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ABSTRACT Registration of histological serial sections is a challenging task. Serial sections exhibit
distortions and damage from sectioning. Missing information on how the tissue looked before cutting makes
a realistic validation of 2D registrations extremely difficult. This work proposes methods for ground-truth-
based evaluation of registrations. Firstly, we present a methodology to generate test data for registrations.
We distort an innately registered image stack in the manner similar to the cutting distortion of serial sections.
Test cases are generated from existing 3D data sets, thus the ground truth is known. Secondly, our test case
generation premises evaluation of the registrations with known ground truths. Our methodology for such
an evaluation technique distinguishes this work from other approaches. Both under- and over-registration
become evident in our evaluations. We also survey existing validation efforts. We present a full-series
evaluation across six different registration methods applied to our distorted 3D data sets of animal lungs.
Our distorted and ground truth data sets are made publicly available.

INDEX TERMS Registration, ground truth, histological sections, evaluation, image processing.

I. INTRODUCTION
Microscopy has a long tradition, and microscopic imaging
is still one of the most frequently used and powerful tools
in biomedical research. From light microscopic (LM) tech-
niques, including conventional fluorescent stainings, to trans-
mission and scanning electron microscopic (EM) methods,
the last two decades have witnessed substantial methodolog-
ical progress in terms of resolution, speed, and automation.

The associate editor coordinating the review of this manuscript and

approving it for publication was Felix Albu .

Tissue clearing and super resolution LM at the one end, and
serial block-face as well as focused ion beam scanning EM
at the other end, have paved the way for a three-dimensional
visualization of biological specimens.

Still, the use of serial sections remains an essential and
cost-efficient tool to gain 3D insight into specimens for sev-
eral reasons: Despite the progress in LM techniques the pen-
etration depth of staining solutions, in particular fluorescent
antibody staining, is limited, thus limiting the size of the
sample that can be visualized. Genetically modified organ-
isms, such as mice, expressing fluorescent proteins under
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cell-specific promoters, are available. This method, though,
cannot be applied to human samples for obvious reasons.
Thus, the use of serial sections in LM is often the method of
choice for obtaining 3D information both from conventional
and fluorescent microscopic imaging, in particular when
human samples are investigated.

However, microscopic sections are inherently two-
dimensional (2D) and their 3D information has to be regained
from 2D images. The manual or automated cutting of thin
sections for microscopy, however, induces—even in per-
fectly trained and experienced hands—varying distortions
and deformations, such as stretching or compression. Posi-
tioning the sections on the glass slides further contributes to
spatial distortion. This problem is especially evident in large
sections. Further processing such as antigen retrieval and
staining may further damage the section. Even digitization
of the sections can be faulty and create partially corrupt
representations.

The alignment or registration is an important method in
medical image processing. An absence of the ground truth
is a major problem during the development of new and
fine-tuning of existing registration methods. While some
simple synthetic data or phantoms can be generated, those
would not adequately represent the problem. Firstly, some
registration methods, for example, those based on feature
detection, thrive from complexity of the input data. Such
‘‘sparse’’ methods might perform very well especially in the
lung tissue, where the fraction of empty space is very high.
Secondly, the distortions in phantom data might not truly
represent the distortions in serial sections. Thirdly, in most
real cases, no ground truths from other modalities exist in
the typical acquisition resolution of the serial sections. Most
‘‘real’’ 3D methods either do not reach the resolution of
conventional LM (e.g., micro-CT) or have typically much
smaller spatial dimensions of the probe (e.g., nano-CT, EM).
Aforementioned LS microscopy and tissue clearing are pos-
sible palliatives in model animals, but all those methods are
still too complex, too expensive, or require a radically differ-
ent biological processing pipeline that makes it impossible
to apply both modalities to the same specimen. It is also
much harder to apply aforementioned advanced methods in
humans.

A. CONTRIBUTIONS
In this paper we present a methodology to apply typical
sectioning distortions to real data sets from other modalities.
We digitally ‘‘mock up’’ the distortions from sectioning on
real biological data. Arbitrary general-purpose images can
be distorted (Fig. 1, Fig. 2) and registration methods can be
applied to distorted images. The results of the registrations
can be immediately compared with ground truth data. Our
benchmark is open to further registrations, new quality mea-
sures, and new images. Aswe present themethod and not only
the data, further data sets, even from additional modalities,
can be produced by others. We focus our current presentation
on animal lung images. However, our method is generic; it

FIGURE 1. Showcasing our method on a synthetic image of a color
gradient. The distortion magnitude is increased tenfold for
demonstration. The images are slightly cropped for presentation.

should be applicable to virtually any kind of innately 3D data
of any organ from any species. Our goal is to enable the
evaluation of registration methods for serial sections with a
ground truth from real biological data. To fulfill it, we mimic
sectioning distortions in an artificial, but statistically mean-
ingful and reproducible manner. We then proceed to evaluate
some existing registrations with our method. Among other
approaches we present a full-series evaluation.

In this paper, we consider possible distortions during
sectioning and apply those to 2D series from the innately
3D data. Our data sets originate from further modalities in
bioimaging. The data sets aim to come close to LM sections
of the lung in their scale—on both sides. We use both CT and
LS as coarser scale and EM as a finer scale. As original, non-
distorted data fit perfectly, those serve as a ground truth.

The contributions of this paper are threefold. Firstly,
we provide an overview over the field with the emphasis
on validations of registration. In most such validations, the
problem of an absent ground truth motivates the search for
further methods. Our approach is novel, we work with a
present ground truth.

Secondly, we suggest a technique to generate a benchmark
input from existing inherently 3D data. This way, we are,
thirdly, able to compare registration methods on a common
foundation by comparing the registered data with the ground
truth. We perform an extensive image-based statistical evalu-
ation of the full series.

The source code for this paper is available under https://
github.com/olegl/distort, the distorted and ground truth data
sets can be found under https://zenodo.org/record/4282448.

B. PAPER STRUCTURE
The remaining part of the paper is organized as follows:
In Section II we survey existing registration methods and
discuss the approaches towards validation of registration.
Section III elaborates on our approach for generating distor-
tions. The same section also presents the registration methods
and the data sets we used in our benchmark. In Section IV we
evaluate the results of the registration benchmark. We com-
pare the registered images with the ground truth in this
section. We present there both image-based evaluations and
statistical gauges of the results. Section V discusses pos-
sible limitations and further developments of our method.
Section VI concludes the manuscript.
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II. RELATED WORK
A. REGISTRATION IN GENERAL
There is a lot of research on registration, esp. in the context of
medical imaging. Brown [1], Zitová and Flusser [2] provide
early surveys; Pluim et al. [3] and Oliveira and Tavares [4]
are more focused on the medical topics. Viergever et al. [5]
and Pichat et al. [6] are recent overviews of the field.
Zitova [7] gives a mathematical overview of the methods.
Although some manual alignment, e.g., [8] has been per-
formed in the past, we ultimately focus on computational
methods.

