W,Y )) + φ(X,W,P (Y, Z))

−g(X,Z)g(Y,W ) + g(X,W )g(Y, Z)− g(X,W )g(Z, Y ) + g(X,Y )g(Z,W )

−g(X,Y )g(W,Z) + g(X,Z)g(W,Y )]

= ∇Xφ(Y, Z,W ),

which proves the first statement. To show ∇̄Φ = 0 on M̄ we look at several cases. Let always be
V,W,X, Y, Z ∈ TM .
Case 1: If ∂r is one of the arguments, we compute

(∇̄WΦ)(∂r, X, Y, Z) = Wa3r3φ(X,Y, Z)− 1

r
Φ(W,X, Y, Z)− r3a3φ(∇WX,Y, Z)

− r3a3φ(X,∇WY, Z)− r3a3φ(X,Y,∇WZ)

= a3r3(∇Wφ)(X,Y, Z)− 1

r
Φ(W,X, Y, Z) = a4r3 ∗ φ(W,X, Y, Z)− 1

r
Φ(W,X, Y, Z) = 0.

Case 2: If the direction of the derivative is equal to ∂r, we obtain

(∇̄∂r
Φ)(X,Y, Z,W ) = ∂r(a

4r4 ∗ φ(X,Y, Z,W ))− 4
1

r
Φ(X,Y, Z,W )

= 4r3a4 ∗ φ(X,Y, Z,W )− 4
1

r
Φ(X,Y, Z,W ) = 0.

Case 3: If the direction of the derivative and one argument are equal to ∂r we compute

(∇̄∂r
Φ)(∂r, X, Y, Z) = ∂r(a

3r3φ(X,Y, Z))− 3a3r3
1

r
φ(X,Y, Z) = 0.

Case 4: On TM we have:

(∇̄V Φ)(W,X, Y, Z) =

= a4r4V ∗ φ(W,X, Y, Z)− Φ(∇̄VW,X, Y, Z)− Φ(W, ∇̄VX,Y, Z)− Φ(W,X, ∇̄V Y, Z)

−Φ(W,X, Y, ∇̄V Z)

= a4r4V ∗ φ(W,X, Y, Z)− Φ(∇VW − 1

r
ḡ(V,W )∂r , X, Y, Z)− Φ(W,∇VX − 1

r
ḡ(V,X)∂r, Y, Z)

−Φ(W,X,∇V Y − 1

r
ḡ(V, Y )∂r, Z)− Φ(W,X, Y,∇V Z − 1

r
ḡ(V, Z)∂r)

= a4r4(∇V ∗ φ)(W,X, Y, Z) + r4a5[g(V,W )φ(X,Y, Z)− g(V,X)φ(W,Y, Z)

+g(V, Y )φ(W,X,Z)− g(V, Z)φ(W,X, Y )],
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which is equal to zero due to Lemma 4.3. �

Conversely, given a Spin(7) structure (M̄, ḡ,Φ, P̄ , p̄) on M̄ (see Section 2.2 for the definitions), ∂ryΦ is a
G2 structure with respect to the metric a2g on M =M × {1} ⊂ M̄ and thus

φ :=
1

a3
∂ryΦ

defines a G2 structure on M with respect to the metric g. To prove the following theorem, we need

Lemma 4.6. If ∗ is the Hodge operator on M with respect to g and ∗a2g is the Hodge operator on M
with respect to the metric a2g, we have for any 3-form ω

∗a2gω = a ∗ ω.

Proof. Let ei for i = 1..7 be an orthonormal basis with dual basis ei on M with respect to g. Then
1
a
ei with dual aei is a orthonormal basis with respect to a2g. We define e{i,j,k} := ei ∧ ej ∧ ek and

e{i,j,k,j} := ei ∧ ej ∧ ek ∧ el as well as (se){i,j,k} := sei ∧ sej ∧ sek for s ∈ R and (se){i,j,k,j} respectively.
Then we have

∗a2ge
{i,j,k} =

1

a3
∗a2g (ae)

{i,j,k} =
1

a3
(ae){1,..,7}\{i,j,k} =

1

a3
a4e{1,..,7}\{i,j,k} = a ∗ e{i,j,k},

which proves the lemma. �

Theorem 4.7. Given a Spin(7) structure on M̄ with characteristic connection ∇̄ being the lift of a
connection ∇ on M , we have for the G2 structure φ induced by Φ

∇φ = a ∗ φ
and the characteristic connection on (M, g, φ) is given by T c = T + 2a

3 φ.

