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Abstract

Arrows are a general interface for computation and an alternative to Monads for API design. In contrast
to Monad-based parallelism, we explore the use of Arrows for specifying generalised parallelism.
Specifically, we define an Arrow-based language and implement it using multiple parallel Haskells.

As each parallel computation is an Arrow, such parallel Arrows (PArrows) can be readily composed
and transformed as such. To allow for more sophisticated communication schemes between computa-
tion nodes in distributed systems, we utilise the concept of Futures to wrap direct communication.

To show that PArrows have similar expressive power as existing parallel languages, we implement
several algorithmic skeletons and four benchmarks. Benchmarks show that our framework does not
induce any notable performance overhead. We conclude that Arrows have considerable potential
for composing parallel programs and for producing programs that can execute on multiple parallel
language implementations.
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1 Introduction

Parallel functional languages have a long history of being used for experimenting with novel
parallel programming paradigms. Haskell, which we focus on in this paper, has several
mature implementations. We regard here in-depth Glasgow parallel Haskell or short GpH
(its Multicore SMP implementation, in particular), the Par Monad, and Eden, a distributed
memory parallel Haskell. These languages represent orthogonal approaches. Some use a
Monad, even if only for the internal representation. Some introduce additional language
constructs. Section 3.2 gives a short overview over these languages.

A key novelty in this paper is to use Arrows to represent parallel computations. They
seem a natural fit as they can be thought of as a more general function arrow (→) and serve
as general interface to computations while not being as restrictive as Monads (Hughes,
2000). Section 3.1 gives a short introduction to Arrows.

We provide an Arrows-based type class and implementations for the three above men-
tioned parallel Haskells. Instead of introducing a new low-level parallel backend to imple-
ment our Arrows-based interface, we define a shallow-embedded DSL for Arrows. This
DSL is defined as a common interface with varying implementations in the existing parallel
Haskells. Thus, we not only define a parallel programming interface in a novel manner – we
tame the zoo of parallel Haskells. We provide a common, very low-penalty programming
interface that allows to switch the parallel implementations at will. The induced penalty is
in the single-digit percent range, with means typically under 2% overhead in measurements
over the varying cores configuration (Section 7). Further implementations, based on HdpH
or a Frege implementation (on the Java Virtual Machine), are viable, too.

Contributions. We propose an Arrow-based encoding for parallelism based on a new
Arrow combinator parEvalN :: [arr a b]→ arr [a] [b ]. A parallel Arrow is still an Arrow,
hence the resulting parallel Arrow can still be used in the same way as a potential sequential
version. In this paper we evaluate the expressive power of such a formalism in the context
of parallel programming.

• We introduce a parallel evaluation formalism using Arrows. One big advantage of
this specific approach is that we do not have to introduce any new types, facilitating
composability (Section 4).
• We show that PArrow programs can readily exploit multiple parallel language

implementations. We demonstrate the use of GpH, a Par Monad, and Eden. We
do not re-implement all the parallel internals, as this functionality is hosted in the
ArrowParallel type class, which abstracts all parallel implementation logic. The
implementations can easily be swapped, so we are not bound to any specific one.
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This has many practical advantages. For example, during development we can run the
program in a simple GHC-compiled variant using GpH and afterwards deploy it on a
cluster by converting it into an Eden program, by just replacing the ArrowParallel
instance and compiling with Eden’s GHC variant (Section 4).

• We extend the PArrows formalism with Futures to enable direct communication
of data between nodes in a distributed memory setting similar to Eden’s Remote
Data (RD, Dieterle et al., 2010a). Direct communication is useful in a distributed
memory setting because it allows for inter-node communication without blocking the
master-node. (Section 5)

• We demonstrate the expressiveness of PArrows by using them to define common
algorithmic skeletons (Section 6), and by using these skeletons to implement four
benchmarks (Section 7).

• We practically demonstrate that Arrow parallelism has a low performance overhead
compared with existing approaches, e.g. the mean over all cores of relative mean
overhead was less than 3.5% and less than 0.8% for all benchmarks with GpH and
Eden, respectively. As for Par Monad, the mean of mean overheads was in favour of
PArrows in all benchmarks (Section 7).

PArrows are open source and are available from https://github.com/s4ke/Parrows.

2 Related Work

Parallel Haskells. The non-strict semantics of Haskell, and the fact that reduction encap-
sulates computations as closures, makes it relatively easy to define alternate parallelisations.
A range of approaches have been explored, including data parallelism (Chakravarty et al.,
2007; Keller et al., 2010), GPU-based approaches (Mainland & Morrisett, 2010; Svensson,
2011), software transactional memory (Harris et al., 2005; Perfumo et al., 2008). The
Haskell–GPU bridge Accelerate (Chakravarty et al., 2011; Clifton-Everest et al., 2014;
McDonell et al., 2015) is completely orthogonal to our approach. A good survey of parallel
Haskells can be found in Marlow (2013).

Our PArrow implementation uses three task parallel languages as backends: the GpH
(Trinder et al., 1996, 1998) parallel Haskell dialect and its multicore version (Marlow
et al., 2009), the Par Monad (Marlow et al., 2011; Foltzer et al., 2012), and Eden (Loogen
et al., 2005; Loogen, 2012). These languages are under active development, for example
a combined shared and distributed memory implementation of GpH is available (Aljabri
et al., 2014, 2015). Research on Eden includes low-level implementation (Berthold, 2008;
Berthold et al., 2016), skeleton composition (Dieterle et al., 2016), communication (Dieterle
et al., 2010a), and generation of process networks (Horstmeyer & Loogen, 2013). The
definitions of new Eden skeletons is a specific focus (Hammond et al., 2003; Berthold &
Loogen, 2006; Berthold et al., 2009b,c; Dieterle et al., 2010b; de la Encina et al., 2011;
Dieterle et al., 2013; Janjic et al., 2013).

Other task parallel Haskells related to Eden, GpH, and the Par Monad include the
following. HdpH (Maier et al., 2014; Stewart et al., 2016) is an extension of Par Monad to
heterogeneous clusters. LVish (Kuper et al., 2014) is a communication-centred extension of
Par Monad.

https://github.com/s4ke/Parrows
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Algorithmic skeletons. Algorithmic skeletons were introduced by Cole (1989). Early
publications on this topic include (Danelutto et al., 1992; Darlington et al., 1993; Botorog &
Kuchen, 1996; Lengauer et al., 1997; Gorlatch, 1998). Rabhi & Gorlatch (2003) consolidated
early reports on high-level programming approaches. Types of algorithmic skeletons include
map-, fold-, and scan-based parallel programming patterns, special applications such as
divide-and-conquer or topological skeletons.

The farm skeleton (Hey, 1990; Peña & Rubio, 2001; Poldner & Kuchen, 2005) is a
statically task-balanced parallel map. When tasks’ durations cannot be foreseen, a dynamic
load balancing (workpool) brings a lot of improvement (Rudolph et al., 1991; Hammond
et al., 2003; Hippold & Rünger, 2006; Berthold et al., 2008; Marlow et al., 2009). For special
tasks workpool skeletons can be extended with dynamic task creation (Priebe, 2006; Dinan
et al., 2009; Brown & Hammond, 2010). Efficient load-balancing schemes for workpools
are subject of research (Blumofe & Leiserson, 1999; Acar et al., 2000; van Nieuwpoort
et al., 2001; Chase & Lev, 2005; Olivier & Prins, 2008; Michael et al., 2009). The fold (or
reduce) skeleton was implemented in various skeleton libraries (Kuchen, 2002; Karasawa &
Iwasaki, 2009; Buono et al., 2010; Dastgeer et al., 2011), as also its inverse, scan (Bischof
& Gorlatch, 2002; Harris et al., 2007). Google map–reduce (Dean & Ghemawat, 2008,
2010) is more special than just a composition of the two skeletons (Lämmel, 2008; Berthold
et al., 2009b).

The effort is ongoing, including topological skeletons (Berthold & Loogen, 2006), special-
purpose skeletons for computer algebra (Berthold et al., 2009c; Lobachev, 2011, 2012;
Janjic et al., 2013), iteration skeletons (Dieterle et al., 2013). The idea of Linton et al. (2010)
is to use a parallel Haskell to orchestrate further software systems to run in parallel. Dieterle
et al. (2016) compare the composition of skeletons to stable process networks.

Arrows. Arrows were introduced by Hughes (2000) as a less restrictive alternative to
Monads, in essence they are a generalised function arrow →. Hughes (2005) presents
a tutorial on Arrows. Jacobs et al. (2009); Lindley et al. (2011); Atkey (2011) develop
theoretical background of Arrows. Paterson (2001) introduced a new notation for Arrows.
Arrows have applications in information flow research (Li & Zdancewic, 2006, 2010; Russo
et al., 2008), invertible programming (Alimarine et al., 2005), and quantum computer
simulation (Vizzotto et al., 2006). But probably most prominent application of Arrows is
Arrow-based functional reactive programming, AFRP (Nilsson et al., 2002; Hudak et al.,
2003; Czaplicki & Chong, 2013). Liu et al. (2009) formally define a more special kind
of Arrows that capsule the computation more than regular Arrows do and thus enable
optimisations. Their approach would allow parallel composition, as their special Arrows
would not interfere with each other in concurrent execution. In contrast, we capture a whole
parallel computation as a single entity: our main instantiation function parEvalN makes
a single (parallel) Arrow out of list of Arrows. Huang et al. (2007) utilise Arrows for
parallelism, but strikingly different from our approach. They use Arrows to orchestrate
several tasks in robotics. We, however, propose a general interface for parallel programming,
while remaining completely in Haskell.

Arrows in other languages. Although this work is centred on Haskell implementation of
Arrows, it is applicable to any functional programming language where parallel evaluation
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and Arrows can be defined. Basic definitions of PArrows are possible in the Frege language1

(which is basically Haskell on the JVM). However, they are beyond the scope of this work,
as are similar experiments with the Eta language2, a new approach to Haskell on the JVM.

