
Human-Computer Interaction Using
Robust Gesture Recognition

Matthias Endler Oleg Lobachev Michael Guthe

University Bayreuth, 95447 Bayreuth, Germany

ABSTRACT
We present a detector cascade for robust real-time tracking of hand movements on consumer-level hardware. We
adapt existing detectors to our setting: Haar, CAMSHIFT, shape detector, skin detector. We use all these detectors
at once. Our main contributions are: first, utilization of bootstrapping: Haar bootstraps itself, then its results are
used to bootstrap the other filters; second, the usage of temporal filtering for more robust detection and to remove
outliers; third, we adapted the detectors for more robust hand detection. The resulting system produces very robust
results in real time. We evaluate both the robustness and the real-time capability.

Keywords
human-computer interaction, gesture recognition, computer vision, hand tracking

Figure 1: Hand detection and tracling. From left to right: overview of the setup; input frame with Haar-detected
bounding box, CAMSHIFT-fitted-ellipse, and bootstrapped-Shape-bounding box; Haar bootstrapping (only once
during initialization); final result with hand tracked and fingers counted, used to control applications.

1 INTRODUCTION

Robust, gesture based device control enables a plethora
of possibilities to simplify our everyday life, as ges-
tures are an important natural form of human expression.
Gestures are a natural part of human interaction. With
intrinsic form of communication for human-machine
interaction one could intuitively control various devices.

A popular approach in gesture recognition is using spe-
cial hardware. Gesture recognition was always highly
motivated by gaming applications. One of the most
prominent examples include Microsoft Kinect that uti-
lizes depth-mapping to augment the vision process. In
a contrast to such approaches, we utilize unaugmented
live 2D input from a webcam. Our goal is to combine

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

multiple gesture detection methods in a stable pipeline
to achieve robustness and real-time capability.
This work focuses on hand movement. Our system falls
in the category of dynamic action recognition – we con-
sider the temporal aspect. However, before we can com-
pute the hand movement, we need to secure that the
object we are tracking is indeed user’s hand.
We do not apply machine learning techniques, but com-
bine and augment known gesture detection algorithms.
Each method receives input frames and returns a de-
tected shape (in some form) and a confidence level.
These results are combined to maximize performance.
We use the Haar classifier [11, 18], CAMSHIFT [5],
Shape [4], and Skin [13, 16]. An overview is shown in
Figure 1. To further increase the performance we have
modified the algorithms, as detailed below.
Some of these algorithms (we denote detectors or fil-
ters from now on) require prior training. We solve the
problem with bootstrapping. As soon as the simplest de-
tector produces results with sufficient confidence, these
are used to train the more sophisticated detectors. This
is an iterative process, that nevertheless completes quite
fast and does not interfere with the actual interaction
session. The ‘filter cascade’ allows us to execute the

final training on the actual data, hence no discrepancy
arises between the training and interaction data sets.
The contributions of this paper include: An iterative
bootstrapping approach to supply the filters with re-
quired initial data, basing on the same data stream the
detection will subsequently operate; Modifications of
the detector algorithms to optimize their performance
for hand detection; Evaluation of the resulting software,
especially in terms of real-time capability and robustness
of the detection process.

2 RELATED WORK
Directly related to our approach is gesture recognition
in games, like the Microsoft Kinect [20], however the
Kinect uses additional depth information that we do not
utilize. Wang et al. [19] compared various classifier com-
binations for hand gesture recognition. Their input was
acquired with two cameras, we use only one webcam; in
a further contrast we operate on the live webcam stream
and continuously apply some temporal predicates.
We agree with the general state of the art (e.g. [15]) on
the segmentation of the hand, however, we use a com-
bination of various methods like Viola–Jones classifier
[18] (from now on called Haar) and the CAMSHIFT al-
gorithm [5] instead of their phases two and three of [15].
The advances in sign language recognition [1, 3, 9] are
less relevant to us, as for these approaches two hand
gestures need to be recognized; hand positions relatively
to each other and to the face matter. Varying languages
are a further difficulty level.
We refer to two surveys [8, 14] of recognition and track-
ing methods. Quite related to our work are various
keypoint and feature detection algorithms [2, 10, 12].
A recent comparison of binary features is [7]. Vezh-
nevets et al. [17] survey early skin detection methods.
Similar to many others we also use the HSV color space.
Tripathi et al. [16] use YCbCr color model. Our Skin
reimplements Pulkit and Atsuo [13].