Proof. We have for W,X, Y, Z ∈ TM

(∇Wφ)(X,Y, Z) =
1

a3
[WΦ(∂r, X, Y, Z)

− Φ(∂r ,∇WX,Y, Z)− Φ(∂r, X,∇WY, Z)− Φ(∂r, X, Y,∇WZ)]

=
1

a3
[(∇̄WΦ)(∂r, X, Y, Z) + Φ(∇̄W ∂r, X, Y, Z)] =

1

a3
Φ(W,X, Y, Z).

With Lemma 8 of [Bä93] and the definition of φ we conclude Φ|TM = ∗a2g(∂ryΦ) = ∗a2g(a
3φ) = a4 ∗ φ,

where ∗a2g is the Hodge operator on M ⊂ M̄ with respect to the metric a2g. The last equality follows
from Lemma 4.6. Thus we get

∇φ = a ∗ φ.
For the connection ∇c with torsion T c = T + 2a

3 φ we calculate as in the proof of Theorem 4.5

(∇c
Xφ)(Y, Z,W ) = (∇Xφ)(Y, Z,W ) +

1

2
[(T − T c)(X,Y, P (Z,W )) + (T − T c)(X,Z, P (W,Y ))

+ (T − T c)(X,W,P (Y, Z))]

= a ∗ φ(X,Y, Z,W )− a

3
[φ(X,Y, P (Z,W )) + φ(X,Z, P (W,Y )) + φ(X,W,P (Y, Z))]

which is equal to zero due to Lemma 4.1. Since the characteristic connection of a G2 manifold is unique,
this proves the Theorem. �

Remark 4.8. As in the metric almost contact case, T = T c − 2a
3 φ measures the ‘deviation’ of the G2

structure from a nearly parallel G2 structure; for then, T c = 2a
3 φ, i. e. T = 0 and thus ∇ = ∇g lifts to the

Levi-Cita connection on M̄ , reflecting the fact that the Spin(7) structure on the cone is then integrable.
That ∇ plays indeed a geometric role beyond being an auxiliary tool, and that this role is that of a the
Levi-Civita connection for a nearly parallel G2 manifold, is confirmed by Theorem 4.5, since it states that
the equation ∇gφ = a ∗ φ for the nearly parallel case generalizes to ∇φ = a ∗ φ for any G2T manifold.
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4.2. The classification of G2 structures and the corresponding classification of Spin(7) struc-

tures on the cone. We will now discuss the classification of Fernández [Fe86] of Spin(7) structures on
M̄ given in Section 2.2, and compute the correspondence to the classification of G2 structures [FG82].
Again we are only interested in structures carrying a characteristic connection (G2 structures of class
W1 ⊕ W3 ⊕ W4). We write XM for the projection on TM of a vector field X in TM̄ . We summarize
some useful identities:

Lemma 4.9.

(1) P can be expressed through φ on TM : P (Y, Z) =
∑

l φ(el, Y, Z)el.

(2) For any metric connection ∇̃ with skew torsion on M , we have:

(∇̃Xφ)(Y, Z, V ) = g((∇̃XP )(Y, Z), V ),

(∇̃XP )(Y, Z) =
∑

l

g(el, (∇̃XP )(Y, Z))el =
∑

l

(∇̃Xφ)(el, Y, Z)el.

(3) For ∇, this can be simplified to (∇XP )(Y, Z) = a
∑

l ∗φ(X, el, Y, Z)el.
(4) P, φ, and P̄ are related by (X,Y, Z ∈ TM)

ḡ(P̄ (X,Y, Z), ∂r) = −a3r3φ(X,Y, Z), P̄ (∂r, X, Y ) = arP (X,Y ), P̄ (Y, Z, V )M = ar2(∇Y P )(Z, V ).