Achten et al. (2004, 2007) use an Arrow implementation in Clean for better handling of
typical GUI tasks. Dagand et al. (2009) used Arrows in OCaml in the implementation of a
distributed system.

3 Background

This section gives a short overview of Arrows (Section 3.1) and of GpH, the Par Monad,
and Eden, the three parallel Haskells which we base our DSL on (Section 3.2).

3.1 Arrows

Arrows were introduced by Hughes (2000) as a general interface for computation and a less
restrictive generalisation of Monads. Hughes motivates the broader interface of Arrows with
the example of a parser with added static meta-information that can not satisfy the monadic
bind operator (>>=) :: m a→ (a→ m b)→ m b (with m being a Monad)3.

An Arrow arr a b represents a computation that converts an input a to an output b. This
is defined in the Arrow type class shown in Fig. 1. To lift an ordinary function to an Arrow,
arr is used, analogous to the monadic return. Similarly, the composition operator >>> is
analogous to the monadic composition >>= and combines two Arrows arr a b and arr b c
by ‘wiring’ the outputs of the first to the inputs to the second to get a new Arrow arr a c.
Lastly, the first operator takes the input Arrow arr a b and converts it into an Arrow on pairs
arr (a,c) (b,c) that leaves the second argument untouched. It allows us to to save input
across Arrows. Figure 2 shows a graphical representation of these basic Arrow combinators.
The most prominent instances of this interface are regular functions (→) and the Kleisli
type (Fig. 1), which wraps monadic functions, e.g. a→ m b.

Hughes also defined some syntactic sugar (Fig. 3): second, ∗∗∗ and &&&. second is
the mirrored version of first (Appendix A). The ∗∗∗ function combines first and second to
handle two inputs in one arrow, and is defined as follows:

(∗∗∗) :: Arrow arr⇒ arr a b→ arr c d→ arr (a,c) (b,d)
f ∗∗∗g = first f >>> second g

The &&& combinator, which constructs an Arrow that outputs two different values like ∗∗∗,
but takes only one input, is:

(&&&) :: Arrow arr⇒ arr a b→ arr a c→ arr a (b,c)
f &&& g = arr (λa→ (a,a))>>> f ∗∗∗g

1 GitHub project page at https://github.com/Frege/frege
2 Eta project page at http://eta-lang.org
3 In the example a parser of the type Parser s a with static meta information s and result a is shown

to not be able to use the static information s without applying the monadic function a→ m b. With
Arrows this is possible.

https://github.com/Frege/frege
http://eta-lang.org
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class Arrow arr where
arr :: (a→ b)→ arr a b
(>>>) :: arr a b→ arr b c→ arr a c
first :: arr a b→ arr (a,c) (b,c)

instance Arrow (→) where
arr f = f
f >>>g = g◦ f
first f = λ (a,c)→ (f a,c)

data Kleisli m a b = Kleisli {run :: a→ m b}
instance Monad m⇒ Arrow (Kleisli m) where

arr f = Kleisli (return◦ f )
f >>>g = Kleisli (λa→ f a>>=g)
first f = Kleisli (λ (a,c)→ f a>>=λb→ return (b,c))

Figure 1: The Arrow type class and its two most typical instances.

Figure 2: Schematic depiction of an Arrow (left) and its basic combinators arr, >>> and
first (right).

A first short example given by Hughes on how to use Arrows is addition with Arrows:

add :: Arrow arr⇒ arr a Int→ arr a Int→ arr a Int
add f g = f &&& g>>>arr (λ (u,v)→ u+ v)

As we can rewrite the monadic bind operation (>>=) with only the Kleisli type into
m a→ Kleisli m a b→ m b, but not with a general Arrow arr a b, we can intuitively get
an idea of why Arrows must be a generalisation of Monads. While this also means that a
general Arrow can not express everything a Monad can, Hughes (2000) shows in his parser
example that this trade-off is worth it in some cases.

In this paper we will show that parallel computations can be expressed with this more
general interface of Arrows without requiring Monads. We also do not restrict the compatible
Arrows to ones which have ArrowApply instances but instead only require instances for
ArrowChoice (for if-then-else constructs) and ArrowLoop (for looping). Because of this, we
have a truly more general interface as compared to a monadic one.
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first second

(∗∗∗) (&&&)

Figure 3: Visual depiction of syntactic sugar for Arrows.

Figure 4: Schematic illustration of parEvalN. A list of inputs is transformed by different
functions in parallel.

While we could have based our DSL on Profunctors as well, we chose Arrows for this
paper since they they allow for a more direct way of thinking about parallelism than general
Profunctors because of their composability. However, they are a promising candidate
for future improvements of our DSL. Some Profunctors, especially ones supporting a
composition operation, choice, and looping, can already be adapted to our interface as
shown in Appendix B.

3.2 Short introduction to parallel Haskells

In its purest form, parallel computation (on functions) can be looked at as the execution
of some functions a→ b in parallel or parEvalN :: [a→ b]→ [a]→ [b], as also Figure 4
symbolically shows.

In this section, we will implement this non-Arrow version which will later be adapted for
usage in our Arrow-based parallel Haskell.

There exist several parallel Haskells already. Among the most important are probably
GpH (based on par and pseq ‘hints’, Trinder et al., 1996, 1998), the Par Monad (a monad
for deterministic parallelism, Marlow et al., 2011; Foltzer et al., 2012), Eden (a parallel
Haskell for distributed memory, Loogen et al., 2005; Loogen, 2012), HdpH (a Template
Haskell-based parallel Haskell for distributed memory, Maier et al., 2014; Stewart et al.,
2016) and LVish (a Par extension with focus on communication, Kuper et al., 2014).

As the goal of this paper is not to re-implement yet another parallel runtime, but to
represent parallelism with Arrows, we base our efforts on existing work which we wrap as



ZU064-05-FPR main 31st January 2018 14:34

8 M. Braun, O. Lobachev, and P. Trinder

Figure 5: parEvalN (GpH).

backends behind a common interface. For this paper we chose GpH for its simplicity, the
Par Monad to represent a monadic DSL, and Eden as a distributed parallel Haskell.

LVish and HdpH were not chosen as the former does not differ from the original Par
Monad with regard to how we would have used it in this paper, while the latter (at least in
its current form) does not comply with our representation of parallelism due to its heavy
reliance on Template Haskell.

We will now go into some detail on GpH, the Par Monad and Eden, and also give their
respective implementations of the non-Arrow version of parEvalN.

3.2.1 Glasgow parallel Haskell – GpH

GpH (Marlow et al., 2009; Trinder et al., 1998) is one of the simplest ways to do parallel
processing found in standard GHC.4 Besides some basic primitives (par and pseq), it ships
with parallel evaluation strategies for several types which can be applied with using :: a→
Strategy a→ a, which is exactly what is required for an implementation of parEvalN.

parEvalN :: (NFData b)⇒ [a→ b]→ [a]→ [b]
parEvalN fs as = let bs = zipWith ($) fs as

in bs ‘using‘ parList rdeepseq

In the above definition of parEvalN we just apply the list of functions [a→ b ] to the list of
inputs [a] by zipping them with the application operator $. We then evaluate this lazy list [b ]
according to a Strategy [b ] with the using :: a→ Strategy a→ a operator. We construct this
strategy with parList :: Strategy a→ Strategy [a] and rdeepseq :: NFData a⇒ Strategy a
where the latter is a strategy which evaluates to normal form. Other strategies like e.g.
evaluation to weak head normal form are available as well. It also allows for custom
Strategy implementations to be used. Fig. 5 shows a visual representation of this code.

4 The Multicore implementation of GpH is available on Hackage under https://hackage.
haskell.org/package/parallel-3.2.1.0, compiler support is integrated in the stock GHC.

https://hackage.haskell.org/package/parallel-3.2.1.0
https://hackage.haskell.org/package/parallel-3.2.1.0


ZU064-05-FPR main 31st January 2018 14:34

Arrows for Parallel Computation 9

Figure 6: parEvalN (Par Monad).

3.2.2 Par Monad

The Par Monad5 introduced by Marlow et al. (2011), is a Monad designed for composition
of parallel programs. Let:

parEvalN :: (NFData b)⇒ [a→ b ]→ [a]→ [b]
parEvalN fs as = runPar $
(sequenceA (map (return◦ spawn) (zipWith ($) fs as)))>>=mapM get

The Par Monad version of our parallel evaluation function parEvalN is defined by
zipping the list of [a→ b] with the list of inputs [a] with the application operator $ just
like with GpH. Then, we map over this not yet evaluated lazy list of results [b] with
spawn :: NFData a⇒ Par a→ Par (IVar a) to transform them to a list of not yet evaluated
forked away computations [Par (IVar b)], which we convert to Par [IVar b ] with sequenceA.
We wait for the computations to finish by mapping over the IVar b values inside the Par
Monad with get. This results in Par [b]. We execute this process with runPar to finally
get [b]. While we used spawn in the definition above, a head-strict variant can easily be
defined by replacing spawn with spawn_ :: Par a→ Par (IVar a). Fig. 6 shows a graphical
representation.

5 The Par monad can be found in the monad-par package on Hackage under https://hackage.
haskell.org/package/monad-par-0.3.4.8/.

https://hackage.haskell.org/package/monad-par-0.3.4.8/
https://hackage.haskell.org/package/monad-par-0.3.4.8/
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3.2.3 Eden

Eden (Loogen et al., 2005; Loogen, 2012) is a parallel Haskell for distributed memory and
comes with MPI and PVM as distributed backends.6 It is targeted towards clusters, but
also functions well in a shared-memory setting with a further simple backend. However, in
contrast to many other parallel Haskells, in Eden each process has its own heap. This seems
to be a waste of memory, but with distributed programming paradigm and individual GC
per process, Eden yields good performance results on multicores, as well (Berthold et al.,
2009a; Aswad et al., 2009).