3 FILTERS
Our system consists of several image filters used as
hand detectors. We divide the detectors into position
and the feature cascades. Our approach combines multi-
ple detectors: Haar, CAMSHIFT, Shape, and Skin, an
overview is in Figure 2. The first cascade is responsible
for obtaining the location of a hand in an image, the sec-
ond exposes hand features in a given area of an image.
It requires the data from the first, position cascade to
function properly. Even further, the CAMSHIFT and
Shape filters from the position cascade are bootstrapped
using the data from the Haar filter. Here we describe the
separate filters, Section 4 discusses their combination.
Our Haar filter was introduced as Viola–Jones cascade-
classifier [18], with further extensions (e.g. rotation)
[11]. It produces a magnitude of features, similar to Haar

Position cascade

Feature cascade

Input

Haar

CAMSHIFT Shape

Skin BG

Output

Figure 2: A schematic representation of our approach.
First cascade filters provide information to second cas-
cade. Background subtraction (BG) is future work.

bases and then utilizes AdaBoost [6] to select the few
meaningful specimen. Haar combines multiple weak
classifiers to a stronger one [11]. The cascade of classi-
fiers is a chain, where each classifier detects almost all
positive features and removes a significant part of nega-
tive features – each classifier removes a different kind of
negative features, thus the chain yields highly accurate
results. Haar is typically used for face recognition, the
detection rate for frontal faces can be as high as 98%.
While we also used it to eliminate the face in the input
image in the pre-processing stage, our critical usage of
Haar stems on a training set with hand images.

Continuously Adaptive Mean-Shift (CAMSHIFT) [5]
basically computes a hue histogram of the tracked area
and, in the new frame, shifts the tracked area based on
probabilities of the pixels to be part of the tracked area.
The shift goes to the center of gravity of most probable
pixels. Then the histogram is updated. CAMSHIFT
requires the initial area to track. We basically use the
part of the image for that Haar is confident enough and
track it not merely with Haar, but also with CAMSHIFT
and Shape, see Section 4 for details.

A further (very popular) filter is template matching [4].
Given an base image (the haystack) and a smaller tem-
plate image of size w× h, (the needle), we compare
patches of size w×h with the template image, the nee-
dle appears at the patch position with the maximum
value. Our Shape filter detects the hand position in this
manner. We utilize only the red channel and use the
normalized cross-correlation metric. The shape of the
hand is obtained from the Haar filter.

A single skin color model can be successfully used for
most human beings in HSV color space [5]. The hue
value won’t vary much, only the saturation needs to be
adjusted individually. We adjusted saturation and bright-
ness for the varying real-life lightning configurations,
our Skin detector utilizes these data.

4 TRACKING SYSTEM
We aim for a real-time capable system that is very robust
in terms of detection performance and is easily usable

as a software component in larger applications. The
system should work without the need for long calibration
steps, it should be platform independent and mostly
unobtrusive. After our system has registered the gesture,
an action is triggered.

Given an average frame rate of 24 fps, a calculation
time of about 40 ms sets a challenging boundary. Even
more, as delays would dramatically affect user experi-
ence. We optimized the code for real-time usage. The
number of false positives needs to be kept to a minimum.
Extensibility is also required. We used a modular plu-
gin system for the detection algorithms and a high-level
scripting language (Python) with the highly optimized
C++ library OpenCV.

All filters were adjusted to improve hand detection. Haar
has proven very robust in our tests, we use it to detect the
initial hand position. During early tests, we experienced
many false-positives with a face. Therefore, a cascade
trained on frontal and profile faces was used to remove
the face in the image (if any), improving the hand detec-
tion rate significantly. We further use two separate hand
cascades. One detects open hands and the other one
fists. All three cascades run inside one detector. Haar
often detects the same object at slightly different posi-
tions, called neighbors. The more neighbors, the more
likely is the correct detection. We dynamically adjust
the minimum number of neighbors to retain a candidate.

Haar performs very good on simple, plain-colored back-
grounds, but it falls short on complex backgrounds
and in difficult lighting conditions. It is quite vul-
nerable to hand rotations. CAMSHIFT can adapt to
changing brightness and hand rotation with backprojec-
tion. It provides stable results for complex backgrounds.
CAMSHIFT is prone to errors, when other skin-colored
objects (e.g. the face) are visible. Shape shows a similar
behavior: Our modification made it agnostic to lightning.
Like Haar, it won’t detect tilted hands. To compensate
for varying light conditions, Haar and Shape work on
normalized grayscale images; CAMSHIFT and Skin
filter operate in HSV.

