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ABSTRACT
Histological serial sections allow for 3D representation of anatomi-
cal structures in microscopic to mesoscopic range. However, due to
the nature of the acquisition, they suffer from severe anisotropy: 14-
to-1 in a single average microscopic paraffin section. We present an
interpolation method based on optical flow and show that standard
interpolation methods are less suited for serial sections.

With our non-linear interpolation approach we are able to repre-
sent the “movement” of image parts that are of interest. This allows
for better 3D reconstructions and further insights in microanatomy.
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1 INTRODUCTION
Real world data, especially acquired from some special modalities
like MRT or histology, often suffer from anisotropy. This means
that in some dimensions the data are not sampled as frequently
as in others. In other words, they feature rectangular, not square
pixels or non-cubic voxels.

The most straightforward way to reduce or eliminate anisotropy
is to interpolate the data forming a denser, ideally, uniform sampling
grid. This paper discusses a method of interpolation that is more
suitable for 3D reconstruction of histological data than standard
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(a) Frontal plane of “spleen 2” (b) (c) (d) (e)

Figure 1: A quick summary of this paper. (a) shows the
frontal plane of a volume obtained from histological se-
rial sections, data set “spleen 2”. (b), (c), and (d) show a z-
profile of, correspondingly, registered data set, separated
CD34-positive staining after interpolation, and final result
of volume filtering. (e) highlights differences between un-
filtered and filtered data. The focus of this paper is the in-
terpolation (c) that facilitates better final meshes. The final
rendering is in Figure 2.

approaches. Our approach maintains better connectivity of tissues
across the sections despite small local spatial distortions.

Histology. Histology is an old medical investigation technique.
Biological specimens are sectioned into thin layers (“sections”),
color is added via “staining”, a stained section can be inspected un-
der a microscope. Improvements from using better cutting blades,
motorized sectioning devices (“microtomes”), and immunohistol-
ogy (most notable for us: monoclonal antibodies) allowed for more
selective discrimination of varying cell types and more robust and
stable sectioning. The advent of optical scanning microscopes al-
lowed to acquire a whole section in a very high resolution and to
deal with region selection and further processing later—and digi-
tally. In this manner the microscopy session and image acquisition
were reversed and detached from each other, the so-called “virtual
microscopy” became viable. Further, scanning microscopes and
overall advances in the sectioning and staining procedures allowed
for “serial sections”: not a single section is prepared, but a series
of consecutive sections. With further processing (most notably:
registration [Lobachev et al. 2017; Saalfeld et al. 2012; Sotiras et al.
2013]), a stack of serial sections can be treated as volume data. Such
data are the starting point of this paper.
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Figure 2: The final meshes for Fig. 1 for CD34-positive
(brown) and CD271-positive cells (blue) in a rendering. The
threshold for blue mesh generation was set rather high: the
inside of the follicle is empty.

Multiple further medical imaging techniques exist, but no other
is applicable in our setting. Non-invasive 3D imaging techniques
like MRT or CT lack the resolution: modern scanning microscopes
produce images at 0.25–0.3 µm/pixel in the xy plane for probes
that easily reach 1 cm2 area. Micro- and nano-CT methods either
have orders of magnitude worse resolution or cannot deal with
that large probes. We need to stain the specimen to see the cells
of interest. We section the specimen for further processing and
acquisition. However, sectioning of more than ≈ 30 µm of tissue
is impractical for paraffin embeddings. An alternative might be
fluorescence microscopy. In non-human probes it is even possible
to genetically enhance cells with fluorescence, thus improving the
separation of cell types. However, fluorescence labeling degrades
very fast under illumination, while stainings for transmitted light
microscopy are known to survive for decades. An interesting al-
ternative is tissue clearing [Richardson and Lichtman 2015]: the
refraction index of the tissue is adapted to the index of embedding
fluid, but this approach is still highly experimental and has not
been tried profoundly on human specimens and with transmitted
light microscopy. Basically, for microanatomical research on human
specimens no other technique except serial sectioning is practical
and solidly established.