(5) The derivative of Φ on M̄ can be expressed in terms of φ on M (X,Y, Z, V,W ∈ TM):

(∇̄ḡ
XΦ)(∂r , Z, V,W ) = a3r3[(∇g−∇)Xφ](Z, V,W ), (∇̄ḡ

XΦ)(Y, Z, V,W ) = a4r4[(∇g−∇)X ∗φ](Y, Z, V,W ).

Proof. Statements (1)-(3) are easily checked. To prove statement (4) for X,Y, Z ∈ TM , we have

ḡ(P̄ (∂r , X, Y ), Z) = Φ(∂r , X, Y, Z) = a3r3φ(X,Y, Z) = arḡ(P (X,Y ), Z),

thus P̄ (∂r, X, Y ) = arP (X,Y ). Furthermore,

ḡ(X, P̄ (Y, Z, V )) = Φ(Y, Z, V,X) = a3r4(∇Y φ)(Z, V,X) = a3r4g(X, (∇Y P )(Z, V ))

= ar2ḡ(X, (∇Y P )(Z, V )),

and thus P̄ (Y, Y, V )M = ar2(∇Y P )(Z, V ). For (5) and vector fields X,Y, Z, V,W ∈ TM , we calculate

2(∇̄ḡ
XΦ)(∂r , Z, V,W ) =

= 2(∇̄XΦ)(∂r, Z, V,W ) + Φ(∂r, T̄ (X,Z), V,W ) + Φ(∂r, Z, T̄ (X,V ),W ) + Φ(∂r , Z, V, T̄ (X,W ))

= a3r3[φ(T (X,Z), V,W ) + φ(Z, T (X,V ),W ) + φ(Z, V, T (X,W ))]

= 2a3r3[φ((∇X −∇g
X)Z, V,W ) + φ(Z, (∇X −∇g

X)V,W ) + φ(Z, V, (∇X −∇g
X)W )]

= −2a3r3[(∇−∇g)Xφ](Z, V,W ),

and similarly

(∇̄ḡ
XΦ)(Y, Z, V,W ) =

=
1

2
[Φ(T̄ (X,Y ), Z, V,W ) + Φ(Y, T̄ (X,Z), V,W ) + Φ(Y, Z, T̄ (X,V ),W ) + Φ(Y, Z, V, T̄ (X,W ))]

=
a4r4

2
[∗φ(T (X,Y ), Z, V,W ) + ∗φ(Y, T (X,Z), V,W ) + ∗φ(Y, Z, T (X,V ),W ) + ∗φ(Y, Z, V, T (X,W ))]

= −a4r4[(∇−∇g)X ∗ φ](Y, Z, V,W ) = a4r4[(∇g −∇)X ∗ φ](Y, Z, V,W ),

which finishes the proof. �

Remark 4.10. Since the characteristic connection of the Spin(7) structure on M̄ is unique (see Section
2.2), we can conclude for any such structure satisfying ∇̄ḡΦ = 0 that ∇ = ∇g and thus ∇gφ = a ∗ φ
and the G2 structure is of class W1. Conversely, given a connection ∇ with skew symmetric torsion and
∇φ = a ∗ φ we construct ∇c via T c := T − 2a

3 φ, which satisfies ∇cφ = 0 and thus is unique. Hence a
metric connection with skew symmetric torsion and the property ∇φ = ∗φ is unique.
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Definition 4.11. For any tensor R on M let

RxX := R(−, X).

We extend the metric g to arbitrary k-tensors R,S via an orthonormal frame e1, . . . , en

g(R,S) :=

n
∑

i1,..,ik=1

R(ei1 , .., eik)S(ei1 , .., eik).

Lemma 4.12. A Spin(7) structure on M̄ is of class U1 if and only if on M

• g(∇gφ, ∗φ) = ag(∗φ, ∗φ), and
• for every X ∈ TM we have g(∗φ, [(∇−∇g) ∗ φ]xX) = 3g(φ, [(∇−∇g)φ]xX).