While Eden comes with a Monad PA for parallel evaluation, it also ships with a completely
functional interface that includes a spawnF :: (Trans a,Trans b)⇒ [a→ b]→ [a ]→ [b]
function that allows us to define parEvalN directly:

parEvalN :: (Trans a,Trans b)⇒ [a→ b ]→ [a]→ [b]
parEvalN = spawnF

Eden TraceViewer. To comprehend the efficiency and the lack thereof in a parallel
program, an inspection of its execution is extremely helpful. While some large-scale
solutions exist (Geimer et al., 2010), the parallel Haskell community mainly utilises the
tools Threadscope (Wheeler & Thain, 2009) and Eden TraceViewer7 (Berthold & Loogen,
2007). In the next sections we will present some trace visualisations, the post-mortem
process diagrams of Eden processes and their activity.

The trace visualisations are colour-coded. In such a visualisation (Fig. 14), the x axis
shows the time, the y axis enumerates the machines and processes. The visualisation shows
a running process in green, a blocked process is red. If the process is ‘runnable’, i.e. it
may run, but does not, it is yellow. The typical reason for this is GC. An inactive machine,
where no processes are started yet, or all are already terminated, shows as a blue bar.
A communication from one process to another is represented with a black arrow. A stream
of communications, e.g. a transmitted list is shows as a dark shading between sender and
receiver processes.

4 Parallel Arrows

While Arrows are a general interface to computation, we introduce here specialised Arrows
as a general interface to parallel computations. We present the ArrowParallel type class and
explain the reasoning behind it before discussing some parallel Haskell implementations
and basic extensions.

6 The projects homepage can be found at http://www.mathematik.uni-marburg.de/~eden/.
The Hackage page is at https://hackage.haskell.org/package/edenmodules-1.2.0.0/.

7 See http://hackage.haskell.org/package/edentv on Hackage for the last available version
of Eden TraceViewer.

http://www.mathematik.uni-marburg.de/~eden/
https://hackage.haskell.org/package/edenmodules-1.2.0.0/
http://hackage.haskell.org/package/edentv
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4.1 The ArrowParallel type class

A parallel computation (on functions) can be seen as execution of some functions a→ b in
parallel, as our parEvalN prototype shows (Section 3.2). Translating this into Arrow terms
gives us a new operator parEvalN that lifts a list of Arrows [arr a b] to a parallel Arrow
arr [a ] [b]. This combinator is similar to evalN from Appendix A, but does parallel instead
of serial evaluation.

parEvalN :: (Arrow arr)⇒ [arr a b ]→ arr [a ] [b ]

With this definition of parEvalN, parallel execution is yet another Arrow combinator. But
as the implementation may differ depending on the actual type of the Arrow arr - or even
the input a and output b - and we want this to be an interface for different backends, we
introduce a new type class ArrowParallel arr a b:

class Arrow arr⇒ ArrowParallel arr a b where
parEvalN :: [arr a b ]→ arr [a ] [b]

Sometimes parallel Haskells require or allow for additional configuration parameters, e.g. an
information about the execution environment or the level of evaluation (weak head normal
form vs. normal form). For this reason we introduce an additional conf parameter as we
do not want conf to be a fixed type, as the configuration parameters can differ for different
instances of ArrowParallel.

class Arrow arr⇒ ArrowParallel arr a b conf where
parEvalN :: conf → [arr a b ]→ arr [a ] [b ]

By restricting the implementations of our backends to a specific conf type, we also get
interoperability between backends for free. We can parallelize one part of a program using
one backend, and parallelize the next with another one.

4.2 ArrowParallel instances

With the type class defined, we will now give implementations of it with GpH, the Par
Monad and Eden.

4.2.1 Glasgow parallel Haskell

The GpH implementation of ArrowParallel is implemented in a straightforward manner
in Fig. 7, but a bit different compared to the variant from Section 3.2.1. We use evalN ::
[arr a b]→ arr [a] [b] (definition in Appendix A, think zipWith ($) on Arrows) combined
with withStrategy :: Strategy a→ a→ a from GpH, where withStrategy is the same as
using :: a→ Strategy a→ a, but with flipped parameters. Our Conf a datatype simply wraps
a Strategy a, but could be extended in future versions of our DSL.

4.2.2 Par Monad

As for GpH we can easily lift the definition of parEvalN for the Par Monad to Arrows in
Fig. 8. To start off, we define the Strategy a and Conf a type so we can have a configurable
instance of ArrowParallel:
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data Conf a = Conf (Strategy a)

instance (ArrowChoice arr)⇒
ArrowParallel arr a b (Conf b) where

parEvalN (Conf strat) fs =
evalN fs>>>
arr (withStrategy (parList strat))

Figure 7: GpH ArrowParallel instance.

type Strategy a = a→ Par (IVar a)
data Conf a = Conf (Strategy a)

Now we can once again define our ArrowParallel instance as follows: First, we convert our
Arrows [arr a b] with evalN (map (>>>arr strat) fs) into an Arrow arr [a ] [(Par (IVar b))]
that yields composable computations in the Par monad. By combining the result of this
Arrow with arr sequenceA, we get an Arrow arr [a] (Par [IVar b ]). Then, in order to fetch
the results of the different threads, we map over the IVars inside the Par Monad with
arr (>>=mapM get) – our intermediary Arrow is of type arr [a ] (Par [b ]). Finally, we
execute the computation Par [b] by composing with arr runPar and get the final Arrow
arr [a ] [b ].

instance (ArrowChoice arr)⇒ ArrowParallel arr a b (Conf b) where
parEvalN (Conf strat) fs =

evalN (map (>>>arr strat) fs)>>>
arr sequenceA>>>
arr (>>=mapM Control.Monad.Par.get)>>>
arr runPar

Figure 8: Par Monad ArrowParallel instance.

4.2.3 Eden

For both the GpH Haskell and Par Monad implementations we could use general instances
of ArrowParallel that just require the ArrowChoice type class. With Eden this is not the
case as we can only spawn a list of functions, which we cannot extract from general Arrows.
While we could still manage to have only one instance in the module by introducing a type
class

class (Arrow arr)⇒ ArrowUnwrap arr where
unwrap :: arr a b→ (a→ b)

we avoid doing so for aesthetic reasons. For now, we just implement ArrowParallel for
normal functions and the Kleisli type in Fig. 9, where Conf is simply defined as data Conf =
Nil since Eden does not have a configurable spawnF variant.
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instance (Trans a,Trans b)⇒ ArrowParallel (→) a b Conf where
parEvalN = spawnF

instance (ArrowParallel (→) a (m b) Conf ,
Monad m,Trans a,Trans b,Trans (m b))⇒
ArrowParallel (Kleisli m) a b conf where

parEvalN conf fs =
arr (parEvalN conf (map (λ (Kleisli f )→ f ) fs))>>>
Kleisli sequence

Figure 9: Eden ArrowParallel instance.

4.2.4 Default configuration instances

While the configurability in the instances of the ArrowParallel instances above is nice,
users probably would like to have proper default configurations for many parallel programs
as well. These can also easily be defined as we can see by the example of the default
implementation of ArrowParallel for the GpH:

instance (NFData b,ArrowChoice arr,ArrowParallel arr a b (Conf b))⇒
ArrowParallel arr a b () where

parEvalN fs = parEvalN (defaultConf fs) fs

defaultConf :: (NFData b)⇒ [arr a b ]→ Conf b
defaultConf fs = stratToConf fs rdeepseq

stratToConf :: [arr a b ]→ Strategy b→ Conf b
stratToConf strat = Conf strat

The other backends have similarly structured implementations which we do not discuss
here for the sake of brevity. We can, however, only have one instance of ArrowParallel arr a b ()
present at a time, which should not be a problem, though.

Up until now we discussed Arrow operations more in detail, but in the following sections
we focus more on the data-flow between the Arrows, now that we have seen that Arrows are
capable of expressing parallelism. We do explain new concepts with more details if required
for better understanding, though.

4.3 Extending the interface

With the ArrowParallel type class in place and implemented, we can now define other
parallel interface functions. These are basic algorithmic skeletons that are used to define
more sophisticated skeletons.

4.3.1 Lazy parEvalN

The function parEvalN fully traverses the list of passed Arrows as well as their inputs.
Sometimes this might not be feasible, as it will not work on infinite lists of functions
like e.g. map (arr ◦ (+)) [1 . .] or just because we need the Arrows evaluated in chunks.
parEvalNLazy (Figs. 10, 11) fixes this. It works by first chunking the input from [a ] to [[a ]]
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Figure 10: parEvalNLazy depiction.

parEvalNLazy :: (ArrowParallel arr a b conf ,ArrowChoice arr,ArrowApply arr)⇒
conf → ChunkSize→ [arr a b ]→ (arr [a] [b ])

parEvalNLazy conf chunkSize fs =
arr (chunksOf chunkSize)>>>
evalN fchunks>>>
arr concat
where

fchunks = map (parEvalN conf ) (chunksOf chunkSize fs)

Figure 11: Definition of parEvalNLazy.

with the given chunkSize in arr (chunksOf chunkSize). These chunks are then fed into a list
[arr [a] [b]] of chunk-wise parallel Arrows with the help of our lazy and sequential evalN.
The resulting [[b ]] is lastly converted into [b] with arr concat.

4.3.2 Heterogeneous tasks

We have only talked about the parallelization of Arrows of the same set of input and
output types until now. But sometimes we want to parallelize heterogeneous types as
well. We can implement such a parEval2 combinator (Figs. 12, C 12) which combines
two Arrows arr a b and arr c d into a new parallel Arrow arr (a,c) (b,d) quite easily
with the help of the ArrowChoice type class. Here, the general idea is to use the +++

combinator which combines two Arrows arr a b and arr c d and transforms them into
arr (Either a c) (Either b d) to get a common Arrow type that we can then feed into
parEvalN.