The huge drawback of serial sections is an anisotropy. While
the resolution of a scanning microscope can reach 0.25 µm/pixel
in the xy plane, the z axis is limited to the thickness of a section.
The minimal thickness of sections in hard plastic embedding ob-
tained with a conventional microtome may be 0.5 to 3 µm/section.
The thickness of paraffin serial sections lies in the range of 5 to
8 µm/section. The maximal section thickness with paraffin embed-
dings and a conventional microtome can reach 25 to 30 µm. We aim
for better 3D reconstructions from “conventional” serial sections.
Our presentation in this paper focuses on serial sections with typi-
cal anisotropy 0.5 : 0.5 : 7 µm or 14-to-1. We reduce the anisotropy
to 0.5 : 0.5 : 1 µm or 2-to-1. Any kind of serial section data would

profit from our approach, actually, any kind of anisotropic data
does.

2 RELATEDWORK
Standard interpolation methods like bilinear interpolation, bicu-
bic interpolation [Keys 1981], or Lanzos filter [Duchon 1979] (see
also Burger and Burge [2009]) are of course related to this paper.
However, we focus on a more special and non-generic use case:
we would like to interpolate medical data in a way that improves
subsequent 3D reconstruction. Our method uses optical flow.

2.1 Optical flow
Optical flow as such was defined by Horn and Schunck [1981], while
Lucas and Kanade [1981] pioneered a viable way for computing it
that is still used today. Baker et al. [2011] present a nice overview
of optical flow methods and their evaluation. A lot of effort was
invested into variants and improvements of optical flow [Brox et al.
2004; Brox and Malik 2011; Sun et al. 2010]. Recent improvements
to the topic are presented by Revaud et al. [2015]. We use the dense
optical flow computation [Farnebäck 2003]. Keeling and Ring [2005]
use optical flow as a similarity metric for elastic image registration
of medical images. It is in a sense dual to our approach: we also
use optical flow as a measure for “movement” in two consecutive
medical images. However, we use the detected motion to generate
intermediates and not to decide what distortion needs to be applied
to input images to make them more similar. Zitnick et al. [2005]
combine image segmentation and optical flow computation.

2.2 Registration and 3D reconstruction of
serial sections

An integrated suite for processing of serial sections is Track-EM2
[Cardona et al. 2010], a part of Fiji [Schindelin et al. 2012]. 3D re-
construction from serial sections is an increasingly popular topic
[Gijtenbeek et al. 2005; Lobachev et al. 2017; Ma et al. 2008; Ourselin
et al. 2001; Saalfeld et al. 2012; Steiniger et al. 2003, 2016; Xu et al.
2015]. It is especially of importance in the mesoscopic area which
cannot be represented on with a single histological section. How-
ever, to align these sections, a registration method is needed. We
used Lobachev et al. [2017] for fine-grain registration and Ulrich
et al. [2014] for coarse-grain, slice-wide registration. Other ap-
proaches include elastic registration (e.g. Guest et al. [2001]), regis-
tration in feature space (e.g. Baǧci and Bai [2008]), utilization of
mutual information (e.g. Chappelow et al. [2011]; Rueckert et al.
[1999]; Schnabel et al. [2001]), smoothness based registration [Cifor
et al. 2011], thin-plate splines (e.g. Wan et al. [2013]).

2.3 Interpolation of medical data
Optical flow was used for interpolation in live MRT data to reduce
breathing artifacts [Ehrhardt et al. 2007]. However, there are many
differences. Ehrhardt et al. [2007] work on 4DMRT data, we operate
on a set of 2D microscopic images. They apply a demons-based
registration method similar to Thirion [1998], we directly apply the
distortion field to (pre-registered) input images (Section 3). Ehrhardt
et al. [2007] operate on 512×512×200×10 data (i. e. 5.24 × 108 vox-
els), but they report more than 30 hours run time. Our method
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Figure 3: Our image processing pipeline. All steps after acquisition are digital. The focus of this paper is interpolation.

typically operates on 28.6–81.1% of their input volume, but pro-
duces results in a fewminutes with a Python-based implementation.
Decreased dimension helps in our case. Ehrhardt et al. [2007] use
the method of Barron et al. [1994] for optical flow computation, we
utilize the method of Farnebäck [2003]. We compare our approach
to standard interpolation methods in Section 4.3.

Thevenaz et al. [2000] discuss in-depth the quality and applica-
tions of some existing and modified interpolation methods, it is
mainly focused on choosing better basis functions. Lehmann et al.
[1999] provide an overview of existing interpolation methods in
context of medical imaging and aspect ratio correction.