The structure on M̄ is of class U2 if and only if the following conditions are satisfied for X,Y, Z,X1, .., X4 ∈
TM and a local orthonormal frame e1, .., e7 of TM :

• δΦ|TM = 0 on TM , which is equivalent to 0 =
7
∑

i=1

[(∇g −∇)ei ∗ φ](ei, X, Y, Z)

• 0 =
4
∑

i=1

∑

l<j<8

(−1)iδφ(el, ej)φ(el, ej, Xi)φ(X1, .., X̂i, .., X4)

• 28[(∇g−∇)W ∗φ](X1, X2, X3, X4) =
4
∑

i=1

∑

l<j<8

(−1)i+1δφ(el, ej)φ(el, ej , Xi)∗φ(W,X1, .., X̂i, .., X4).

Proof. We consider a local ḡ-orthonormal frame ē1 = 1
ar
e1, .., ē7 = 1

ar
e7, e8 = ∂r of TM̄ such that e1, .., e7

is a local orthonormal frame of TM . With Lemma 4.2 of [Fe86] a Spin(7) structure is defined to be of
class U1 if and only if

0 = −6δΦ(p̄(X)) =
8

∑

i,k,j=1

(∇̄ḡ
ēi
Φ)(ēj , ēk, P̄ (ēi, ēj , ēk), X).

For X ∈ TM we have

0 = −6δΦ(p̄(X)) =

8
∑

i,k,j=1

(∇̄ḡ
ēiΦ)(ēj , ēk, P̄ (ēi, ēj, ēk), X)

=

7
∑

i,k,j=1

(∇̄ḡ
ēiΦ)(ēj , ēk, P̄ (ēi, ēj , ēk), X) + 2

7
∑

i,j=1

(∇̄ḡ
ēiΦ)(ēj , ∂r, P̄ (ēi, ēj, ∂r), X)

=
1

a6r6

7
∑

i,k,j=1

(∇̄ḡ
ei
Φ)(ej , ek, ar

2(∇eiP )(ej , ek) + ḡ(P̄ (ei, ej, ek), ∂r)∂r, X)

+2
1

a4r4

7
∑

i,j=1

(∇̄ḡ
ei
Φ)(ej , ∂r, arP (ei, ej), X)

=
1

a5r4

7
∑

i,k,j=1

a4r4[(∇g −∇)ei ∗ φ](ej , ek, (∇eiP )(ej , ek), X)

− 1

a3r3

7
∑

i,k,j=1

φ(ei, ej , ek)(∇̄ḡ
ei
Φ)(ej , ek, ∂r, X)− 2

a3r3

a3r3

7
∑

i,j=1

([∇g −∇]eiφ)(ej , P (ei, ej), X)

=

7
∑

i,k,j,l=1

[(∇g −∇)ei ∗ φ](ej , ek, ∗φ(ei, el, ej , ek)el, X)− 3

7
∑

i,k,j=1

φ(ei, ej , ek)([∇g −∇]eiφ)(ej , ek, X)

= g(∗φ, (∇g −∇) ∗ φxX)− 3g(φ, (∇g −∇)φxX).
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In case X = ∂r, we deduce from Lemma 4.9:

0 =

7
∑

i,j,k=1

(∇̄ḡ
ei
Φ)(ej , ek, P̄ (ei, ej, ek), ∂r) = ar2

7
∑

i,j,k=1

(∇̄ḡ
ei
Φ)(ej , ek, (∇eiP )(ej , ek), ∂r)

=− a4r5
7

∑

i,j,k=1

[(∇g −∇)eiφ](ej , ek, (∇eiP )(ej , ek))

=− a4r5[

7
∑

i,j,k,l=1

(∇g
ei
φ)(ej , ek, el)(∇eiφ)(ej , ek, el)−

7
∑

i,j,k,l=1

(∇eiφ)(ej , ek, el)(∇eiφ)(ej , ek, el)]

=− a4r5[g(∇gφ,∇φ) − g(∇φ,∇φ)] = −a5r5[g(∇gφ, ∗φ)− ag(∗φ, ∗φ)],
and thus we have g(∇gφ, ∗φ) = ag(∗φ, ∗φ). A Spin(7) structure is of class U2 if it satisfies

28(∇̄ḡ
WΦ)(X1, X2, X3, X4) = −

4
∑

i=1

(−1)i+1[δΦ(p̄(Xi))Φ(W,X1, .., X̂i, .., X4)

+ 7ḡ(W,Xi)δΦ(X1, .., X̂i, .., X4)].