Sotiras et al. [9] survey non-rigid registration methods.
In the context of the registration of serial sections, non-
rigid registration is definitely required, as distortions dur-
ing sectioning are non-linear. Even if we currently do not
represent tearings or foldings of the tissue, cutting-induced
local distortions are still present even in the most per-
fectly prepared sections. (Instead of tearings and foldings
we can easily encompass missing parts of the images.
Salvaging damaged or missing sections is a separate prob-
lem in our eyes.) Non-rigid registration methods include
Rueckert et al. [10]; Schnabel et al. [11]; Chui et al. [12];
Hömke [13]; Zhang et al. [14]. Saalfeld et al. [15] focused
on as-rigid-as-possible registration for EM.

Punithakumar et al. [16] is a recent example of a
GPU-accelerated registration. Crum et al. [17] provide an
overview of medical image registration, they highlight both
the importance of validation and its difficulty. One of the pop-
ular software packages for registration is Elastix [18], [19]
and further developments around it [20], [21]. Another pop-
ular package is ANTs [22], [23]. One of the somewhat
frequent ideas is to work with images on multiple levels,
see e.g., [24], [25].

A kind of ‘‘sparse’’ methods involves feature detec-
tion and description. Ma et al. [26] presents a recent
survey of the field. The actual detectors and descriptors
include SIFT [27], [28], SURF [29], [30], AKAZE [31],
[32]. A basic ‘‘sparse’’ registration identifies distinctive
regions of both input images and then computes a corre-
spondence between them based on the correspondence of the
regions alone. In such a rigid registration RANSAC [33] is
used. ‘‘Sparse’’ methods have been used to register medical
images, e.g., [34]–[38]. Arganda-Carreras et al. [39] is the
origin of ImageJ’s ‘‘Register virtual stack slices’’ imple-
mentation. (ImageJ [40] and Fiji [41] have served as a
basis for many registration and analysis approaches.) They
focus strongly on various rigid approaches, although an elas-
tic extension exists. The ImageJ plugin ‘‘TrakEM2’’ [42]
also utilizes feature detection, but it not only performs reg-
istration, but also includes tools for 3D modeling, edit-
ing, and annotation. Ma et al. [43] and Zhang et al. [44], for
example, improve the correspondence of features (‘‘match-
ing’’). Cieslewski et al. [45] is an example of an alterna-
tive to feature descriptors. Registration of whole sections,
e.g., [46] motivated the usage of feature detection in
Ulrich et al [47].

FIGURE 2. Details of local distortion and damage generation. Our method
works also on general-purpose images. The test image is from the
Japanese ITE data set of UHD images, we took 1k× 1k pixels crop from
the center of the ‘‘Ship’’ image (U10, 2K version). A lot of straight lines
allows for good identification of distortions. Global rigid transformation
is omitted for its simplicity. The distortion map is in line with our usual
settings. The visualization in (i) compares PSNR (peak signal-to-noise
ratio) between (b) and (h); it is thresholded at 20%.

Optical flow [48], [49] is a yet another method to find
‘‘moving parts’’ in images [50]–[52]. Applications of opti-
cal flow in medical images include Dougherty et al. [53],
Carata et al. [54], Lobachev et al. [55]. Feature descriptors
have been used on dense, optical-flow-like data [56], [57].

A diffusionmodel based on thermodynamics [58] is widely
used, e.g., [59]–[61]. Further registration approaches include
graph-cut-based methods [62], smoothness assumption [63],
higher-order derivatives [64], chamfer matching [65], particle
swarm optimization [66], Gauss-Seidel optimization [67],
Markov random fields [68], [69], over-segmentation regu-
larization [70], elastic triangulation of a spring model [71],
blending rigid transforms [72], empirical mode decomposi-
tion [73], and remote sensing [74].

Some methods register a complete stack of images at
once, this approach was used, e.g., by Nikou et al. [75],
Saalfeld et al [15], Lobachev et al. [25].

B. VALIDATION, IMAGE GENERATION, AND
BENCHMARKS
In a sense, this paper is dual to Cifor et al. [63]. They thought
explicitly about possible distortions during sectioning and
displaced the real section images in a way that would counter
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FIGURE 3. The effect of the local distortions on real data: an unfiltered micro-CT image of a rabbit lung. Fig. (a) features the extended (for later rigid
transformation), but not distorted image. Fig. (b) is the result of non-linear distortions. The distortions may be hardly noticeable by a human, but they are
enough to confuse computational methods. Such distortions are clearly visible in the next panels. Figs. (c) and (d) show the PSNR visualization between
(a) and (b) with 5% and 20% threshold for the red color. Figs. (e)–(h) show crops, Fig. (g) shows an optical flow visualization computed from full images,
but then cropped in the same manner as others. The optical flow shows the ‘‘movements’’ between two input images. Scale bars in (a)–(d) are 5 mm,
scale bars in (e)–(h) are 1 mm.

this distortion—a similar idea is behind most registration
methods. Our distorted ground-truth data are the input of a
registration benchmark. We validate multiple existing regis-
tration methods by comparing (previously distorted and) reg-
istered images to the distorted, but not registered, and to the
(not distorted, perfectly aligned) original data. Sections III-F
and III-I detail on our evaluation methodology.

Pluim et al. [76] provide an overview on validations of
medical registrations. Van Sint Jan et al. [77] showcase a
very special kind of a registration that was validated with
kinematics. The method by Delaby et al. [78] is a more typ-
ical case, where the 3D reconstructions were validated by
a different modality. Schnabel et al. [11] discuss physically
plausible distortions in breast MR data. Shojaii et al. [79]
use block-face images and fluidical markers for validation
of the registration. Kybic [80] undertakes special efforts for
the evaluation of registration accuracy in absence of ground
truth. In contrast to all those approaches, we suggest to use
multiple image-based quality measures for the evaluation of
the registrations. The essence of the present manuscript is the
availability of ground truth, so no further modalities, manual
interventions or external markers are required.