3 METHOD
3.1 Synopsis of the pipeline
We process immunohistochemically stained serial sections (though
the method is also applicable to other data), hence we outline our
complete imaging pipeline in this section to facilitate better under-
standing of the actual method. Figure 3 shows the overall pipeline.

A removed and fixed specimenwas embedded in paraffin [Steiniger
et al. 2014a,b]. Bone marrow, however, was embedded into methyl-
methacrylate [Steiniger et al. 2013, 2016]. The specimens were
sectioned on a microtome. The embedding medium was removed,
and the sections were stained using several immunohistological
methods. Then, images were acquired. Scans of the entire sections
were performed using a transmitted light scanning microscope (Le-
ica SCN 400). From this point on the processing was completely
digital.

Entire sections (typically very large images, ranging at 20k–30k
pixels per side) are coarsely registered [Ulrich et al. 2014]. This is
needed for the subsequent selection of regions of interest (ROI).
Potential irregularities in intensity caused by varying slice thick-
ness are compensated with slice normalization [Khan et al. 2014;
Reinhard et al. 2001]. The ROIs are finely registered [Lobachev et al.
2017], producing volume data. However, the anisotropy is severe.
At this point the interpolation method presented here is used. After
interpolation the volume can be further processed. We typically
apply at least a closing filter and a minor Gaussian blur [Steiniger
et al. 2016]. The filtered volume is used for mesh construction with
marching cubes [Lorensen and Cline 1987]. The resulting mesh is
post-processed. The actual processing depends on the objective,
but it typically includes methods to close a few holes, to reduce the
mesh size [Ju 2004], and to correctly smooth the surface [Taubin
1995]. The final mesh can be rendered with usual techniques.

We stress that our interpolation method allows for better meshes
than standard approaches (Fig. 10 shows a comparison).

3.2 Dense optical flow
Farnebäck’s dense optical flow [Farnebäck 2003] is defined in the
following way. We aim to compare two signals, f1 and f2. They are
modeled with quadric polynomials, e.g. f1(x) = xTA1x + bT1 x + c1
for a symmetric matrix A1, a vector b1 and a scalar c1. Assume
f2 is globally displaced by d, it can be defined in a similar way
in terms of A2, b2 and c2. We can express d as −A−11 (b2 − b1)/2.
To make the computation more practical we use local polynomial
approximations of images. In the following we omit the x argument,
e.g. A always stands for a local approximation A(x). Let

A := (A1 + A2)/2 and ∆b := −(b2 − b1)/2.

The distance is now a spatially varying displacement field d with
Ad = ∆b. With a weight functionw—the edges of an image have a
smaller weight—in a neighborhood I holds:

d(x) =
∑
I
wAT ∆b

/ ∑
I
wATA, (1)

the sums run over all x in I , as x is an omitted for brevity ar-
gument to A, ∆b, andw . In practice we compute ATA, AT ∆b, and
∆bT ∆b (needed for the confidence value) pointwise.

The flow is computed on multiple scales to alleviate the problem
with larger displacements. We compute the flow based on a classical
2n image pyramid with 3 levels, averaging window size of 15 pixels,
three iterations at each level, neighborhood size for polynomial
expansion of 5 pixels. The derivatives for polynomial expansion
are smoothed with σ = 1.2.

Let us denote with D(A,B) the complete computation of dense
optical flow between A and B. It is basically a vector field that con-
sists of local approximations d(x). Currently, we compute it with
Open CV [Bradski and Kaehler 2008] function calcOpticalFlow-
Farneback.

3.3 Computing the interpolations
Now let FA,B(r , ·) be the distortion operator of dense optical flow
between images A and B. Here is 0 ≤ r ≤ 1 the magnitude of the
flow. The operator FA,B(r ,X) computes the optical flowD and spa-
tially displaces the input image X by rD(A,B). The displacement is
applied to the input image with Open CV remap function. In most
cases, however, X is either A or B. Basically, FA,B(1/2,A) distorts
A to correspond to the optical flow from A to B at a half magnitude.
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Naturally, FA,B(0,A) = A and FB,A(0,B) = B. However, FA,B(1,A)
is not B, but A, distorted in a way to be similar to B. We compute a
sequence of n + 1 images Ik , 0 ≤ k ≤ n as

Ik =
k

n
FA,B

(
k

n
,A

)
+
n − k

n
FB,A

(
n − k

n
,B

)
. (2)

Figure 4 illustrates this process. In our particular application we
compute intermediate images such that the anisotropy is no more
0.5 : 0.5 : 7 µm, but merely 0.5 : 0.5 : 1 µm. All figures showing our
method in this paper (except parts of Figure 4) feature images Ik .