(9)

Suppose W = X1 = ∂r and X2, X3, X4 ∈ TM . For a 3-form ξ on TM we have

ḡ(p̄(∂r), ξ) = ḡ(∂r, P̄ (ξ)) = −Φ(∂r, ξ) = −a3r3φ(ξ) = ḡ(−a3r3φ, ξ)
and thus p̄(∂r) = −a3r3φ. Since ∂ryT̄ = 0 we have ∇̄ḡ

∂r
Φ = 0 and the defining relation of the class U2

reduces to

0 = δΦ(p(∂r))Φ(∂r , X2, X3, X4) + 7δΦ(X2, X3, X4) = δΦ(−a6r6φ(X2, X3, X4)φ+ 7X2 ∧X3 ∧X4).

Since a6r6φ(X2, X3, X4)φ − 7X2 ∧X3 ∧X4 spans Λ3(TM) we have δΦ = 0 on TM . For X,Y, Z ∈ TM
we have

0 = δΦ(X,Y, Z) =−
8

∑

i=1

(∇̄ḡ
ēiΦ)(ēi, X, Y, Z) = − 1

a2r2

7
∑

i=1

(∇̄ḡ
ei
Φ)(ei, X, Y, Z)

=− a2r2
7

∑

i=1

[(∇g −∇)ei ∗ φ](ei, X, Y, Z).

For X ∈ TM we have

δΦ(p̄(X)) =δΦ(
8

∑

i<j<k=1

ḡ(p̄(X), ēi ∧ ēj ∧ ēk)ēi ∧ ēj ∧ ēk) = δΦ(
∑

i<j<8

ḡ(p̄(X), ēi ∧ ēj ∧ ē8)ēi ∧ ēj ∧ ē8)

=
∑

i<j<8

ḡ(p̄(X), ēi ∧ ēj ∧ ē8)δΦ(ēi, ēj , ∂r) = −
7

∑

k=1

∑

i<j<8

(∇̄ḡ
ēk
Φ)(ēk, ēi, ēj , ∂r)ḡ(X, P̄ (ēi, ēj, ∂r))

=

7
∑

k=1

∑

i<j<8

a3r3(∇g
ēk
φ)(ēk, ēi, ēj)Φ(ēi, ēj , ∂r, X) = a6r6

7
∑

k=1

∑

i<j<8

(∇g
ēk
φ)(ēk, ēi, ēj)φ(ēi, ēj , X)

=−
∑

i<j<8

δφ(ei, ej)φ(ei, ej , X).

Suppose W = ∂r and X1, .., X4 ∈ TM . Then equation (9) gives us

0 =

4
∑

i=1

(−1)i+1δΦ(p̄(Xi))a
3r3φ(X1, .., X̂i, .., X4)

= a3r3
4

∑

i=1

∑

l<j<8

(−1)iδφ(el, ej)φ(el, ej, Xi)φ(X1, .., X̂i, .., X4).
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For W,Xi ∈ TM , equation (9) reduces to

28(∇̄ḡ
WΦ)(X1, X2, X3, X4) = 28a4r4[(∇g −∇)W ∗ φ](X1, X2, X3, X4),

which is equal to

= −
4

∑

i=1

(−1)i+1[δΦ(p̄(Xi))Φ(W,X1, .., X̂i, .., X4) + 7ḡ(W,Xi)δΦ(X1, .., X̂i, .., X4)]

=a4r4
4

∑

i=1

∑

l<j<8

(−1)i+1δφ(el, ej)φ(el, ej, Xi) ∗ φ(W,X1, .., X̂i, .., X4).

This proves the statement. �

Remark 4.13. One can use Lemma 4.3 and Lemma 4.9 to simplify these equations in rather lengthly
calculations. The property

0 =

7
∑

i=1

[(∇g −∇)ei ∗ φ](ei, X, Y, Z)

can for example be simplified to

0 = g((φxY )xZ, δφxX) + g(φxX, (∇gφxY )xZ)− g(φxX, (∗φxY )xZ).