Generation of further images is by far not new in medical
image processing, to name a few, Xue et al. [81] generate
synthetic images for better T1 MRI; Duchateau et al. [82]

generate pathological cardiac images; and Grova et al. [83]
use computer-generated SPECT data to validate their
MRI-SPECT registration. Image generation is connected to
validation, because as long as we are able to generate images
with given properties, these can be used to validate other
image-based methods. Hamarneh et al. [84] use all kinds of
statistical and physically-based distortions, noise, artifacts
but their method is focused on MRI and CT data. Even
though distortions of 2D images are also possible with their
framework, the method is focused on other modalities.

Vlachopoulos et al. [85] generate distorted CT images
using landmarks and thin-plate splines. Their warping
method was specially chosen to imitate aspiration. The
images were used to evaluate registration methods in normal
lungs and organs with interstitial lung disease. The idea of the
evaluation is similar to ours, however, we focus on histolog-
ical serial sections and provide an elaborate methodology to
generate such distorted images. Both the nature of the defor-
mation and the method of its implementation are different in
this work. We are concerned with sectioning and processing
artifacts in removed tissue. We do not use thin-plate splines
and landmarks to compute distortions.

Zhang et al. [86] both generate synthetic images and use
real data to compare their global registration method to others
with promising results. Unlike the present work here, they
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distort the images using quadric 2D polynomials and focus on
either homography or distortions commonly found in digital
cameras. These kinds of distortions differ a lot from our
approach, since they are induced by the optical pathway in
the camera and not by physical sectioning of the specimen.

Related to above methods are registration benchmarks
and challenges. We would like to specially mention the
EMPIRE10 challenge [87]. Borovec et al. [88] benchmark
registrations of differently stained serial sections a rather
distinctive kind of registration: [46], [89]–[92]. Basically,
registration of differently stained serial sections is about
transferring the distortions from one kind of staining to
another one. Also co-registrations across modalities are a
tangent topic to our work, e.g., CT to MRI [93]–[95], serial
sections toMRI [96]–[98], orMRI to ultrasound [99].We dis-
tort images from other modalities (similarly to the distortions
in serial sections) in order to obtain challenges for testing
registration methods with a known ground truth. In this work,
during each of the registration attempts we remain within a
single selected modality.

A recent ANHIR challenge [100] uses multiple data sets,
where the ground truth is obtained by external markers on the
histological series. Their landmarks were placed by multiple
human annotators. We use automatic image-based metrics
in this work and do not use external markers, however our
approach is open to further measures. (It would be easiest to
integrate further image-based markers, though.) We eschew
external markers, as we have a ground truth, which contrasts
our work from histology-based challenges, where no direct
ground truth is available. Further, the ability to fully auto-
matically compute the ‘‘score’’ of a registration method from
ground truths and registration output allows our approach to
be used in automatic tests of registrations, such as continuous
integration (Section V-G).

The NIREP project [101] evaluates specifically non-rigid
registrations, with absent ground truth. This paper is about
distorting a known ground truth for the evaluation of rigid
and, mostly, non-rigid registrations, we circumvent the main
problem of non-available ground truth.

To name further related papers, Pontré et al. [102] presents
a cardiac perfusion MRI registration challenge focused on
motion correction; Brock [103] compare accuracy of differ-
ent deformable registration methods on MRI and CT data;
West et al. [104] and Hellier et al. [105] are examples of the
evaluations of inter-subject registrations. Klein et al. [106]
and Ou et al. [107] evaluate registration methods for inter-
patient brain MRI.

C. QUALITY MEASURES FOR REGISTRATION
Image registration can be seen as an optimization problem.
Similarity measures are key to both good registrations and
their evaluation, as a similarity measure is basically the objec-
tive of optimization. Mutual information is often used as such
a measure [3], [108]–[110]. A related problem is the selection
of the reference in a series of histological sections [111].
Nanayakkara et al. [112] introduce a metric for registration

errors. Luo et al. [113] discuss the relation between registra-
tion errors and uncertainty.

In this work, we choose image-basedmeasures as an arbiter
in quality of the registration. Such approach allows not only
for automatic generation of the inputs and for automatic exe-
cution of the registration, but also for an automatic evaluation
of the results. In our evaluation we use the standard measures
by Jaccard [114] and Wang et al. [115], as well as the dense
optical flow [50]. We also use the Dice [116] measure as a
visualization of the Jaccard measure—as the formulation of
Dice can be converted to a formulation of Jaccard. (Details
on thresholding methods are in the supplementary material.)
We use a visualization based on PSNR (peak signal-to-noise
ratio) as well.

Crum et al. [117] discuss generalizations of overlap-based
measures, but in this work we opted for the well-known mea-
sures. Rohlfing [118] criticizes the usual image-based mea-
sures, but our method can use any measures for evaluation.
Our method is not imbued with the measures we use, hence
any extensions or further measures are possible. The core idea
is to use (now-distorted) inherently 3D images to benchmark
2D registrations.

D. MACHINE LEARNING
With modern deep learning methods, the measure can
be implicitly learned, as Krebs et al. [119] mention.
Maier et al. [120] provide an introduction to deep learn-
ing in medical imaging. Li et al. [121] use style transfer
to generate images from different vendors, such generated
images enable better machine learning. Fu et al. [122]
and Haskins et al. [123] provide an overview of machine
learning in registrations. Examples of advances of deep
learning in registrations include Dalca et al. [124] and
Sarlin et al. [125].

We stress that our method generates distorted images with-
out any use of machine learning. Thus, our method can be
used to generate additional data sets or to augment machine
learning input.

E. LUNG IN 3D
The methods, options, and research outcomes in 3D recon-
structions of the lung using any modalities from corro-
sion cast and up to 3D EM methods, e.g., [126] are
reviewed by Mühlfeld et al. [127]; practical applications
include [128], [129]. Although, EM studies of the lung are
popular and important, e.g., [130]–[133], serial sections
for LM have their place in the investigation repertoire,
e.g., [134]–[136]. Putting stereology aside, a proper registra-
tion is paramount in any investigation of serial sections as a
3D data set.