5 Futures

Consider the outline parallel Arrow combinator in Fig. 13. In a distributed environment
this first evaluates all [arr a b ] in parallel, sends the results back to the master node, rotates

Figure 12: parEval2 depiction.
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someCombinator :: (ArrowChoice arr,
ArrowParallel arr a b (),
ArrowParallel arr b c ())⇒
[arr a b ]→ [arr b c ]→ arr [a] [c]

someCombinator fs1 fs2 =
parEvalN () fs1>>>
rightRotate>>>
parEvalN () fs2

Figure 13: The outline combinator.

the input once (in the example we require ArrowChoice for this) and then evaluates the
[arr b c] in parallel to then gather the input once again on the master node. Such situations
arise, e.g. in scientific computations when the data distributed across the nodes needs to
be transposed. A concrete example is 2D FFT computation (Gorlatch & Bischof, 1998;
Berthold et al., 2009c).

While the example could be rewritten into a single parEvalN call by directly wiring
the Arrows together before spawning, it illustrates an important problem. When using a
ArrowParallel backend that resides on multiple computers, all communication between the
nodes is done via the master node, as shown in the Eden trace in Figure 14. This can become
a serious bottleneck for a larger amount of data and number of processes (as e.g. Berthold
et al., 2009c, showcases).

Figure 14: Communication between 4 Eden processes without Futures. All communication
goes through the master node. Each bar represents one process. Black lines represent
communication. Colours: blue =̂ idle, green =̂ running, red =̂ blocked, yellow =̂ suspended.

This is only a problem in distributed memory (in the scope of this paper) and we should
allow nodes to communicate directly with each other. Eden already provides ‘remote data’
that enable this (Alt & Gorlatch, 2003; Dieterle et al., 2010a). But as we want code with
our DSL to be implementation agnostic, we have to wrap this concept. We do this with
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the Future type class (Fig. 15). We require a conf parameter here as well, but only so that
Haskells type system allows us to have multiple Future implementations imported at once
without breaking any dependencies similar to what we did with the ArrowParallel type
class earlier. Since RD is only a type synonym for a communication type that Eden uses

class Future fut a conf | a conf → fut where
put :: (Arrow arr)⇒ conf → arr a (fut a)
get :: (Arrow arr)⇒ conf → arr (fut a) a

Figure 15: The Future type class.

internally, we have to use some wrapper classes to fit that definition, though, as Fig. C 1
shows. Technical details are in Appendix, in Section C.

For GpH and Par Monad, we can simply use BasicFutures (Fig. C 2), which are just
simple wrappers around the actual data with boiler-plate logic so that the type class is
satisfied. This is because the concept of a Future does not change anything for shared-
memory execution as there are no communication problems to fix. Nevertheless, we require
a common interface so the parallel Arrows are portable across backends. The implementation
can also be found in Section C.

In our communication example we can use this Future concept for direct communication
between nodes as shown in Fig. 16. In a distributed environment, this gives us a communic-
ation scheme with messages going through the master node only if it is needed – similar
to what is shown in the trace visualisation in Fig. 17. One especially elegant aspect of
the definition in Fig. 15 is that we can specify the type of Future to be used per backend
with full interoperability between code using different backends, without even requiring to
know about the actual type used for communication. We only specify that there has to be a
compatible Future and do not care about any specifics as can be seen in Fig. 16. With the
PArrows DSL we can also define default instances Future fut a () for each backend similar
to how ArrowParallel arr a b () was defined in Section 4. Details can be found in Section C.

6 Skeletons

Now we have developed Parallel Arrows far enough to define some useful algorithmic
skeletons that abstract typical parallel computations. While there are many possible skeletons
to implement, we demonstrate the expressive power of PArrows here using four map-based
and three toplogical skeletons.

6.1 map-based skeletons

The essential differences between the mapping skeletons presented here are in terms of
order of evaluation and work distribution but still provide the same semantics as a sequential
map.



ZU064-05-FPR main 31st January 2018 14:34

Arrows for Parallel Computation 17

someCombinator :: (ArrowChoice arr,
ArrowParallel arr a (fut b) (),
ArrowParallel arr (fut b) c (),
Future fut b ())⇒
[arr a b ]→ [arr b c ]→ arr [a] [c]

someCombinator fs1 fs2 =
parEvalN () (map (>>>put ()) fs1)>>>
rightRotate>>>
parEvalN () (map (get ()>>>) fs2)

Figure 16: The outline combinator in parallel.

Figure 17: Communication between 4 Eden processes with Futures. Other than in Fig. 14,
processes communicate directly (one example message is highlighted) instead of always
going through the master node (bottom bar).

Parallel map and laziness. The parMap skeleton (Figs. C 3, C 4) is probably the most
common skeleton for parallel programs. We can implement it with ArrowParallel by
repeating an Arrow arr a b and then passing it into parEvalN to obtain an Arrow arr [a ] [b].
Just like parEvalN, parMap traverses all input Arrows as well as the inputs. Because of
this, it has the same restrictions as parEvalN as compared to parEvalNLazy. So it makes
sense to also have a parMapStream (Figs. C 5, C 6) which behaves like parMap, but uses
parEvalNLazy instead of parEvalN. Implementing these skeletons is straightforward as in
Appendix C in Figs.C 4 and C 6.

Statically load-balancing parallel map. Our parMap spawns every single computation
in a new thread (at least for the instances of ArrowParallel we presented in this paper).
This can be quite wasteful and a statically load-balancing farm (Figs. 18, 19) that equally
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Figure 18: farm depiction.

farm :: (ArrowParallel arr a b conf ,
ArrowParallel arr [a] [b] conf ,ArrowChoice arr)⇒
conf → NumCores→ arr a b→ arr [a ] [b ]

farm conf numCores f =
unshuffle numCores>>>
parEvalN conf (repeat (mapArr f ))>>>
shuffle

Figure 19: farm definition.

Figure 20: farmChunk depiction.

distributes the workload over numCores workers seems useful. The definitions of the helper
functions unshuffle, takeEach, shuffle (Fig. C 7) originate from an Eden skeleton8.

Since a farm is basically just parMap with a different work distribution, it has the same
restrictions as parEvalN and parMap. We can, however, define farmChunk (Figs. 20, C 10)
which uses parEvalNLazy instead of parEvalN. It is basically the same definition as for
farm, but with parEvalNLazy instead of parEvalN.

6.2 Topological skeletons

Even though many algorithms can be expressed by parallel maps, some problems require
more sophisticated skeletons. The Eden library leverages this problem and already comes
with more predefined skeletons9, among them a pipe, a ring, and a torus implementations
(Loogen et al., 2003). These seem like reasonable candidates to be ported to our Arrow-
based parallel Haskell. We aim to showcase that we can express more sophisticated skeletons
with parallel Arrows as well.

If we used the original definition of parEvalN, however, these skeletons would produce
an infinite loop with the GpH and Par Monad which during runtime would result in the
program crash. This materialises with the usage of loop of the ArrowLoop type class and

8 Available on Hackage under https://hackage.haskell.org/package/edenskel-2.1.0.0/
docs/src/Control-Parallel-Eden-Map.html.

9 Available on Hackage: https://hackage.haskell.org/package/edenskel-2.1.0.0/
docs/Control-Parallel-Eden-Topology.html.

https://hackage.haskell.org/package/edenskel-2.1.0.0/docs/src/Control-Parallel-Eden-Map.html
https://hackage.haskell.org/package/edenskel-2.1.0.0/docs/src/Control-Parallel-Eden-Map.html
https://hackage.haskell.org/package/edenskel-2.1.0.0/docs/Control-Parallel-Eden-Topology.html
https://hackage.haskell.org/package/edenskel-2.1.0.0/docs/Control-Parallel-Eden-Topology.html
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we think that this is due to difference of how evaluation is done in these backends when
compared to Eden. An investigation of why this difference exists is beyond the scope of
this work, we only provide a workaround for these types of skeletons as such they probably
are not of much importance outside of a distributed memory environment. However our
workaround enables users of the DSL to test their code within a shared memory setting.
The idea of the fix is to provide a ArrowLoopParallel type class that has two functions –
loopParEvalN and postLoopParEvalN, where the first is to be used inside an loop construct
while the latter will be used right outside of the loop. This way we can delegate to the actual
parEvalN in the spot where the backend supports it.

class ArrowParallel arr a b conf ⇒
ArrowLoopParallel arr a b conf where
loopParEvalN :: conf → [arr a b ]→ arr [a] [b ]
postLoopParEvalN :: conf → [arr a b ]→ arr [a] [b]

As Eden has no problems with the looping skeletons, we use this instance:

instance (ArrowChoice arr,ArrowParallel arr a b Conf )⇒
ArrowLoopParallel arr a b Conf where
loopParEvalN = parEvalN
postLoopParEvalN = evalN

As Par Monad and GpH have problems with parEvalN inside of loop their respective
instances for ArrowLoopParallel look like this:

instance (ArrowChoice arr,ArrowParallel arr a b (Conf b))⇒
ArrowLoopParallel arr a b (Conf b) where
loopParEvalN = evalN
postLoopParEvalN = parEvalN

6.2.1 Parallel pipe

The parallel pipe skeleton is semantically equivalent to folding over a list [arr a a ] of
Arrows with >>>, but does this in parallel, meaning that the Arrows do not have to reside
on the same thread/machine. We implement this skeleton using the ArrowLoop type class
which gives us the loop :: arr (a,b) (c,b)→ arr a c combinator which allows us to express
recursive fix-point computations in which output values are fed back as input. For example

loop (arr (λ (a,b)→ (b,a : b)))

which is the same as

loop (arr snd &&& arr (uncurry (:)))

defines an Arrow that takes its input a and converts it into an infinite stream [a ] of it. Using
loop to our advantage gives us a first draft of a pipe implementation (Fig. 21) by plugging
in the parallel evaluation call evalN conf fs inside the second argument of &&& and then
only picking the first element of the resulting list with arr last.