Another simplification (see Lemma 4.20) will be used in the example.

Theorem 4.14. If the Spin(7) structure on the cone M̄ is of class U1, then:

• The G2 structure φ on M cannot be of class W3 ⊕W4.
• The G2 structure is of class W1 if and only if the Spin(7) structure is integrable.

If the structure on M̄ is of class U2, then the structure on M is never of class χ1 ⊕ χ3.

Proof. Since the relation g(∇gφ, ∗φ) = 0 defines the class W2 ⊕ W3 ⊕ W4, we conclude the first result
directly from Lemma 4.12. Now, assume the G2 structure φ is of class W1, i. e. nearly parallel G2 (see
[FG82]):

∇gφ =
1

168
g(∇gφ, ∗φ) ∗ φ.

Taking the scalar product with ∗φ on both sides leads to

g(∇gφ, ∗φ) = 1

168
g(∇gφ, ∗φ)g(∗φ, ∗φ).

With the Spin(7) structure being of class U1 and the calculation above we get g(∗φ, ∗φ) = 1
168g(∗φ, ∗φ)g(∗φ, ∗φ)

and thus g(∗φ, ∗φ) = 168. Therefore,

∇gφ =
1

168
g(∇gφ, ∗φ) ∗ φ = a

1

168
g(∗φ, ∗φ) ∗ φ = a ∗ φ.

Thus ∇gφ = ∇φ = a ∗ φ and with Remark 4.10 we get ∇ = ∇g and ∇̄ḡ = ∇̄. Since ∇̄Φ = 0 the Spin(7)
structure on M̄ is integrable.
Consider a structure on M̄ of class U2. With Lemma 4.12 we get δΦ = 0 on TM . To see that this
structure is integrable it is sufficient to show ∂ryδΦ = 0, see [Fe86]. We have for X,Y ∈ TM

(∂ryδΦ)(X,Y ) =−
8

∑

i=1

(∇̄ḡ
ēiΦ)(ēi, ∂r, X, Y ) = ar

7
∑

i=1

((∇g −∇)eiφ)(ei, X, Y ) = −arδφ(X,Y ).

This is equal to zero if the structure on M is cocalibrated (of class χ1 ⊕ χ3, defined by δφ = 0). �
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4.3. Corresponding spinors on G2 manifolds and their cones. Since we have T −T c = − 2a
3 φ, the

difference T̄ −T c is the lift of a2r2T − a2r2T c = − 2a
3 a

2r2φ. Furthermore, 1
a3r3

∂ryΦ is the lift of φ to M̄ ,
hence we have

T̄ − T c = − 2

3r
∂ryΦ.

Now Lemma 2.9 implies:

Theorem 4.15. For a G2T manifold with characteristic connection ∇c and for α = 1
2a or α = − 1

2a,
there is

(1) a one to one correspondence between Killing spinors with torsion

∇s
Xψ = αXψ

on M , and parallel spinors of the connection ∇̄s + 4s
3r∂ryΦ on M̄ with cone constant a

∇̄s
Xψ +

2s

3r
(Xy(∂ryΦ))ψ = 0.

(2) a one to one correspondence between ∇̄s-parallel spinors on M̄ with cone constant a and spinors
on M satisfying

∇s
Xψ = αXψ +

2as

3
(Xyφ)ψ.

In particular for s = 1
4 we get the correspondence

spinors on M spinors on M̄

∇c
Xψ = αXψ ∇̄Xψ = − 1

6r (Xy(∂ryΦ))ψ

∇c
Xψ = αXψ + a

6 (Xyφ) ψ ∇̄Xψ = 0

Remark 4.16. As for metric almost contact structures (see Remark 3.15), one can use the characterisa-
tion T̄ = −δΦ− 7

6 ∗ (θ ∧Φ) with θ = 1
7 ∗ (δΦ∧Φ) (see [Iv04]) and the description of T c given in Theorem

4.8 of [FI02] to rewrite these equations in terms of the geometric data of the Spin(7) structure.