III. METHODS
The typical sectioning-induced distortion in paraffin embed-
ding was found by Schormann et al. [137] to be Rayleigh
distributed. This basicallymeans a normal distribution in each
of the image axis. We showcase our method on a synthetic
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FIGURE 4. Illustrating the steps in this paper. Individual normalization of benchmark inputs and the application of global
normalization are not mandatory. Currently, we do not use damage generation and damage repair in our benchmark
images, but we could also test the repair methods in this manner. The evaluation ensues from comparison of the image
series. The dotted boxes show two larger conceptual components, the distortion generator and the registration.

image (Fig. 1), on a standard test image (Fig. 2), and on real
data, a 2D image from a micro-CT scan of an animal lung
(Fig. 3). Notice that Fig. 1 overemphasizes the effect of our
method: we use there 10 times larger distortions than usual.

Now, Figs. 1a, 2a show the original specimen. In real appli-
cations we extend the border (Figs. 2b, 3a). Figs. 1b, 2c, 3b
demonstrate the distorted images, Figs. 1c, 2d show the color-
coded distortion map. The detailed crops in Figs. 2, (e)–(g),
and Figs. 3, (e)–(h), demonstrate the local movements
induced by the distortion. The goal of the registration is to
precisely eliminate such movements.

To simulate lost or damaged parts of the sections which
we recently learned how to repair: [91], additional arbitrar-
ily placed ‘‘damage’’ can be added to the image (Fig. 2h).
Finally, a global rigid transformation is applied (Fig. 1d). The
rationale behind this step is that only in very rare cases the
sections can be placed on the glass slide while maintaining
the exact orientation. We randomly apply a rotation and
translation to the images to simulate the uneven position-
ing. Such images serve then as inputs for the benchmark of
registrations.

Fig. 4 visualizes the core approach and the complete
pipeline of this paper. We present a distortion generator that
is in a sense dual to a registration. We derive an evaluation of
a registration method from original 3D stack and registration
results.

A. LOCAL DISTORTIONS
Generation of local, non-rigid distortions is of high impor-
tance for our method. At the heart of the local distortion
lies the generation of normally distributed values. Two inde-
pendent normally distributed random values form the x and y
coordinates of a displacement, making the displacements
Rayleigh-distributed [137]. The coordinates of locations,
where the distortions are placed, lie on a rectilinear grid.

We generate multiple distortion ‘‘levels’’ using a classical
multiscale approach. The distortions are stored as coordinates
of ‘‘new’’ points in a matrix holding both x and y coordinates
as an element—this is a typical remap matrix of OpenCV.
The distortions are blurred with a Gaussian kernel in each

multiscale level to make the displacements smoother. This
way we avoid undesirable and unrealistic foldings, as real
sections folds look differently.

In the implementation, we used Mersenne Twister pseu-
dorandom generator [138, a standard one in Python]. The
distortion maps are applied to the input images with OpenCV
remap function using bicubic interpolation. The distortion
maps are saved for further analysis. We can generate those
maps in a fully deterministic manner, if desired. This deter-
minism contributes to reproducibility.

In our application, the final distortion map is visualized
(Fig. 1c, 2d) using HSV colorspace. The Cartesian coor-
dinates of the displacements are mapped to a polar angle
(associated with hue); vector magnitude basically codes the
intensity.

Our distortion maps are a simple, reproducible, and
well-defined way to add sectioning-inspired distortions to
arbitrarily registered data. We aimed to define a stable and
reproducible way to model such distortions using the statisti-
cal properties of the real-world distortions.

The reproducibility is given through multiple efforts.
We have the initial, ‘‘ideal’’ state, the ground truth. We save
the exact rigid transform, the non-rigid distortion field, and
the distorted result. Through the use of pre-defined, determin-
istic states of the pseudorandom generator, we can basically
save all the transformations in form of the seed value (plus
original images, of course). Above issues would be useful to
ensure reproducibility, e.g., for automatic regression testing
of registration methods.

B. ADDING RIGID TRANSFORM
The locally distorted images are further processed. In our
application we add an image-wide rigid transform: a ran-
dom rotation and a translation (Fig. 1d). The rotation angle
is uniformly distributed between −180 and +180 degrees.
The translations are also uniformly distributed, but they are
chosen in a range [−d/4, d/4], where d is maximal image
dimension, in order to not truncate too much of the image
content. The rigid transform is recorded, as it is the ground
truth for the first, rigid step of the registration.
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C. THE USE OF THE DISTORTED IMAGES
The distorted images serve as a starting point for the evalu-
ation of registration methods. The registration should, basi-
cally, ‘‘undo’’ the distortions and transforms we applied to
the original images. For the benchmark and evaluation pur-
poses we suggest using innately registered data, i.e., original
3D images. The benefit of doing so is the available ground
truth, the original undistorted 3D stack. Summarizing, we cir-
cumvent the problem of missing the real ground truth when
comparing registrations of serial sections.

D. DAMAGING THE IMAGES (OPTIONAL)
An optional extension is to mimic the damage to which the
sections are subjected to during the processing (Fig. 2h).
Using normally-distributed pseudorandom values for dimen-
sions and placement we iteratively generate an ImageMag-
ick [139] script that deletes selected parts of an image. This
is a quite crude approximation to the variety of possible kinds
of damage to a section [91]—from an unsharp region (due to
focus error) to a teared section. However, we would like to
model missing parts of a section in an understandable and
straightforward way. Our test subject, a registration method,
would not necessarily care about the reason why some image
regions are not matchable to other images. It is not our current
goal to model the damaged sections realistically.

E. REGISTRATION METHODS
In order to demonstrate our methodology of the evaluation of
registration, we apply the following registration methods to
our distorted data sets:

1) ‘‘Rigid-SURF’’: Feature-based rigid-only registration
based on weighted RANSAC [25], [33] and SURF
feature detector [29];

2) ‘‘Rigid-SIFT’’: same as above, but with SIFT feature
detector [27], [28];

3) ‘‘Deform-SURF’’: Feature-based deformable registra-
tion [25], first stage based on ‘‘Rigid-SURF’’, followed
by multiple non-rigid stages using B-splines;

4) ‘‘Elastix’’: a generic Elastix [18], [19] configuration,
we used rigidly registered result from ‘‘Rigid-SURF’’
as input. The parameter file is made available in the
supplementary material. The non-rigid stage is not a
feature-based method;

5) ‘‘GS’’: Registration method based on Gauss-Seidel
optimization [67], we used rigidly registered result
from ‘‘Rigid-SURF’’ as input. However, the actual
non-rigid deformation is based on different princi-
ples, among others, on the gray-level co-occurrence
matrices;

6) ‘‘Blending’’: Registration method based on blending
rigid transforms in image regions [72];

The rigid methods work pair-wise on the images.
We operated Elastix pair-wise on the images, hence the
possible accumulation of ‘‘drift’’ with the progress of the
series. ‘‘Deform-SURF’’ optimizes the whole stack at once

in the non-rigid phase, ‘‘GS’’ does the same. The ‘‘Blending’’
method works backward and forward from a reference frame.
In this case, the inputs were used ‘‘back and forth’’, for a
series of 1, . . . , n images, the input was n, . . . , 1, 1, . . . , n,
essentially doubling the length of the series. The border
interpolationwas less of our concern, the images were padded
before processing.