However, using this definition directly will make the master node a potential bottleneck
in distributed environments as described in Section 5. Therefore, we introduce a more
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pipeSimple :: (ArrowLoop arr,ArrowLoopParallel arr a a conf )⇒
conf → [arr a a ]→ arr a a

pipeSimple conf fs =
loop (arr snd &&&

(arr (uncurry (:)>>> lazy)>>> loopParEvalN conf fs))>>>
arr last

Figure 21: Simple pipe skeleton. The use of lazy (Fig. C 8) is essential as without it programs
using this definition would never halt. We need to enforce that the evaluation of the input
[a ] terminates before passing it into evalN.

pipe :: (ArrowLoop arr,
ArrowLoopParallel arr (fut a) (fut a) conf ,

Future fut a conf )⇒
conf → [arr a a ]→ arr a a

pipe conf fs = unliftFut conf (pipeSimple conf (map (liftFut conf ) fs))

liftFut :: (Arrow arr,Future fut a conf ,Future fut b conf )⇒
conf → arr a b→ arr (fut a) (fut b)

liftFut conf f = get conf >>> f >>>put conf

unliftFut :: (Arrow arr,Future fut a conf ,Future fut b conf )⇒
conf → arr (fut a) (fut b)→ arr a b

unliftFut conf f = put conf >>> f >>>get conf

Figure 22: pipe skeleton definition with Futures.

sophisticated version that internally uses Futures and obtain the final definition of pipe in
Fig. 22.

Sometimes, this pipe definition can be a bit inconvenient, especially if we want to pipe
Arrows of mixed types together, i.e. arr a b and arr b c. By wrapping these two Arrows
inside a bigger Arrow arr (([a], [b]), [c]) (([a], [b]), [c]) suitable for pipe, we can define
pipe2 as in Fig. 23.

Extensive use of pipe2 over pipe with a hand-written combination data type will probably
result in worse performance because of more communication overhead from the many calls
to parEvalN inside of evalN. Nonetheless, we can define a parallel piping operator |>>> |,
which is semantically equivalent to >>> similarly to other parallel syntactic sugar from
Appendix D.

6.2.2 Ring skeleton

Eden comes with a ring skeleton10 (Fig. 24) implementation that allows the computation of
a function [i]→ [o] with a ring of nodes that communicate with each other. Its input is a
node function i→ r→ (o,r) in which r serves as the intermediary output that gets send to

10 Available on Hackage: https://hackage.haskell.org/package/edenskel-2.1.0.0/
docs/Control-Parallel-Eden-Topology.html

https://hackage.haskell.org/package/edenskel-2.1.0.0/docs/Control-Parallel-Eden-Topology.html
https://hackage.haskell.org/package/edenskel-2.1.0.0/docs/Control-Parallel-Eden-Topology.html
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pipe2 :: (ArrowLoop arr,ArrowChoice arr,
ArrowLoopParallel arr (fut (([a ], [b]), [c])) (fut (([a], [b ]), [c])) conf ,
Future fut (([a], [b ]), [c]) conf )⇒

conf → arr a b→ arr b c→ arr a c
pipe2 conf f g =

(arr return &&& arr (const [ ]))&&& arr (const [ ])>>>
pipe conf (replicate 2 (unify f g))>>>
arr snd>>>
arr head
where

unify :: (ArrowChoice arr)⇒
arr a b→ arr b c→ arr (([a], [b ]), [c]) (([a ], [b]), [c ])

unify f ′ g′ =
(mapArr f ′ ∗∗∗mapArr g′)∗∗∗arr (const [ ])>>>
arr (λ ((b,c),a)→ ((a,b),c))

(|>>> |) :: (ArrowLoop arr,ArrowChoice arr,
ArrowLoopParallel arr (fut (([a ], [b]), [c])) (fut (([a], [b]), [c])) (),
Future fut (([a], [b]), [c]) ())⇒
arr a b→ arr b c→ arr a c

(|>>> |) = pipe2 ()

Figure 23: Definition of pipe2 and (|>>> |), a parallel >>>.

Figure 24: ring skeleton depiction.

the neighbour of each node. This data is sent over direct communication channels, the so
called ‘remote data’. We depict it in Appendix, Fig. C 11.

We can rewrite this functionality easily with the use of loop as the definition of the node
function, arr (i,r) (o,r), after being transformed into an Arrow, already fits quite neatly
into loop’s signature: arr (a,b) (c,b)→ arr a c. In each iteration we start by rotating the
intermediary input from the nodes [fut r ] with second (rightRotate>>> lazy) (Fig. C 8).
Similarly to the pipe from Section 6.2.1 (Fig. 21), we have to feed the intermediary input
into our lazy (Fig. C 8) Arrow here, or the evaluation would fail to terminate. The reasoning
is explained by Loogen (2012) as a demand problem.

Next, we zip the resulting ([i], [fut r ]) to [(i, fut r)] with arr (uncurry zip). We then
feed this into our parallel Arrow arr [(i, fut r)] [(o, fut r)] obtained by transforming our
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ring :: (Future fut r conf ,
ArrowLoop arr,
ArrowLoopParallel arr (i, fut r) (o, fut r) conf ,
ArrowLoopParallel arr o o conf )⇒
conf → arr (i,r) (o,r)→ arr [i] [o ]

ring conf f =
loop (second (rightRotate>>> lazy)>>>

arr (uncurry zip)>>>
loopParEvalN conf (repeat (second (get conf )>>> f >>> second (put conf )))>>>
arr unzip)>>>

postLoopParEvalN conf (repeat (arr id))

Figure 25: ring skeleton definition.

Figure 26: torus skeleton depiction.

input Arrow f :: arr (i,r) (o,r) into arr (i, fut r) (o, fut r) before repeating and lifting it with
loopParEvalN. Finally we unzip the output list [(o, fut r)] list into ([o ], [fut r ]).

Plugging this Arrow arr ([i ], [fut r ]) ([o], fut r) into the definition of loop from earlier
gives us arr [i ] [o ], our ring Arrow (Fig. 25). To make sure this algorithm has speedup on
shared-memory machines as well, we pass the result of this Arrow to postLoopParEvalN conf (repeat (arr id)).
This combinator can, for example, be used to calculate the shortest paths in a graph using
Warshall’s algorithm.

6.2.3 Torus skeleton

If we take the concept of a ring from Section 6.2.2 one dimension further, we obtain a torus
skeleton (Fig. 26, 27). Every node sends and receives data from horizontal and vertical
neighbours in each communication round. With our Parallel Arrows we re-implement the
torus combinator11 from Eden—yet again with the help of the ArrowLoop type class.

Similar to the ring, we start by rotating the input (Fig. C 8), but this time not only in one
direction, but in two. This means that the intermediary input from the neighbour nodes has

11 Available on Hackage: https://hackage.haskell.org/package/edenskel-2.1.0.0/
docs/Control-Parallel-Eden-Topology.html.

https://hackage.haskell.org/package/edenskel-2.1.0.0/docs/Control-Parallel-Eden-Topology.html
https://hackage.haskell.org/package/edenskel-2.1.0.0/docs/Control-Parallel-Eden-Topology.html
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torus :: (Future fut a conf ,Future fut b conf ,
ArrowLoop arr,ArrowChoice arr,
ArrowLoopParallel arr (c, fut a, fut b) (d, fut a, fut b) conf ,
ArrowLoopParallel arr [d ] [d ] conf )⇒
conf → arr (c,a,b) (d,a,b)→ arr [[c]] [[d ]]

torus conf f =
loop (second ((mapArr rightRotate>>> lazy)∗∗∗ (arr rightRotate>>> lazy))>>>

arr (uncurry3 (zipWith3 lazyzip3))>>>
arr length &&& (shuffle>>> loopParEvalN conf (repeat (ptorus conf f )))>>>
arr (uncurry unshuffle)>>>
arr (map unzip3)>>>arr unzip3>>> threetotwo)>>>

postLoopParEvalN conf (repeat (arr id))

ptorus :: (Arrow arr,Future fut a conf ,Future fut b conf )⇒
conf →
arr (c,a,b) (d,a,b)→
arr (c, fut a, fut b) (d, fut a, fut b)

ptorus conf f =
arr (λ∼(c,a,b)→ (c,get conf a,get conf b))>>>
f >>>
arr (λ∼(d,a,b)→ (d,put conf a,put conf b))

Figure 27: torus skeleton definition. lazyzip3, uncurry3 and threetotwo definitions are in
Fig. C 9

.

to be stored in a tuple ([[fut a ]], [[fut b ]]) in the second argument (loop only allows for two
arguments) of our looped Arrow arr ([[c]],([[fut a ]], [[fut b]])) ([[d ]],([[fut a ]], [[fut b]]))
and our rotation Arrow becomes

second ((mapArr rightRotate>>> lazy)∗∗∗ (arr rightRotate>>> lazy))

instead of the singular rotation in the ring as we rotate [[fut a]] horizontally and [[fut b]]
vertically. Then, we zip the inputs for the input Arrow with

arr (uncurry3 zipWith3 lazyzip3)

from ([[c ]],([[fut a ]], [[fut b ]])) to [[(c, fut a, fut b)]], which we then evaluate in parallel.
This, however, is more complicated than in the ring case as we have one more dimension

of inputs that needs to be transformed. We first have to shuffle all the inputs to then pass them
into loopParEvalN conf (repeat (ptorus conf f )) to get an output of [(d, fut a, fut b)]. We
then unshuffle this list back to its original ordering by feeding it into arr (uncurry unshuffle)
which takes the input length we saved one step earlier as additional input to get a result
matrix [[[(d, fut a, fut b)]]. Finally, we unpack this matrix with arr (map unzip3)>>>
arr unzip3>>> threetotwo to get ([[d ]],([[fut a ]], [[fut b ]])).

This internal looping computation is once again fed into loop and we also compose a
final postLoopParEvalN conf (repeat (arr id)) for the same reasons as explained for the
ring skeleton.