Theorem 4.15 states, as before, the general correspondence between spinors on the base and spinors on
the cone. However, G2T manifolds, i. e. carrying a characteristic connection ∇c, enjoy a further, very
special property: The G2 structure φ induces a unique spinor field ψ of length one and this spinor field
is ∇c-parallel, ∇cψ = 0. This is due to the fact that G2 is the stabilizer of a generic spinor in ∆7, the
spin representation in dimension 7. For a nearly parallel G2 manifold, it is well-known that ψ is just the
Riemannian Killing spinor (see [FI02], [FI03], [FK90], [FKMS97] for all these results). Thus, ψ induces
in this case the ∇g-parallel spinor of the integrable Spin(7) structure on the cone. We prove that this
result carries over to all admissible G2 manifolds.

Corollary 4.17. Let (M, g, φ) be a G2T manifold with characteristic connection ∇c, ψ the ∇c-parallel
spinor field defined by φ. Then ψ satisfies

∇c
Xψ = −a

2
Xψ +

a

6
(Xyφ)ψ

for every a > 0 and induces a ∇̄-parallel spinor on the cone M̄ , constructed with cone constant a and
endowed with its induced Spin(7) structure.

Proof. The crucial observation is the algebraic identity

(Xyφ) · ψ = 3X · ψ
that holds for all vector fields X . Since The 7-dimensional standard representation R7 of G2 is isomorphic
to the G2 representation

Λ2
7 = {Xyφ |X ∈ R7} ⊂ Λ2(R7) = so(7) = Λ2

7 ⊕ g2,
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it is clear that there exists a constant c s. t. (Xyφ) · ψ = cX · ψ; one then computes its explicit value in
any realization of the spin representation. Thus, the equation for ψ follows and we can apply Theorem
4.15. �

Be cautious that ∇c may have more parallel spinor fields than just ψ; for these, we cannot define a
suitable ‘lifted’ spinor on the cone, unless one finds a similar trick to write the spinor field equation in a
form covered by Theorem 4.15.

Remark 4.18. In Theorem 1.1 of [Iv04] S. Ivanov proves that any Spin(7) manifold admits a spinor field
that is parallel with respect to the characteristic connection. Corollary 4.17 gives an explicit construction
of this spinor in case the Spin(7) manifold is the cone of an admissible G2 manifold.

Remark 4.19. Since Corollary 4.17 holds for any G2T manifold, one could also carry out the whole study
without using the 3-form φ and the 4-form Φ: the spinor field ψ describes the G2 structure completely,
then one considers the induced ∇̄-parallel spinor ϕ on the cone described in Corollary 4.17 and establishes
the correspondence between the G2 classes and the Spin(7) classes by studying the equations satisfied by
ψ and ϕ.

4.4. Examples. To simplify the calculations in the example we reformulate the second condition for a
G2 structure on M to imply a Spin(7) structure of class U1 on M̄ of Lemma 4.12. So we only have to
calculate φ, ∗φ and ∇gφ to check the conditions. We omit the proof of the following result, it is a lengthy,
but straight forward continuation of the calculations in the proof of Lemma 4.12 and Lemma 4.3.

Lemma 4.20. The second condition of Lemma 4.12

g(∗φ, [(∇−∇g) ∗ φ]xX) = 3g(φ, [(∇−∇g)φ]xX)

is equivalent to

0 =

7
∑

i,k,j,l,m=1

[

∗ φ(ei, ej , ek, el)(∇g
ei
φ)(ej , ek, em)φ(em, el, X) + ∗φ(ei, ej , ek, el)(∇g

ei
φ)(el, X, em)φ(em, ej , ek)

− ∗φ(ei, ej, ek, el) ∗ φ(ei, ej , ek, em)φ(em, el, X)− ∗φ(ei, el, ej , ek) ∗ φ(ei, el, X, em)φ(em, ej, ek)

]

+ 3

7
∑

i,k,j=1

[

− φ(ei, ej , ek)(∇g
ei
φ)(ej , ek, X) + a φ(ei, ej, ek) ∗ φ(ei, ej , ek, X)

]

.