Pseudo code. Figure 5 details on our method in pseudo code. We
compute the optical flow twice. Notice that due to different displace-
ment representations in calcOpticalFlowFarneback and remap, the
optical flowsD1 andD2 need to be converted to another representa-
tion, the x- and y-maps. This operation is, however, trivial at large.
Only after the conversion the flow can be scaled. To summarize: we
gradually apply the dense optical flow to input images, blending
the results to final images Ik .

4 RESULTS
First we present the specimens to which we apply our method. Then
we showcase how our optical flow-based interpolation improves
3D reconstruction. Finally, we compare our method to the state of
the art.

4.1 Specimens and the processing pipeline
We report our finding based on multiple data sets. The specimens
are listed in Table 1. All specimens are human and have been stained
for transmitted light microscopy:
• Spleen, single staining: 24 serial sections, immunostained
for the glycoprotein CD34 (brown), thus showing primar-
ily capillary walls. Data were acquired by VMscope GmbH
with a scanning microscope at 0.3 µm/pixel resolution. The
current ROI was resized during processing. The specimen is
called here “spleen 1”.
• Spleen, double staining: same specimen as above (24 serial
sections), additionally stained for CD271 (violet-blue) af-
ter first acquisition. It shows primarily capillaries (brown)
and special structures called “capillary sheaths” (violet-blue).
Data were acquired using a Canon 60D camera on a Zeiss
Axiophot microscope. We refer to these data as “spleen 2”.
• Spleen, double staining: 24 serial sections, immunostained
for the glycoprotein CD34, smoothmuscle cells (both brown),
and for CD271 (violet-blue). This staining shows primarily
capillaries, capillary sheaths, and smooth muscle alpha actin
(SMA, targeted with asm-1) in the walls of larger blood ves-
sels, such as arteries and arterioles [Steiniger et al. 2014a,b].
The interior of follicles is also weakly stained in blue. We
call these data “spleen 3”.
• Bone marrow: 21 serial sections, sectioned using a hard plas-
tic embedding technique [Steiniger et al. 2013], immunos-
tained for the glycoproteins CD34 and CD141 (both brown)
[Steiniger et al. 2016], thus visualizing microvessels (both
capillaries and sinuses) and larger blood vessels. We refer to
these data as “bone marrow”.

Table 1: Medical data sets used. All specimens are human.
Resolution is stated in µm/pixel.

Organ Antigen Stain color Resolution Fig.

Spleen 1 CD34 brown 0.6 6

Spleen 2 CD34 brown 0.416 1, 2CD271 violet-blue

Spleen 3
CD34 brown

0.5 9–12SMA brown
CD271 violet-blue

Bone marrow CD34 brown 0.5 4, 8CD141 brown

Tonsil CD38 brown 0.208 7SMA brown

• Tonsil pilot experiment: 5 consecutive sections at 4 µm, im-
munostained for glycoprotein CD38 and SMA (both brown).
Data were acquired using a Canon 60D camera on a Zeiss
Axiophot microscope. We refer to these data here as “tonsil”.

Large images (all except “spleen 2” and “tonsil”) were pre-registered
using a whole-slice registration method [Ulrich et al. 2014], then
regions of interest (ROI) were selected. These regions were regis-
tered again using a fine-grain registration [Lobachev et al. 2017].
The “spleen 2” data set was aligned to a pre-selected ROI and finely
registered with the same method. The data set “tonsil” was regis-
tered using a rigid-only method. For further processing a single
channel was selected to yield grayscale images. Then anisotropy
was reduced with interpolation, the actual focus of this paper. Fur-
ther processing was done with 3D Slicer [Fedorov et al. 2012]. We
used Fiji to produce z-stacks and as a reference implementation for
standard interpolation methods.