As an example of using this skeleton, Loogen et al. (2003) showed the matrix multiplica-
tion using the Gentleman algorithm (1978). An adapted version can be found in Fig. 28. If
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type Matrix = [[Int ]]

prMM_torus :: Int→ Int→Matrix→Matrix→Matrix
prMM_torus numCores problemSizeVal m1 m2 =

combine $ torus () (mult torusSize)$ zipWith zip (split1 m1) (split2 m2)
where torusSize = (floor ◦ sqrt)$ fromIntegral $ numCoreCalc numCores

combine x = concat (map ((map (concat))◦ transpose) x)
split1 x = staggerHorizontally (splitMatrix (problemSizeVal ‘div‘ torusSize) x)
split2 x = staggerVertically (splitMatrix (problemSizeVal ‘div‘ torusSize) x)

-- Function performed by each worker
mult :: Int→ ((Matrix,Matrix), [Matrix ], [Matrix ])→ (Matrix, [Matrix ], [Matrix ])
mult size ((sm1,sm2),sm1s,sm2s) = (result, toRight, toBottom)

where toRight = take (size−1) (sm1 : sm1s)
toBottom = take (size−1) (sm2 : sm2s)
sms = zipWith prMM (sm1 : sm1s) (sm2 : sm2s)
result = foldl1′ matAdd sms

Figure 28: Adapted matrix multiplication in Eden using a the torus skeleton. prMM_torus is
the parallel matrix multiplication. mult is the function performed by each worker. prMM is
the sequential matrix multiplication in the chunks. splitMatrix splits the Matrix into chunks.
staggerHorizontally and staggerVertically pre-rotate the matrices. matAdd calculates A+B.
Omitted definitions can be found in C 13.
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Figure 29: Matrix multiplication with torus (PArrows).

we compare the trace from a call using our Arrow definition of the torus (Fig. 29) with the
Eden version (Fig. 30) we can see that the behaviour of the Arrow version and execution
times are comparable. We discuss further benchmarks on larger clusters in more detail in
the next section.
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Figure 30: Matrix multiplication with torus (Eden).

7 Performance results and discussion

The preceding section has shown that PArrows are expressive. This section evaluates the
performance overhead of this compositional abstraction in comparison to GpH and the Par
Monad on shared memory architectures and Eden on a distributed memory cluster. We
describe our measurement platform, the benchmark results – the shared-memory variants
(GpH, Par Monad and Eden CP) followed by Eden in a distributed memory setting, and
conclude that PArrows hold up in terms of performance when compared to the original
parallel Haskells.

7.1 Measurement platform

We start by explaining the hardware and software stack and outline the benchmark programs
and motivation for choosing them. We also shortly address hyper-threading and why we do
not use it in our benchmarks.

7.1.1 Hardware and software

The benchmarks are executed both in a shared and in a distributed memory setting using the
Glasgow GPG Beowulf cluster, consisting of 16 machines with 2 Intel R© Xeon R© E5-2640
v2 and 64 GB of DDR3 RAM each. Each processor has 8 cores and 16 (hyper-threaded)
threads with a base frequency of 2 GHz and a turbo frequency of 2.50 GHz. This results in a
total of 256 cores and 512 threads for the whole cluster. The operating system was Ubuntu
14.04 LTS with Kernel 3.19.0-33. Non-surprisingly, we found that hyper-threaded 32 cores
do not behave in the same manner as real 16 cores (numbers here for a single machine). We
disregarded the hyper-threading ability in most of the cases.
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Table 1: The benchmarks we use in this paper.

Name Area Type Origin Source

Rabin–Miller test Mathematics parMap+ reduce Eden Lobachev (2012)
Jacobi sum test Mathematics workpool+ reduce Eden Lobachev (2012)
Gentleman Mathematics torus Eden Loogen et al. (2003)
Sudoku Puzzle parMap Par Monad Marlow et al. (2011)19

Apart from Eden, all benchmarks and libraries were compiled with Stack’s12 lts-7.1 GHC
compiler which is equivalent to a standard GHC 8.0.1 with the base package in version
4.9.0.0. Stack itself was used in version 1.3.2. For GpH in its Multicore variant we used
the parallel package in version 3.2.1.013, while for the Par Monad we used monad-par in
version 0.3.4.814. For all Eden tests, we used its GHC-Eden compiler in version 7.8.215

together with OpenMPI 1.6.516.
Furthermore, all benchmarks were done with help of the bench17 tool in version 1.0.2

which uses criterion (>=1.1.1.0 && < 1.2)18 internally. All runtime data (mean runtime,
max stddev, etc.) was collected with this tool.

We used a single node with 16 real cores as a shared memory test-bed and the whole grid
with 256 real cores as a device to test our distributed memory software.

7.1.2 Benchmarks

We measure four benchmarks from different sources. Most of them are parallel mathematical
computations, initially implemented in Eden. Table 1 summarises.

Rabin–Miller test is a probabilistic primality test that iterates multiple (here: 32–256)
‘subtests’. Should a subtest fail, the input is definitely not a prime. If all n subtest pass, the
input is composite with the probability of 1/4n.

Jacobi sum test or APRCL is also a primality test, that however, guarantees the correctness
of the result. It is probabilistic in the sense that its run time is not certain. Unlike Rabin–
Miller test, the subtests of Jacobi sum test have very different durations. Lobachev (2011)
discusses some optimisations of parallel APRCL. Generic parallel implementations of
Rabin–Miller test and APRCL were presented in Lobachev (2012).

‘Gentleman’ is a standard Eden test program, developed for their torus skeleton. It
implements a Gentleman’s algorithm for parallel matrix multiplication (Gentleman, 1978).
We ported an Eden-based version (Loogen et al., 2003) to PArrows.

12 see https://www.haskellstack.org/
13 see https://hackage.haskell.org/package/parallel-3.2.1.0
14 see https://hackage.haskell.org/package/monad-par-0.3.4.8
15 see http://www.mathematik.uni-marburg.de/~eden/?content=build_eden_7_&navi=

build
16 see https://www.open-mpi.org/software/ompi/v1.6/
17 see https://hackage.haskell.org/package/bench
18 see https://hackage.haskell.org/package/criterion-1.1.1.0
19 actual code from: http://community.haskell.org/~simonmar/par-tutorial.pdf and

https://github.com/simonmar/parconc-examples

https://www.haskellstack.org/
https://hackage.haskell.org/package/parallel-3.2.1.0
https://hackage.haskell.org/package/monad-par-0.3.4.8
http://www.mathematik.uni-marburg.de/~eden/?content=build_eden_7_&navi=build
http://www.mathematik.uni-marburg.de/~eden/?content=build_eden_7_&navi=build
https://www.open-mpi.org/software/ompi/v1.6/
https://hackage.haskell.org/package/bench
https://hackage.haskell.org/package/criterion-1.1.1.0
http://community.haskell.org/~simonmar/par-tutorial.pdf
https://github.com/simonmar/parconc-examples
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A parallel Sudoku solver was used by Marlow et al. (2011) to compare Par Monad to
GpH, we ported it to PArrows.

7.1.3 What parallel Haskells run where

The Par monad and GpH – in its multicore version (Marlow et al., 2009) – can be executed
on shared memory machines only. Although GpH is available on distributed memory
clusters, and newer distributed memory Haskells such as HdpH exist, current support of
distributed memory in PArrows is limited to Eden. We used the MPI backend of Eden in a
distributed memory setting. However, for shared memory Eden features a ‘CP’ backend that
merely copies the memory blocks between disjoint heaps. In this mode, Eden still operates
in the ‘nothing shared’ setting, but is adapted better to multicore machines. We call this
version of Eden ‘Eden CP’.

7.1.4 Effect of hyper-threading

In preliminary tests, the PArrows version of Rabin–Miller test on a single node of the
Glasgow cluster showed almost linear speedup on up to 16 shared-memory cores (as
supplementary materials show). The speedup of 64-task PArrows/Eden at 16 real cores
version was 13.65 giving a parallel efficiency of 85.3%. However, if we increased the
number of requested cores to 32 – i.e. if we use hyper-threading on 16 real cores – the
speedup did not increase that well. It was merely 15.99 for 32 tasks with PArrows/Eden.
This was worse for other implementations. As for 64 tasks, we obtained a speedup of 16.12
with PArrows/Eden at 32 hyper-threaded cores and only 13.55 with PArrows/GpH.

While this shows that hyper-threading can be of benefit in scenarios similar to the ones
presented in the benchmarks, we only use real cores for the performance measurements in
Section 7.2 as the purpose of this paper is to show the performance of PArrows and not to
investigate parallel behaviour with hyper-threading.

7.2 Benchmark results

We compare the PArrow performance with direct implementations of the benchmarks in
Eden, GpH and the Par Monad. We start with the definition of mean overhead to compare
both PArrows-enabled and standard benchmark implementations. We continue comparing
speedups and overheads for the shared memory implementations and then study OpenMPI
variants of the Eden-enabled PArrows as a representative of a distributed memory backend.
We plot all speedup curves and all overhead values in the supplementary materials.

7.2.1 Defining overhead

We compare the mean overhead, i.e. the mean of relative wall-clock run time differences
between the PArrow and direct benchmark implementations executed multiple times with the
same settings. The error margins of the time measurements, supplied by criterion package20,
yield the error margin of the mean overhead.

20 https://hackage.haskell.org/package/criterion-1.1.1.0

https://hackage.haskell.org/package/criterion-1.1.1.0
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Quite often the zero value lies in the error margin of the mean overhead. This means that
even though we have measured some difference (against or even in favour of PArrows),
it could be merely the error margin of the measurement and the difference might not be
existent. We are mostly interested in the cases where above issue does not persist, we call
them significant. We often denote the error margin with ± after the mean overhead value.

7.2.2 Shared memory

Speedup. The Rabin–Miller test benchmark showed almost linear speedup for both 32
and 64 tasks, the performance is slightly better in the latter case: 13.7 at 16 cores for
input 211213−1 and 64 tasks in the best case scenario with Eden CP. The performance of
the Sudoku benchmark merely reaches a speedup of 9.19 (GpH), 8.78 (Par Monad), 8.14
(Eden CP) for 16 cores and 1000 Sudokus. In contrast to Rabin–Miller, here the GpH seems
to be the best of all, while Rabin–Miller profited most from Eden CP (i.e. Eden with direct
memory copy) implementation of PArrows. Gentleman on shared memory has a plummeting
speedup curve with GpH and Par Monad and logarithmically increasing speedup for the
Eden-based version. The latter reached a speedup of 6.56 at 16 cores.