Why the rigid transformations? The rigid-only methods
we used clearly cannot undo the non-rigid distortions. But
the non-rigid distortions also make harder the search for
correspondences for the rigid transformations between image
features. Further, a rigid-only registration is also not nec-
essarily perfect in what it does, in other words, a rigidly
transformed (Section III-B) and then rigid-only registered
series is different from the series before such transformations.

F. RESULT EVALUATION WITH QUALITY MEASURES
We propose the use of established image quality measures:
structural similarity [SSIM, 115], Jaccard measure [114],
often visualized here with slight implementation differences
as a Dice measure [116], a visualization of dense optical
flow [50]. In the latter, color stands for a direction and
intensity for the magnitude of the movement. We also use
PSNR visualization, as implemented in ImageMagick. There,
red highlights a non-correspondence. Details of Jaccard and
Dice implementations are in the supplementary material. The
latter material also details on the manner in which we crop
the images for evaluation in order to eliminate border effects.
In our visualizations, black is ‘‘neither’’, magenta and green
means ‘‘in one image, but not in another’’, white is in both.

As for image pairs, used for the evaluation, we always use
two consecutive images from each of the series. To illus-
trate the exact procedure, let image pairs ‘‘ground truth 1’’
and ‘‘ground truth 2’’, as well as ‘‘registered 1’’ and ‘‘reg-
istered 2’’, be our inputs. We compare with above image
measures the both ‘‘ground truth’’ images with each other,
as well as both ‘‘registered’’ images with each other. This
means, we compute, e.g., SSIM of ‘‘ground truth 1’’ and
‘‘ground truth 2’’ as well as SSIM of ‘‘registered 1’’ and
‘‘registered 2’’. While it might seem compelling to compare,
e.g., ‘‘ground truth 1’’ with ‘‘registered 1’’, we would see
there some larger movements that are rather irrelevant for our
goals.

Namely, each, esp. non-rigid, registration has ‘‘drifts’’ in
its results. There is a larger dissimilarity between an ith reg-
istered image and ith ground truth. Such drifts are, however,
not quite the object of our interest. We would like to compare,
how much consecutive images in the series fit each other.
With ground truth we now know, how the real consecutive
images should fit each other. When we compare each image
to the ground truth, we measure the ‘‘global’’ accumulated
registration error, but not the ‘‘local’’ registration error in the
series itself. We deem a ‘‘local’’ error, such as an discontinu-
ity in the structures, far more important as a ‘‘global’’ error,
where a rather correct structure is merely shifted few pixels
in the whole series. Of course, a throughout investigation
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FIGURE 5. Evaluating image measures on 1k× 1k pixels crop from full registration of LS. The ‘‘flow’’ images are the visualization of optical flow. The color
codes the direction of the movement. Images (f), (l) show the ground truth values: here two consecutive images of the ground truth were used to produce
the quality measures. All scale bars are 1 mm.

of also the ‘‘global’’ errors is of interest. We would like to
perform them not on the images themselves, but on their
distortion descriptions. This is, however, an issue of the future
(Section VI-A).
To give an example, Figure 5 shows some of the quality

measures, applied to different registration of the same data.
Top row (b)–(f) shows the SSIM, bottom row (h)–(l) shows
the optical flow visualization. We registered a full LS series
with all methods. We used the distorted images that were also
globally transformed as the input. Then, a 1k×1k pixels crop
from the full registration was used for evaluation to eschew
the border effects. Panels (a) and (g) from Fig. 5 show regions
cropped from the original images. Panels 5(b) and (h) show
locally distorted images, before the global rigid transform.
For all registrations, the images were locally distorted and
globally transformed. Images shown in panels (c) and (i) were
then registered with ‘‘Rigid-SIFT’’, it is the rigid trans-
formation only. Panels (d) and (j) show the evaluation of
images, registered with ‘‘Deform-SURF’’, both rigidly and
non-rigidly. Images shown in panels (e) and (k) were rigidly
registered with ‘‘Rigid-SURF’’, then non-rigidly registered
with ‘‘GS’’. Panels (f) and (l) show the evaluation of original,
non-distorted data, i.e., the ground truth.

G. SPECIMENS
We applied our method to micro-CT (abbreviated as ‘‘CT’’
in data set labels), light sheet (abbreviated LS), and EM
images of animal lungs (Fig. 6). Our CT data is isotropic,
our LS data set is anisotropic. The EM data set was captured
anisotropically, however then resampled to be isotropic. The
data was processed in the manner standard for each modality,
basically, for the processing in this paper, we perceived the
data as already processed and ready-to-use 3D images. The
images were extended to the size specified below in order to

not lose data during the global movement phase. Specifically,
we used:
• A rabbit lung acquired with micro-CT (Fig. 6a). The
specimen was a New Zealand White rabbit that was
artificially delivered 3 days early by cesarean section
and that spent 7 days in hyperoxia (95%), the lung
was perfusion fixed. The sample comes from a project
studying the bronchopulmonary dysplasia in a hyper-
oxia preterm rabbit model [141], [142], part of a larger
study of bronchopulmonary dysplasiamodels [143]. The
experiments have been approved by the ethics commit-
tee for animal experimentation of KU Leuven, project
number P081/2017.
The samplewas imaged on a Bruker SkyScan 1272 high-
resolution microtomography machine (Control software
version 1.1.19, Bruker microCT, Kontich, Belgium).
The X-ray source was set to a tube voltage of 80 kV
and a tube current of 125.0 µm, the X-ray spectrum
was filtered by 1mm of Aluminum prior to incidence
onto the sample. We recorded a set of 2 stacked scans
overlapping the sample height, each stack was recorded
with 488 projections of 3104×1091 pixels (2 projections
stitched laterally) at every 0.4◦ over a 180◦ sample rota-
tion. Every single projection was exposed for 2247ms,
5 projections were averaged to greatly reduce image
noise. This resulted in a scan time of approximately
8 hours. The projection images were then subsequently
reconstructed into a 3D stack of images with NRecon
(Version 1.7.4.2, Bruker microCT, Kontich, Belgium)
using a ring artifact correction of 7. The whole process
resulted in a data set of 1135 images with an isometric
voxel size of 7.0 µm (see also Fig. 3). The images were
pre-processed with a 2D anisotropic diffusion denoising
filter based on lattice basis reduction [140].
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FIGURE 6. The data sets used in our benchmark. The micro-CT (a) is filtered with anisotropic diffusion [140]; the EM (b) and the light sheet data (c) are
normalized individually; two consecutive non-registered serial sections (d) are provided as a reference. Further data sets can be created from 3D data
using the methodology we present here. Scale bars are: (a): 5 mm, (b): 50 µm, (c): 3 mm, (d): 1 mm.