Example 4.21. Let (M, ξ1, ξ2, ξ3, η1, η2, η3) be a 7 dimensional 3-Sasaki manifold with corresponding
2-forms Fi, i = 1, 2, 3. Let ηi for i = 1, .., 7 be the dual of a local basis {e1 = ξ1, e2 = ξ2, e3 = ξ3, e4, .., e7},
such that

F1 = −η23 − η45 − η67, F2 = η13 − η46 + η57, F3 = −η13 − η47 − η56.

Here for ηi ∧ .. ∧ ηj we write ηi,..,j. In [AF10] it is explained that there is no characteristic connection as
such, but one can construct a cocalibrated G2 structure

φ = η1 ∧ F1 + η2 ∧ F2 + η3 ∧ F3 + 4η1 ∧ η2 ∧ η3 = η123 − η145 − η167 − η246 + η257 − η347 − η356

with characteristic connection ∇c and torsion T c = η1∧dη1+η2∧dη2+η3∧dη3 that is very well adapted
to the 3-Sasakian structure. It is therefore called the canonical G2 structure of the underlying 3-Sasakian
structure. Corollary 4.17 ensures then the existence of a ∇̄-parallel spinor field on M̄ .
We calculate the class of the Spin(7) structure on M̄ of the canonical G2 structure using Lemma 4.12.

Theorem 4.22. The Spin(7) structure on the cone constructed from the canonical G2 structure of a
3-Sasakian manifold is of class U1 if and only if the cone constant is a = 15

14 .

Proof. Due to the formulation of the second condition of Lemma 4.12 given in Lemma 4.20, we just need
to calculate ∗φ and ∇gφ. Obviously ∗φ is given by

∗φ = η4567 − η2367 − η2345 − η1357 + η1346 − η1256 − η1247.
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To get ∇gφ we observe

∇g
ej
φ = (∇g

ej
η1) ∧ F1 + (∇g

ej
η2) ∧ F2 + (∇g

ej
η3) ∧ F3

+ η1 ∧ (∇g
ej
F1) + η2 ∧ (∇g

ej
F2) + η3 ∧ (∇g

ej
F3)

+ 4(∇g
ej
η1) ∧ η2 ∧ η3 + 4η1 ∧ (∇g

ej
η2) ∧ η3 + 4η1 ∧ η2 ∧ (∇g

ej
η3)

and since (ηi, Fi) are Sasakian structures we have (∇g
ej
Fi)(Y, Z) = g(ej , Z)ηi(Y ) − g(ej , Y )ηi(Z). Thus

∇g
ej
Fi = ηj ∧ ηi for i = 1, 2, 3 and j = 1, .., 7 implying ηi ∧ (∇g

ej
Fi) = 0. Since

(∇g
Xηi)Y = g(Y,∇g

Xξi) = g(Y,−φiX) = Fi(X,Y )

we have ∇g
Xηi = XyFi and get

∇g
ej
φ =(ejyF1) ∧ F1 + (ejyF2) ∧ F2 + (ejyF3) ∧ F3

+ 4(ejyF1) ∧ η2 ∧ η3 + 4η1 ∧ (ejyF2) ∧ η3 + 4η1 ∧ η2 ∧ (ejyF3).

This gives us

∇g
e1
φ = − η346 + η357 + η247 + η256, ∇g

e2
φ = η345 + η367 − η147 − η156,

∇g
e3
φ = − η245 − η267 + η146 − η157, ∇g

e4
φ = 3 (−η235 + η567 + η136 − η127),

∇g
e5
φ = 3 (η234 − η467 − η137 − η126), ∇g

e6
φ = 3 (−η237 + η457 − η134 + η125),

∇g
e7
φ = 3 (η236 − η456 + η135 + η124).

Using an appropriate computer algebra system we easily calculate

g(∇gφ, ∗φ) = 180, g(∗φ, ∗φ) = 168,

thus the first condition of Lemma 4.12 is satisfied if a = 15
14 . Using the formulation given in Lemma 4.20

of the second condition one easily checks that the this condition is satisfied for any a. �

We expect that for all other values of the cone constant a, the structure is of generic class U1 ⊕ U2, but
the system of equations that one obtains is extremely involved.

References

[Ag03] I. Agricola, Connections on naturally reductive spaces, their Dirac operator and homogeneous models in string
theory, Comm. Math. Phys. 232 (2003), 535-563.
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