Overhead. For the shared memory Rabin–Miller test benchmark, implemented with
PArrows using Eden CP, GpH, and Par Monad, the overhead values are within single
percents range, but also negative overhead (i.e. PArrows are better) and larger error margins
happen. To give a few examples, the overhead for Eden CP with input value 211213−1, 32
tasks, and 16 cores is 1.5%, but the error margin is around 5.2%! Same implementation
in the same setting with 64 tasks reaches −0.2% overhead, PArrows apparently fare better
than Eden – but the error margin of 1.9% disallows this interpretation. We focus now on
significant overhead values. To name a few: 0.41% ±7 ·10−2% for Eden CP and 64 tasks
at 4 cores; 4.7% ±0.72% for GpH, 32 tasks, 8 cores; 0.34% ±0.31% for Par Monad at 4
cores with 64 tasks. The worst significant overhead was in case of GpH with 8% ±6.9%
at 16 cores with 32 tasks and input value 211213−1. In other words, we notice no major
slow-down through PArrows here.

For Sudoku the situation is slightly different. There is a minimal significant (−1.4% ±
1.2% at 8 cores) speed improvement with PArrows Eden CP version when compared
with the base Eden CP benchmark. However, with increasing number of cores the error
margin reaches zero again: −1.6% ±5.0% at 16 cores. The Par Monad shows a similar
development, e.g. with −1.95% ± 0.64% at 8 cores. The GpH version shows both a
significant speed improvement of −4.2% ±0.26% (for 16 cores) with PArrows and a minor
overhead of 0.87% ±0.70% (4 cores).

The Gentleman multiplication with Eden CP shows a minor significant overhead of
2.6% ±1.0% at 8 cores and an insignificant improvement at 16 cores. Summarising, we
observe a low (if significant at all) overhead, induced by PArrows in the shared memory
setting.
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7.2.3 Distributed memory

Speedup. The speedup of distributed memory Rabin–Miller benchmark with PArrows and
Eden showed an almost linear speedup excepting around 192 cores where an unfortunate
task distribution reduces performance. As seen in Fig. 31, we reached a speedup of 213.4
with PArrrows at 256 cores (vs. 207.7 with pure Eden). Because of memory limitations,
the speedup of Jacobi sum test for large inputs (such as 24253−1) could be measured only
in a massively distributed setting. PArrows improved there from 9193 s (at 128 cores) to
1649 s (at 256 cores). A scaled-down version with input 23217−1 stagnates the speedup at
about 11 for both PArrows and Eden for more than 64 cores. There is apparently not enough
work for that many cores. The Gentleman test with input 4096 had an almost linear speedup
first, then plummeted between 128 and 224 cores, and recovered at 256 cores with speedup
of 129.
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Figure 31: Speedup of the distributed Rabin–Miller test benchmark using PArrows with
Eden.

Overhead. We use our mean overhead quality measure and the notion of significance
also for distributed memory benchmarks. The mean overhead of Rabin-Miller test in the
distributed memory setting ranges from 0.29% to −2.8% (last value in favour of PArrows),
but these values are not significant with error margins ±0.8% and ±2.9% correspondingly.
A sole significant (by a very low margin) overhead is 0.35% ± 0.33% at 64 cores. We
measured the mean overhead for Jacobi benchmark for an input of 23217−1 for up to 256
cores. We reach the flattering value −3.8% ±0.93% at 16 cores in favour of PArrows, it
was the sole significant overhead value. The value for 256 cores was 0.31% ±0.39%. Mean
overhead for distributed Gentleman multiplication was also low. Significant values include



ZU064-05-FPR main 31st January 2018 14:34

30 M. Braun, O. Lobachev, and P. Trinder

Table 2: Overhead in the shared memory benchmarks. Bold marks values in favour of
PArrows.

Benchmark Base
Mean of

mean
overheads

Maximum
normalised

stdDev

Runtime for
16 cores (s)

Sudoku 1000
Eden CP -2.1% 5.1% 1.17

GpH -0.82% 0.7% 1.11
Par Monad -1.3% 2.1% 1.14

Gentleman 512 Eden CP 0.81% 6.8% 1.66

Rabin–Miller test 11213 32
Eden CP 0.79% 5.2% 5.16

GpH 3.5% 6.9% 5.28
Par Monad -2.5% 19.0% 5.84

Rabin–Miller test 11213 64
Eden CP 0.21% 1.9% 10.3

GpH 1.6% 1.3% 10.6
Par Monad -4.0% 17.0% 11.4

1.23% ±1.20% at 64 cores and 2.4% ±0.97% at 256 cores. It took PArrows 64.2 seconds
at 256 cores to complete the benchmark.

Similar to the shared memory setting, PArrows only imply a very low penalty with
distributed memory that lies in lower single-percent digits at most.

7.3 Discussion

PArrows performed in our benchmarks with little to no overhead. Tables 2 and 3 clarify this
once more: The PArrows-enabled versions trade blows with their vanilla counterparts when
comparing the means over all cores of the mean overheads. If we combine these findings
with the usability of our DSL, the minor overhead induced by PArrows is outweighed by
their convenience and usefulness to the user.

PArrows are an extendable formalism, they can be easily ported to further parallel
Haskells while still maintaining interchangeability. It is straightforward to provide further
implementations of algorithmic skeletons in PArrows.
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Table 3: Overhead in the distributed memory benchmarks. Bold marks values in favour of
PArrows.

Benchmark Base
Mean of

mean
overheads

Maximum
normalised

stdDev

Runtime for
256 cores (s)

Gentleman 4096 Eden 0.67% 1.5% 110.0

Rabin–Miller test 44497 256 Eden -0.5% 2.9% 165.0

Jacobi sum test 3217 Eden -0.74% 1.6% 635.0

8 Conclusion

Arrows are a generic concept that allows for powerful composition combinators. To our
knowledge we are first to represent parallel computation with Arrows, and hence to show
their usefulness for composing parallel programs. We have shown that for a generic and
extensible parallel Haskell, we do not have to restrict ourselves to a monadic interface.
We argue that Arrows are better suited to parallelise pure functions than Monads, as the
functions are already Arrows and can be used directly in our DSL. Arrows are a better fit to
parallelise pure code than a monadic solution as regular functions are already Arrows and
can be used with our DSL in a more natural way. We use a non-monadic interface (similar
to Eden or GpH) and retain composability. The DSL allows for a direct parallelisation of
monadic code via the Kleisli type and additionally allows to parallelise any Arrow type
that has an instance for ArrowChoice. (Some skeletons require an additional ArrowLoop
instance.)

We have demonstrated the generality of the approach by exhibiting PArrow implementa-
tions for Eden, GpH, and the Par Monad. Hence, parallel programs can be ported between
task parallel Haskell implementations with little or no effort. We are confident that it will
be straightforward to add other task-parallel Haskells. In other words, PArrows greatly
increase portability of parallel Haskell programs. Our measurements of four benchmarks
on both shared and distributed memory platforms shows that the generality and portability
of PArrows has very low performance overheads, i.e. never more than 8% ± 6.9% and
typically under 2%.

8.1 Future work

Our PArrows DSL can be expanded to other task parallel Haskells, and a specific target
is HdpH (Maier et al., 2014). Further Future-aware versions of Arrow combinators can
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be defined. Existing combinators could also be improved, for example more specialised
versions of >>> and ∗∗∗ combinators are viable.

In ongoing work we are expanding both our skeleton library and the number of skeleton-
based parallel programs that use our DSL. It would also be interesting to see a hybrid of
PArrows and Accelerate (McDonell et al., 2015). Ports of our approach to other languages
such as Frege, Eta, or Java directly are at an early development stage.
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A Utility Arrows

Following are definitions of some utility Arrows used in this paper that have been left out
for brevity. We start with the second combinator from Hughes (2000), which is a mirrored
version of first, which is for example used in the definition of ∗∗∗:

second :: Arrow arr⇒ arr a b→ arr (c,a) (c,b)
second f = arr swap>>>first f >>>arr swap

where swap (x,y) = (y,x)
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Next, we give the definition of evalN which also helps us to define map, and zipWith on
Arrows. The evalN combinator in Fig. A 1 converts a list of Arrows [arr a b ] into an Arrow
arr [a ] [b ].

evalN :: (ArrowChoice arr)⇒ [arr a b ]→ arr [a] [b ]
evalN (f : fs) = arr listcase>>>

arr (const [ ]) ||| (f ∗∗∗ evalN fs>>>arr (uncurry (:)))
where listcase [ ] = Left ()

listcase (x : xs) = Right (x,xs)
evalN [ ] = arr (const [ ])

Figure A 1: The definition of evalN

The mapArr combinator (Fig. A 2) lifts any Arrow arr a b to an Arrow arr [a] [b]. The
original inspiration was from Hughes (2005), but the definition as then unified with evalN.

mapArr :: ArrowChoice arr⇒ arr a b→ arr [a] [b]
mapArr = evalN ◦ repeat

Figure A 2: The definition of map over Arrows.

Finally, with the help of mapArr (Fig. A 2), we can define zipWithArr (Fig. A 3) that lifts
any Arrow arr (a,b) c to an Arrow arr ([a ], [b]) [c].

zipWithArr :: ArrowChoice arr⇒ arr (a,b) c→ arr ([a], [b ]) [c ]
zipWithArr f = (arr (λ (as,bs)→ zipWith (,) as bs))>>>mapArr f

Figure A 3: zipWith over Arrows.