We extracted 600 images from the middle of the fil-
tered data set for our benchmark and padded them
(Sec. III-H), yielding images at 3954× 3954 pixels;

• An EM serial block-face (SBF-SEM) data set of adult
mouse lung (Fig. 6b). The specimen was a 4 weeks old
C57BL/6 mouse, the lung was perfusion-fixed [144].
The experiments were approved by Regierungspräsid-
ium Karlsruhe. Overall, 5246 sections with 80 nm thick-
ness were cut in a Zeiss Merlin VP Compact SEM
(Carl Zeiss Microscopy GmbH, Jena, Germany), using
a Gatan 3View2XP system (Gatan Inc., Pleasanton, CA,
USA). The block-face was captured with the view port
of 525× 525 µm, yielding 15k×15k pixels with 0.5 µs
dwell time, 3.0 kV acceleration voltage and variable
pressure mode at 30 Pa.
The benchmark uses a crop from the full data set
with 1000 images at 1.5k×1.5k pixels. The final resolu-
tion is 0.15 µm /voxel. The data set was denoised with
gradient anisotropic diffusion using ITK before usage.
We did not apply any registration in post-processing,
but we individually normalized the images—as detailed
below;

• A lung for the light sheet (LS) data set was obtained
from a male 24 week-old Fisher 344 rat with a body
weight of 320 g, which was part of a ventilation study
approved by the LAVES in Oldenburg, the number of
animal experiment proposal is 17/2608. The lung was
fixed in an inflated state with an airway pressure corre-
sponding to 20 cm of H2O and perfusion fixed, compare
Krischer et al. [145]. By means of a ‘‘tissue slicer’’ the
lung was cut in slices of 2mm thickness.
The image data was acquired with the UltraMicro-
scope II (LaVision BioTec GmbH, Bielefeld, Germany).
The lung slices were pinned up to a mandrel in the ethyl
cinnamate-filled detection chamber and illuminated uni-
directionally with 6 light sheets. An sCMOS camera
detected the fluorescence light with a wavelength of
490 nm, which matches the tissues autofluorescence,
perpendicular to the illumination plane. Due to the large

dimensions of the rat lung and the intention to depict the
complete lung the only zoom factor to choose was 0.63,
corresponding a 1.26-fold magnification. The series was
acquired as 336 images with 5.16×5.16×15µm /voxel
(Fig. 6c).
For the benchmark we use 300 images at
3,9k × 3,9k pixels that were individually normalized,
see below;

• As a reference, we also provide two serial sections
of the same rabbit lung as in micro-CT, stained with
toluidine blue. Fig. 6d shows one of those sections.
The images were acquired in transmitted LM with a
Zeiss AxioScan.Z1 scanning microscope (Carl Zeiss
Microscopy GmbH, Jena, Germany) at 0.22 µm /pixel
(20× lens). The section thickness was 2 µm.

H. DATA PREPARATION, NORMALIZATION, AND
AVAILABILITY
All benchmark images were extended to a larger square to
reduce the loss of information during rotation and translation.
Their bit depth was reduced to 8 bit, LS and EM images
were normalized individually using ImageMagick and GNU
parallel [146]. The normalization of individual images is
introduced to mimic a slightly varying image intensity [111],
[147], [148] due to varying thickness of slices [149] or vary-
ing penetration of the fixation and the staining solutions,
e.g., [150]–[152].

We provide as supplementary data the original, undistorted
images, the locally distorted images, the locally distorted
and rigidly transformed images, the local distortions, and the
values for the rigid transformations.

I. EVALUATION METHODOLOGY
Our concept of the evaluation focuses on comparing con-
secutive sections from the registered series to the same con-
secutive sections from the ground truth. We decided against
comparing the images from the registered series directly
to the ground truth images: Accumulated errors from the
rigid transformations and non-rigid distortions impact such
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FIGURE 7. An illustration of the ‘‘banana problem’’. An attempt to
maintain better similarity to the neighbors produces too large distortions,
destroying the originally present curvature.

comparisons. We would be more interested in how the now-
registered series fits to itself in comparison to how it should
have fit. In a direct comparison we would have found too
many rather irrelevant mismatches. To give a simple example,
many methods might over-fit the registrations of their inputs
for the better numerical quality values (‘‘over-registration’’,
‘‘banana problem’’). The ‘‘banana problem’’ (Fig. 7) denotes
the undesired tendency of non-rigid registration methods
to straighten curved structures by optimizing the individ-
ual images’ similarity to its respective neighbors. With our
ground truth series we would be able to find such cases.

The measures were computed on the 500 × 500 pixels
crop from the middle of the images, throughout the series.
Lower values in the beginning and in the end of the series
can be explained with less tissue in the region. However,
we advocate the use of the center crop as a simple to define
and ‘‘fair’’ way to define a region. As detailed in the supple-
mentary material, it is impractical to use the full image for
the evaluation. Also, some methods used additional padding,
making the uniform and comparable use of general cropping
offsets harder. The middle of the image should arguably
have meaningful tissue contents in most cases. The ‘‘drifting
away’’ tissue, i.e., the case when different registrations accu-
mulate the errors so differently, that we obtain fully different
image regions at the same offset, is rather an exception. This
way, we have meaningful content in the most of the series
duration.

We present box plots of the appropriate values of quality
measures. In this case we decided against using violin plots.
Violin plots show outliers similarly, but the median and the
shape of the inliers can be discerned with less clarity in most
of our particular cases. (We still present some violin plots in
Fig. 11, see also supplementary material.)