4.2 Interpolation and 3D reconstruction
Figure 1 shows the “spleen 2” data set evolving from registered
serial sections to final rendering. The z-profiles of the input stack
and interpolated brown staining (after segmentation) showcase our
method (Figure 1, (b) and (c)). The volume filtering after interpo-
lation is subtle (d), but it makes some difference, as shown by a
PSNR difference image at 5% threshold (e) shows. Figure 2 demon-
strates the final rendering of both brown (CD34, capillary walls) and
violet-blue (CD271, capillary sheaths) stainings, interpolated with
our method. The weaker staining of some blood vessels outside
of the follicle in Figure 1 is deliberate. It represents further blood
vessel types, irrelevant for present investigation. Only structures
that are very intensively stained in blue are represented in Fig. 2,
this corresponds to capillary sheaths.

Figs. 6 and 7 show “spleen 1” and “tonsil” data sets respectively.
The anisotropy is reduced using an interpolation with our method.
Border effects are present in Fig. 6. This could be avoided when the
interpolation would be performed on a slightly larger data set that
would be consequently cropped down.

Figure 10 shows the reconstructed meshes from the same input
data set “spleen 3”, but for varying interpolation methods. We omit
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(a) First image, A (b) Second image, B (c) Interpolation from A to B (d) Interpolation from B to A (e) Final result, sum of both in-
terpolations

Figure 4: Illustrating interpolation with dense optical flow on “bone marrow” data set [Steiniger et al. 2016], HSV saturation
channel, negative image shown. We interpolate with n = 7, showing images for k = 3. From left to right: first and second input
images, A (a) and B (b), interpolation from A to B (c), i.e. FA,B(3/7,A), interpolation from B to A (d) , i.e. FB,A(3/7,B), the final
result, i.e. the image I3 (e). Scale bar is 100µm.

1. A← read image 1, B← read image 2
2. compute D1 = D(A,B) and D2 = D(B,A)

(using calcOpticalFlowFarneback)
3. for k ∈ {0, . . . ,n} do
4. D

(k )
1 ← scale D1 with factor k/n

5. D
(k )
2 ← scale D2 with factor (n − k)/n

6. compute FA,B(k/n,A): apply the map D
(k )
1 to image A

with remap, yielding A(k )

7. compute FB,A((n − k)/n,B): apply the map D
(k )
2 to im-

age B with remap, yielding B(k)

8. Ik ← alpha-blendA(k ) andB(k) withweightsk/n and (n−
k)/n

9. write image Ik .

Figure 5: Pseudo code for our method.

all volume and mesh filtering (aside from mesh repair [Ju 2004])
for the demonstration purpose. Figure 10b shows the final result
with our method and all the filtering. Notice that the blood vessel in
the foreground features a discontinuity with all methods used, but
not with ours. This is due to the optical flow-based interpolation.
Our registration method undistorts the sections and aligns them to
each other. Nevertheless microvessels may shift for more than the
diameter of small capillaries in the input images. This may happen
because of artifacts or registration errors. Through “shifts” in the
flow our method avoids discontinuities, but introduces additional
waviness. Our method also features more constant intensity val-
ues in intermediate images. A further reason for discontinuities
of microscopic blood vessels in other methods is blending. Vary-
ing intensity in bilinear or bicubic interpolation produces images
more pleasant to the eyes, but tightly chosen iso-values in mesh
construction yield holes where two structures are blended over
(Fig. 9).

Bone marrow reconstruction is shown in Fig. 8, a detail showing
intermediate phases of the interpolation is in Figure 4. Fig. 8a shows

Figure 6: Interpolation with our method for “spleen 1”. We
interpolated across 24 serial sections.

Figure 7: A z-profile after interpolation of “tonsil” data set
with our method. The data was generated from 5 initial sec-
tions.

an overview. Fig. 8b shows a computation of shape diameter func-
tion on the reconstructed mesh. This computation allows experts
to distinguish capillaries from sinus blood vessels [Steiniger et al.
2016].
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(a) Overview (b) Shape diameter function

Figure 8: 3D reconstruction of a “bone marrow” specimen. The anisotropy was reduced with our method. (a): overview, (b):
cleaned-up mesh with computation of the shape diameter function that helped to discriminate blood vessel types [Steiniger
et al. 2016].