These combinators make use of the ArrowChoice type class which provides the |||
combinator. It takes two Arrows arr a c and arr b c and combines them into a new Arrow
arr (Either a b) c which pipes all Left a’s to the first Arrow and all Right b’s to the second
Arrow:

(|||) :: ArrowChoice arr a c→ arr b c→ arr (Either a b) c

B Profunctor Arrows

In Fig. B 1 we show how specific Profunctors can be turned into Arrows. This works because
Arrows are strong Monads in the bicategory Prof of Profunctors as shown by Asada (2010).
In Standard GHC (>>>) has the type (>>>) :: Category cat⇒ cat a b→ cat b c→ cat a c
and is therefore not part of the Arrow type class like presented in this paper.21

21 For additional information on the type classes used, see: https://hackage.haskell.
org/package/profunctors-5.2.1/docs/Data-Profunctor.html and https://hackage.
haskell.org/package/base-4.9.1.0/docs/Control-Category.html.

https://hackage.haskell.org/package/profunctors-5.2.1/docs/Data-Profunctor.html
https://hackage.haskell.org/package/profunctors-5.2.1/docs/Data-Profunctor.html
https://hackage.haskell.org/package/base-4.9.1.0/docs/Control-Category.html
https://hackage.haskell.org/package/base-4.9.1.0/docs/Control-Category.html
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instance (Category p,Strong p)⇒ Arrow p where
arr f = dimap id f id
first = first′

instance (Category p,Strong p,Costrong p)⇒ ArrowLoop p where
loop = loop′

instance (Category p,Strong p,Choice p)⇒ ArrowChoice p where
left = left′

Figure B 1: Profunctors as Arrows.

C Additional function definitions

We have omitted some function definitions in the main text for brevity, and redeem this here.
We begin with warping Eden’s build-in RemoteData to Future in Figure C 1

data RemoteData a = RD {rd :: RD a}
put′ :: (Arrow arr)⇒ arr a (BasicFuture a)
put′ = arr BF

get′ :: (Arrow arr)⇒ arr (BasicFuture a) a
get′ = arr (λ (∼(BF a))→ a)

instance NFData (RemoteData a) where
rnf = rnf ◦ rd

instance Trans (RemoteData a)

instance (Trans a)⇒ Future RemoteData a Conf where
put = put′

get = get′

instance (Trans a)⇒ Future RemoteData a () where
put = put′

get = get′

Figure C 1: RD-based RemoteData version of Future for the Eden backend.

Next, we have the definition of BasicFuture in Fig. C 2 and the corresponding Future
instances.

Figures C 3–C 6 show the definitions and a visualisations of two parallel map variants,
defined using parEvalN and its lazy counterpart.

Arrow versions of Eden’s shuffle, unshuffle and the definition of takeEach are in Fig-
ure C 7. Similarly, Figure C 8 contains the definition of Arrow versions of Eden’s lazy
and rightRotate utility functions. Fig. C 9 contains Eden’s definition of lazyzip3 together
with the utility functions uncurry3 and threetotwo. The full definition of farmChunk is in
Figure C 10. Eden definition of ring skeleton is in Figure C 11. It follows Loogen (2012).

The parEval2 skeleton is defined in Figure C 12. We start by transforming the (a,c) input
into a two-element list [Either a c] by first tagging the two inputs with Left and Right and
wrapping the right element in a singleton list with return so that we can combine them with
arr (uncurry (:)). Next, we feed this list into a parallel Arrow running on two instances of
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data BasicFuture a = BF a

put′ :: (Arrow arr)⇒ arr a (BasicFuture a)
put′ = arr BF

get′ :: (Arrow arr)⇒ arr (BasicFuture a) a
get′ = arr (λ (∼(BF a))→ a)

instance NFData a⇒ NFData (BasicFuture a) where
rnf (BF a) = rnf a

instance Future BasicFuture a (Conf a) where
put = put′

get = get′

instance Future BasicFuture a () where
put = put′

get = get′

Figure C 2: BasicFuture type and its Future instance for the Par Monad and GpH.

Figure C 3: parMap depiction.

parMap :: (ArrowParallel arr a b conf )⇒ conf → (arr a b)→ (arr [a ] [b ])
parMap conf f = parEvalN conf (repeat f )

Figure C 4: Definition of parMap.

Figure C 5: parMapStream depiction.

parMapStream :: (ArrowParallel arr a b conf ,ArrowChoice arr,ArrowApply arr)⇒
conf → ChunkSize→ arr a b→ arr [a] [b]

parMapStream conf chunkSize f = parEvalNLazy conf chunkSize (repeat f )

Figure C 6: parMapStream definition.

f +++g as described in the paper. After the calculation is finished, we convert the resulting
[Either b d ] into ([b], [d ]) with arr partitionEithers. The two lists in this tuple contain only
one element each by construction, so we can finally just convert the tuple to (b,d) in the last
step. Furthermore, Fig. C 13 contains the omitted definitions of prMM (sequential matrix
multiplication), splitMatrix (which splits the a matrix into chunks), staggerHorizontally
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shuffle :: (Arrow arr)⇒ arr [[a]] [a]
shuffle = arr (concat ◦ transpose)

unshuffle :: (Arrow arr)⇒ Int→ arr [a] [[a]]
unshuffle n = arr (λxs→ [takeEach n (drop i xs) | i← [0 . .n−1]])

takeEach :: Int→ [a]→ [a]
takeEach n [ ] = [ ]
takeEach n (x : xs) = x : takeEach n (drop (n−1) xs)

Figure C 7: shuffle, unshuffle, takeEach definition.

lazy :: (Arrow arr)⇒ arr [a ] [a ]
lazy = arr (λ∼(x : xs)→ x : lazy xs)

rightRotate :: (Arrow arr)⇒ arr [a] [a]
rightRotate = arr $ λ list→ case list of

[ ]→ [ ]
xs→ last xs : init xs

Figure C 8: lazy and rightRotate definitions.

and staggerVertically (to pre-rotate the matrices), and lastly matAdd, that calculates A+B
for two matrices A and B.

D Syntactic sugar

Finally, we also give the definitions for some syntactic sugar for PArrows, namely |∗∗∗| and
|&&&|. For basic Arrows, we have the ∗∗∗ combinator (Fig. 3) which allows us to combine
two Arrows arr a b and arr c d into an Arrow arr (a,c) (b,d) which does both computations
at once. This can easily be translated into a parallel version |∗∗∗| with the use of parEval2,
but for this we require a backend which has an implementation that does not require any
configuration (hence the () as the conf parameter):

(|∗∗∗|) :: (ArrowChoice arr,ArrowParallel arr (Either a c) (Either b d) ()))⇒
arr a b→ arr c d→ arr (a,c) (b,d)

(|∗∗∗|) = parEval2 ()

We define the parallel |&&&| in a similar manner to its sequential pendant &&& (Fig. 3):

(|&&&|) :: (ArrowChoice arr,ArrowParallel arr (Either a a) (Either b c) ())⇒
arr a b→ arr a c→ arr a (b,c)

(|&&&|) f g = (arr $ λa→ (a,a))>>> f |∗∗∗|g
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lazyzip3 :: [a]→ [b]→ [c]→ [(a,b,c)]
lazyzip3 as bs cs = zip3 as (lazy bs) (lazy cs)

uncurry3 :: (a→ b→ c→ d)→ (a,(b,c))→ d
uncurry3 f (a,(b,c)) = f a b c

threetotwo :: (Arrow arr)⇒ arr (a,b,c) (a,(b,c))
threetotwo = arr $ λ∼(a,b,c)→ (a,(b,c))

Figure C 9: lazyzip3, uncurry3 and threetotwo definitions.

farmChunk :: (ArrowParallel arr a b conf ,ArrowParallel arr [a] [b] conf ,
ArrowChoice arr,ArrowApply arr)⇒
conf → ChunkSize→ NumCores→ arr a b→ arr [a ] [b ]

farmChunk conf chunkSize numCores f =
unshuffle numCores>>>
parEvalNLazy conf chunkSize (repeat (mapArr f ))>>>
shuffle

Figure C 10: farmChunk definition.

ringSimple :: (Trans i,Trans o,Trans r)⇒ (i→ r→ (o,r))→ [i ]→ [o]
ringSimple f is = os

where (os,ringOuts) = unzip (parMap (toRD $ uncurry f ) (zip is $ lazy ringIns))
ringIns = rightRotate ringOuts

toRD :: (Trans i,Trans o,Trans r)⇒ ((i,r)→ (o,r))→ ((i,RD r)→ (o,RD r))
toRD f (i,ringIn) = (o,release ringOut)

where (o,ringOut) = f (i, fetch ringIn)

rightRotate :: [a]→ [a]
rightRotate [ ] = [ ]
rightRotate xs = last xs : init xs

lazy :: [a]→ [a ]
lazy∼(x : xs) = x : lazy xs

Figure C 11: Eden’s definition of the ring skeleton.

parEval2 :: (ArrowChoice arr,
ArrowParallel arr (Either a c) (Either b d) conf )⇒
conf → arr a b→ arr c d→ arr (a,c) (b,d)

parEval2 conf f g =
arr Left ∗∗∗ (arr Right>>>arr return)>>>
arr (uncurry (:))>>>
parEvalN conf (replicate 2 (f +++g))>>>
arr partitionEithers>>>
arr head ∗∗∗arr head

Figure C 12: parEval2 definition.
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prMM :: Matrix→Matrix→Matrix
prMM m1 m2 = prMMTr m1 (transpose m2)

where
prMMTr m1′ m2′ = [[sum (zipWith (∗) row col) | col← m2′ ] | row← m1′ ]

splitMatrix :: Int→Matrix→ [[Matrix ]]
splitMatrix size matrix = map (transpose◦map (chunksOf size))$ chunksOf size $ matrix

staggerHorizontally :: [[a]]→ [[a]]
staggerHorizontally matrix = zipWith leftRotate [0 . .] matrix

staggerVertically :: [[a]]→ [[a]]
staggerVertically matrix = transpose $ zipWith leftRotate [0 . .] (transpose matrix)

leftRotate :: Int→ [a]→ [a]
leftRotate i xs = xs2++ xs1 where

(xs1,xs2) = splitAt i xs

matAdd = chunksOf (dimX x)$ zipWith (+) (concat x) (concat y)

Figure C 13: prMMTr, splitMatrix, staggerHorizontally, staggerVertically and matAdd
definition.
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