We assume that the bounding boxes of the hand in two
consecutive frames need to overlap. We use a memory
buffer for a few previous detected hand positions for
each filter and discard outliers. This approach facilitates
a temporal link between separate frames.

CAMSHIFT and Shape are bootstrapped with data from
Haar filter. Haar bootstraps itself – we use an initial cali-
bration phase when the hand is not moved. The consec-
utive bounding boxes, detected by Haar should overlap
(see Figure 1). Such bootstrapping functions surpris-
ingly good and is one of the novelties of our approach.
Haar uses cascade data, pre-trained for hand detection,
but Haar is not training its cascades on the hand of the
user! Just holding the hand in front of the webcam for
few seconds suffices to produce then confident results

with Haar. The hand region is passed to CAMSHIFT
and Shape, so they can perform the tracking. In other
words, with our bootstrapping technique we are able to
track not some hand, but exactly the hand of the current
user. This ensures fast and consistent operation.

5 RESULTS
We evaluate both the robustness and the real-time capa-
bility of our implementation. We use a MacBook Pro
with a 2.4 GHz Intel Core 2 Duo, 4 GB of RAM and its
integrated camera, Python 2.7, and OpenCV 2.4.6.

We test our system in various repeatable conditions
of different ‘difficulty grade.‘We recorded our typi-
cal gestures in various light conditions, with varying
complexity of the background and at various speed
of gesturing. The videos are publicly available un-
der http://bit.ly/R6Owu6. The background complexity
varies between simple background, skin-colored back-
ground, complex background, and mirroring. For the
tests below we used two gestures: ’Exposé’ and ‘Move.’
Table 1 presents the assessment. We saw a good perfor-
mance almost everywhere; underexposure and highly
specular background were expectantly problematic.

Background Lighting conditions Gesture Speed Result

1 Simple Normal Exposé Slow +
2 Simple Normal Exposé Fast +
3 Simple Overexp. Move Slow +1

4 Simple Overexp. Exposé Slow +
5 Simple Underexp. Exposé Slow +
6 Skin-colored Underexp. (Noise) Exposé Fast +2

7 Moving Changing Exposé Slow +
8 Reflections Underexp. Exposé Fast +2

9 Reflections Underexp. Move Slow −3

10 Reflections Normal Move Slow +1,2

Table 1: Results of the robustness evaluation.

The real-time capability was achieved. In our visual
tests, the system worked fluidly, at significantly faster-
than-normal frame rate. We noticed no disturbance when
the system was working on live video feed. We used
the machine’s integrated camera and also experimented
with an external webcam. The video was sampled at 24
frames per second.

We have benchmarked a typical video sequence for a
drag and drop ‘Move’ gesture (video #3 from above);
the results are shown in Table 2. This table serves as
a quantifiable comparison of our method and existing
work: how would the filters perform solely? We observe
that all filters are highly real-time capable.

Combining the worst case timings of all filters, we theo-
retically achieve at least 18 fps on a quite dated machine

1 With prior bootstrapping.
2 After some tweaking.
3 Haar did not correctly identify the hand.

Filter
Frames per second

mean median variance min.

Haar 107.74 109.98 331.46 60.51
CAMSHIFT 394.4 403.9 1402.99 161.5
Shape 125.62 130.11 198.81 36.98
Skin 774.4 732.5 48210.8 157.7

Table 2: Benchmark results. We show the hypothetical
frame per second rate for each filter, if executed solely.

using a single threaded implementation. Note that the
actual minimum frame rate is even higher (45 fps), so
the method is definitively real-time capable.

6 CONCLUSION
We have presented a new combination of several detec-
tors for the robust, real-time hand gesture recognition.
We have modified and adapted multiple methods from
computer vision: Haar, CAMSHIFT, Shape, and Skin
filters. They are typically used for face detection, but we
adapted them to hand recognition. We have composed
them into a working and robust system. Our contribution
includes: Chaining the filters into two cascades: one for
position detection and one for the shape of the hand;
Temporal heuristics and position consensus remove de-
tection outliers, thus improving robustness. Our system
has a short-time memory. All filters need to agree on the
roughly the same area, a complete outlier is discarded;
The filters are bootstrapped, hence we always operate
on recent and relevant data.

The bootstrapping is an important trait of our system.
Most filters require some initial images to track and/or
compare with. We iterate one filter until it reaches suf-
ficient confidence levels and then use the successfully
detected hand position as input for the further, advanced
filters. Such a technique proves to be very stable, as
it adapts the whole chain to the particularities of the
current user (hand shape, hand size, skin color, etc.) and
the current setting (e.g. background, light conditions,
white balance). This also increases the robustness.