4.3 Comparing with the state of the art
We compare our method to nearest neighbor interpolation and to
bicubic interpolation with Fiji [Schindelin et al. 2012] in Figures 9–
12.

The main attribute of our method is that two spatially close, but
not necessarily overlapping objects on two consecutive sections are
“morphed” into each other and not “blended”, i. e. are not “faded out”
from one object while “faded in” to another. The latter is typical of
interpolation, but results in smaller intensities during “blending”
that contribute to discontinuities in reconstructed meshes (Fig. 10).
We do use alpha-blending in our computation, but the “fading”
effect is much less with our method. For our medical application
retained connectivity is more important than minor shape changes.
This behavior is visible in Fig. 12.

Figure 9 shows all intermediate images between two consecutive
frames, bicubicly interpolated and generated with our method. The
effect of our method is even more visible in the Supplementary
Video.

4.4 Application to generic data
To showcase that our method is applicable not only in medical
imaging, we applied our method to images from USC-SIPI image
database. We utilized the images “moon” (5.1.09, upscaled to 512 ×
512 pixels, Fig. 13) and “bridge” (5.2.10, Fig. 14). In both cases we
applied different distortions to the original image, yielding two
input images. Then we generated 12 interpolations between these

distorted images with our method. Figure 14 shows multiple output
images Ik from our method along with the original image and input
data. Here, we have cropped the images to the center to reduce
border effects. We also crop after interpolation in the production
use of our method in medical imaging. We deem the results of our
method on test images as usable. Thus our method is applicable
not only to medical images.

5 CONCLUSIONS AND FUTUREWORK
We present a special non-linear interpolation method to compen-
sate anisotropy in histological serial sections. Using dense optical
flow we determine the “movement” in the consecutive images. This
movement is then gradually applied, generating intermediate im-
ages. This way our method retains more connectivity in the final
meshes than standard interpolation methods. The benefit of our
method consists in less intensity changes in interpolated images,
and thus less danger that marching cubes algorithms interpret
decreasing intensity as a discontinuity.

Ourmethod has been applied to serial sections of specimens from
varying human organs. It facilitated advances in fundamental med-
ical research concerning bone marrow microvasculature [Steiniger
et al. 2016]. Our method allowed to improve 3D representations,
leading to new insights in microanatomy.

As we pre-register the data anyway, it is possible to retain the
distortions from non-rigid registration phase. One might use these
data and not dense optical flow for interpolation. In any case, it
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(a) Bicubic interpolation, crop

(b) Our method, crop

Figure 9: Interpolation sequence between two consecutive slices of “spleen 3”, a 250 × 500 crop from center. (a): bicubic inter-
polation, (b): our method, n = 6. Observe the movement in the marked area. Supplementary Video shows the effect of our
method in motion.

would make sense to generalize the distortion data to more than
two images and to use e.g. spline-based interpolation. Applications
of our method to serial sections from further organs and to data
acquired from other modalities (e.g. electron microscopy or MRT)
are, of course, possible.
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(a) Original data, slice 11 of 24 (b) Nearest neighbor

(c) Bicubic interpolation (d) Our method

Figure 11: Comparing various interpolation methods for a “spleen 3” data set, size 2k × 2k pixels, 24 initial sections. All inter-
polation methods (b)–(b) operate on CMYK karbon channel of original data (a). We show the center of the 24 slice data set,
the z-profiles are also cut in the center of the data set, at 1k pixels. We show the negative of the interpolated data. Notice that
though our method (d) produces some “waviness”, interpolated data keep similar intensity for varying spatial positions. This
is not the case with usual interpolation methods (b), (c). Scale bar = 500µm.
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(a) Bicubic interpolation (b) Our method

Figure 12: Crops from xz-plane stacks from Figure 11 at a
larger magnification. Bicubic interpolation (a) does not con-
nect slightly misaligned dark blobs (we assume these are
capillaries). Our method (b) is able to do so, but produces
some waviness.

(a) (b) A, k = 0 (c) k = 6 (d) B, k = 12

Figure 13: Our method on distorted “moon” images. We
show full images, notice the border effects. (a) Upscaled orig-
inal image. (b) First input image. (c) Interpolation result, im-
age from the middle of the interpolation stack. (d) Second
input image.
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