We also present a statistical evaluation. We performed an
unpaired t-test with different means and unequal variances,
a Welch two sample t-test, to be exact. We always compared
a measure of registration results to the same measure of the

ground truth.We deem p < 10−6 significant; most of the time
we find even smaller p values.

IV. RESULTS
Beforehand, we have established our specimens, dis-
cussed the data processing (Section III-G), data preparation
(Section III-H), and evaluation methodology (Section III-I).
The main result of this section is a full-series evaluation with
statistical means (Section IV-A). We also include some spe-
cial cases (Section IV-B). A pair-wise evaluation is included
in the supplementary material.

Notice that full images were always used for the registra-
tion. We mostly look at the center crops for the consistency
of the evaluation, but full images were processed beforehand.

A. FULL-SERIES EVALUATION
For an evaluation of full series, we computed the three numer-
ical measures SSIM, Jaccard, PSNR over the whole series and
evaluate these values statistically. All Jaccard values below
are computed with threshold 100.

1) CT
Consider Fig. 8, presenting box plots of the full-series evalua-
tions. Overall ‘‘Deform-SURF’’ and ‘‘GS’’ stand out for their
good performance. Panel (a) shows SSIM values. Notice,
how the median in ‘‘GS’’ is higher than in ground truth
(0.895 17 vs. 0.877 45). In panel (a) ‘‘GS’’ and ‘‘Deform-
SURF’’ are close to the ground truth, while there are a lot of
outliers in ‘‘Deform-SURF’’ and ‘‘GS’’ seems to overshoot a
bit, but has some lower outliers. There are few outliers in the
ground truth, too, but they are rather symmetric. The latter
also holds for the Jaccard measure. In panel (b) there are
some outliers with high Jaccard values in ‘‘GS’’. In (c) we
see, again, similar values in ‘‘GS’’ and ‘‘Deform-SURF’’ to
the ground truth, but now there are many outliers with high
and very low PSNR values in ‘‘Deform-SURF’’. Notice also
the shape of the ground truth box content for PSNR: there
are quite many values above the median. Overall, Elastix
has good results, but quite tall box plots, indicating high
variance. A possible reason is that Elastix operated pair-wise
on the image sequence in this case. Both ‘‘Deform-SURF’’
and ‘‘GS’’ operate on a full image stack at once.

Table 1 shows a statistical evaluation. We aim to decide
with a Welch t-test, if the quality measures of a registered
series are similar to the ground truth. This is almost never
the case. In ‘‘GS’’ with respect to Jaccard measure ((b))
we see the largest similarity, according to the test, but p
is still quite low there, under 4.3× 10−4. Sometimes, the
maximal values of the quality measures for a registration
method are higher than the maximal ground truth value for
the same measure. We attribute this to a wider ‘‘spread’’ of
the variance, induced by the registration. To give an example
for the SSIM measure, the variance of ‘‘Deform-SURF’’ for
the full series is 4.29× 10−3, while the variance of the ground
truth is 1.05× 10−4.
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FIGURE 8. Box plots of quality measures for the CT data set. ‘‘R.-SIFT’’
stands for Rigid-SIFT, ‘‘R.-SURF’’ for Rigid-SURF, ‘‘D.-SURF’’ stands for
Deform-SURF, ‘‘local’’ means local distortions only, without a global rigid
transformation, ‘‘Gr. truth’’ stands for ground truth.

2) EM
Figure 9 presents the box plots of the quality measures for
the full EM series. The normalized, 8 bit ground truth was
the actual input for our distortion method. Its output was the
input of the registrations. The 16 bit ground truth is the orig-
inal data and is provided as a reference. Fig. 9 necessitated
some adjustments. There were some very low SSIM values.
We adjusted the scale of y-axis in panel (a) to show more of
the relevant details around the median values and to remove
some outliers. Panel (b) was plotted without any adjustments.
We had to filter the PSNR data to remove infinite values
in panel 9(c). Also, the quality values there for the ground
truth, 16 bit, were much higher than for other modalities.
We adjusted the scale of y-axis to show the results from the
registrations more detailed.

We see in panel (a) that ‘‘GS’’ almost reaches the level of
the ground truth, normalized with respect to SSIM. The 16 bit

FIGURE 9. Box plots of quality measures for the EM data set. ‘‘R.-SIFT’’
stands for Rigid-SIFT, ‘‘R.-SURF’’ for Rigid-SURF, ‘‘D.-SURF’’ for
Deform-SURF, ‘‘local’’ for only local distortions, ‘‘Gr. tr. n.’’ for ‘‘ground
truth, normalized’’, ‘‘Gr. tr. 16’’ for ‘‘ground truth, 16 bit.’’

ground truth has lower SSIM values because of more details.
As before, ‘‘GS’’, ‘‘Deform-SURF’’, and Elastix look quite
good in box plots. The Jaccard values (b) were rather high,
though. The probable reason is the amount of background in
the EM data set. In both discussed measures there are some
outliers on the lower side. PSNR (c) shows very high values
for 16 bit ground truth, we disregard them as all other values
are 8 bit. Concerning PSNR, we see some over-registration in
‘‘GS’’, less so in Elastix and ‘‘Deform-SURF’’: the median
values and most of the box contents (the box represents 50%
of the data around the median) are higher than in ground
truth. The box plot for the normalized ground truth shows
some outliers for the larger PSNR values, however.
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TABLE 1. The Welch two sample t-test for the quality measures on CT
data set. Similar as above, the ‘‘locally distorted’’ values originate from
applying only local distortions with our method. The registrations’ input
was also globally transformed. Concerning the appropriate measures’
values, we compare the means from each of the registration results to the
mean for the ground truth. The differences are statistically significant in
almost all cases, we show the p value for ‘‘not equal’’. The hypothesis of
the equal mean was almost always refuted with a high confidence.
We additionally show the maximal value of a measure (‘‘Max’’ column).
The mean value marked with ∗ is the one closest to the ground per t-test.
The maximum values marked with † are larger than the maximum of the
ground truth. This is a ‘‘crime’’ many good methods commit in our
evaluation. The closer is the mean to the ground truth, the better.