Our system works with a stock webcam on an inexpen-
sive consumer computer hardware. The average filter
performance was well real-time on a quite outdated ma-
chine. One important future goal is to port our software
to systems with little processing power (such as embed-
ded devices or smartphones). With background subtrac-
tion we would be able to to reduce the search window
and hence to achieve better performance. Threading
would greatly improve the real-time performance by
executing independent filters in parallel.

A crucial issue is the minimization of false positives. We
have already improved this point, but it would be possi-
ble to improve even more. On that account, we want to
implement more heuristics and algorithms, which help

the system track hands despite the occlusion. Of course,
simply detecting more gestures is also important.

7 REFERENCES
[1] O. Aran, T. Burger, L. Akarun, and A. Caplier. Gestural in-

terfaces for hearing-impaired communication. In D. Tzovaras,
editor, Multimodal User Interfaces, pages 219–250. 2008.

[2] H. Bay, T. Tuytelaars, and L. Gool. SURF: Speeded up robust
features. In ECCV ’06, LNCS 3951, pages 404–417. Springer,
2006.

[3] B. C. Bedregal, A. C. R. Costa, and G. P. Dimuro. Fuzzy rule-
based hand gesture recognition. In Artificial Intelligence in
Theory and Practice, IFIP 217, pages 285–294. Springer US,
2006.

[4] S. Belongie, J. Malik, and J. Puzicha. Shape matching and ob-
ject recognition using shape contexts. IEEE T. Pattern. Anal.,
24(4):509–522, 2002.

[5] G. R. Bradski. Computer vision face tracking for use in a
perceptual user interface. Intel Technology Journal, (Q2), 1998.

[6] Y. Freund and R. E. Schapire. A desicion-theoretic general-
ization of on-line learning and an application to boosting. In
Computational Learning Theory, LNCS 904, pages 23–37.
Springer, 1995.

[7] J. Heinly, E. Dunn, and J.-M. Frahm. Comparative evaluation
of binary features. In ECCV ’12, LNCS 7573, pages 759–773.
Springer, 2012.

[8] E. Hjelmås and B. K. Low. Face detection: A survey. Comput.
Vis. Image. Und., 83(3):236–274, 2001.

[9] A. A. Kindiroglu, H. Yalcin, O. Aran, M. Hrúz, P. Campr,
L. Akarun, and A. Karpov. Automatic recognition fingerspelling
gestures in multiple languages for a communication interface
for the disabled. Pattern Recognit. Image Anal., 22(4):527–536,
2012.

[10] S. Leutenegger, M. Chli, and R. Siegwart. BRISK: Binary ro-
bust invariant scalable keypoints. ICCV ’11, pages 2548–2555.
IEEE, 2011.

[11] R. Lienhart, A. Kuranov, and V. Pisarevsky. Empirical analy-
sis of detection cascades of boosted classifiers for rapid object
detection. LNCS 2781, pages 297–304. Springer, 2003.

[12] D. Lowe. Object recognition from local scale-invariant features.
volume 2 of ICCV ’99, pages 1150–1157. IEEE, 1999.

[13] K. Pulkit and Y. Atsuo. Hand gesture recognition by using logi-
cal heuristics. Technical Report 25, Japan Advanced Institute of
Science and Technology, School of Information Science, 2012.

[14] S. S. Rautaray and A. Agrawal. Vision based hand gesture recog-
nition for human computer interaction: a survey. Artif. Intell.
Rev., pages 1–54, 2012.

[15] E. Stergiopoulou and N. Papamarkos. Hand gesture recognition
using a neural network shape fitting technique. Eng. Appl. Artif.
Intel., 22(8):1141–1158, 2009.

[16] S. Tripathi, V. Sharma, and S. Sharma. Face detection using
combined skin color detector and template matching method.
Int. J. Comput. Appl., 26(7):5–8, 2011.

[17] V. Vezhnevets, V. Sazonov, and A. Andreeva. A survey on pixel-
based skin color detection techniques. In GraphiCon, ICCGV’
03, 2003.

[18] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. CVPR ’01, pages I:511–518. IEEE,
2001.

[19] G.-W. Wang, C. Zhang, and J. Zhuang. An application of clas-
sifier combination methods in hand gesture recognition. Math.
Probl. Eng., 2012.

[20] Z. Zhang. Microsoft Kinect sensor and its effect. IEEE Multi-
Media, 19(2):4–10, 2012.