In the statistical evaluation (Table 2), we see a slightly
larger p value for ‘‘GS’’ with respect to SSIM, but nothing
extraordinary for this measure. The high values of 1.0 for
SSIM originate from the region at the end of the series with
few changes because of low amount of tissue. It rather indi-
cates a failure of the registration, as the measure is computed
on a center crop. As mentioned above, the Jaccard values are
rather high, again, ‘‘GS’’manages to obtain a slightly higher p
for its mean. Quite of interest is PNSR, where ‘‘Deform-
SURF’’manages a p ≤ 0.02713, but evenmore spectacularly,
Elastix has p ≤ 0.7992. This value basically means that the
mean of the PSNR for this data set, registered with Elastix,

TABLE 2. The Welch two sample t-test for the quality measures on EM
data set. The origin of the ‘‘locally distorted’’ values is as above.
We compare the means from each of the registration results to the mean
for the normalized, 8 bit ground truth. The differences are statistically
significant in almost all cases, we show the p value for ‘‘not equal’’. The
hypothesis of the equal mean was almost always refuted with a high
confidence. Notice Elastix with respect to PSNR with p < 0.7992,
it matches the mean of the normalized ground truth PSNR up to −0.2%
relative error. The mean value marked with ∗ is the one closest to the
normalized ground per t-test. We also show the maximal value of a
measure (the ‘‘Max’’ column). The maximum values marked with † are
larger than the maximum of the normalized ground truth. Notice that the
quality measures are unusually high for this data set. In contrast to Fig. 9,
we operate on unfiltered data for SSIM and Jaccard. We still had to
remove infinite values of PSNR for a meaningful analysis. The sole
method where data was individually filtered in the above manner is
marked with ¶. The closer is the mean to the ground truth, the better.

matches the mean of the normalized ground truth with a high
probability. Such a match is an exception in our evaluations.

3) LS
Consider Fig. 10. The SSIM for LS method shows quite good
values for ‘‘Deform-SURF’’, ‘‘GS’’, and also for Elastix, but
in this case with some outliers. Surprisingly, the plot for
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FIGURE 10. Box plots of quality measures for the LS data set. ‘‘R.-SIFT’’
stands for Rigid-SIFT, ‘‘R.-SURF’’ for Rigid-SURF, ‘‘D.-SURF’’ for
Deform-SURF, ‘‘local’’ for only local distortions, ‘‘Gr. tr. n.’’ for ‘‘ground
truth, normalized’’, ‘‘Gr. tr. 16’’ for ‘‘ground truth, 16 bit’’. Fig. 11 shows
some further details.

the normalized ground truth is less convincing, the original,
16 bit ground truth shows even less similarity. The variance is
clearly much larger in the 16 bit data. We can thus conclude,
that above ‘‘good’’ registrationmethod over-register. Looking
into Fig. 11a, we concludes that ‘‘GS’’, ‘‘Deform-SURF’’,
and less so, Elastix, produce much higher SSIM values than
they should have in order to be similar with the normalized
ground truth. The variance in the results of those registration
methods is also lower than in the normalized ground truth.
Panel (b) shows in a violin plot how the distribution of SSIM
values changed between the methods.

TABLE 3. The Welch two sample t-test for the quality measures on LS
data set. The ‘‘locally distorted’’ values are as above. We compare the
means from each of the registration results to the mean for the
normalized, 8 bit ground truth. The differences are statistically significant
in almost all cases, we show the p value for ‘‘not equal’’. The hypothesis
of the equal mean was almost always refuted with a high confidence. The
maximum of the normalized ground truth for SSIM was rather low. For
Jaccard, ‘‘Deform-SURF’’ reaches p < 0.168, and for PSNR the same
method reaches p < 0.7875. For the latter, it matches the mean of the
ground truth up to 0.1865%, the 95% confidence interval is −0.4345 to
0.5728. The mean value marked with ∗ is the one closest to the
normalized ground per t-test. We also show the maximal value of a
measure (the ‘‘Max’’ column). The maximum values marked with † are
larger than the maximum of the normalized ground truth. Notice that the
quality measures are unusually high for this data set. Similar to Fig. 10,
we operate on unfiltered data for SSIM and Jaccard. The method marked
with ¶ has no good values. The closer is the mean to the ground truth, the
better.

We see quite high values for Jaccard measure in Fig. 10b,
but also a lot of outliers in almost all methods. To study those
further, we present a zoomed-in version in Fig. 11c. Even
more interesting is panel 11d. There we have removed the
values 0 and 1.0 from the evaluation. Basically, those extreme
Jaccard values mean that either no correspondence at all was
found or the full correspondence. The latter can be caused by
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FIGURE 11. More detailed plots of LS quality measures. Abbreviations are same as above. ‘‘Truncated’’ means that not the full range of the measure was
plotted. In Jaccard, ‘‘filtered extreme values’’ means that numerous zero and 1.0 values were removed. They can be attributed to missing tissue or
completely full region, were no meaningful comparison can be made at current threshold. We also show some violin plots where those might bring
additional insight through their shape. Concerning the ‘‘Rigid-SURF’’ method, its quality was much lower. As this figure aims to provide a more detailed
view, we scale the box plots to better visualize the differences between other methods. Fig. 10 as well as the violin plot (f) show the full picture.
As before, ‘‘R.-SIFT’’ stands for Rigid-SIFT, ‘‘R.-SURF’’ for Rigid-SURF, ‘‘D.-SURF’’ for Deform-SURF, ‘‘local’’ for only local distortions, ‘‘Gr. tr. n.’’ for ‘‘ground
truth, normalized’’, ‘‘Gr. tr. 16’’ for ‘‘ground truth, 16 bit.’’

too low threshold value or too little detail in the particular
region. In those both panels we see a superior performance of
the ‘‘Blending’’ method compared to all other registrations.
We notice also that our local distortions do not change the
Jaccard index very much. The statistical analysis (below)
does not support the superiority of ‘‘Blending’’, however.

As also in other modalities, the PSNR value of the 16 bit
ground truth is much larger, than in all other methods that
utilize 8 bit images (Fig. 10c). In a zoomed-in version in
Fig. 11, (e) we see that for PSNR the median of no regis-
tration method exceeds the median of the ground truth. This
means that PSNRdetects no over-registration in this case. The
somewhat peculiar, uneven shapes of the PSNR distributions
are visualized as violin plots in panel (f).

Now, consider Table 3. Statistically, no registration method
matches the mean of the SSIM of normalized ground truth
well.Most of themethods (namely, ‘‘Deform-SURF’’, ‘‘GS’’,
Elastix) are well above and also all registrations overshoot
the maximum of the ground truth SSIM. In Jaccard, we have
many 1.0 values (which were not removed in this case, as we
want to contrast those statistics to the box plots). We see a
match in the means with p < 0.168 in ‘‘Deform-SURF’’,
however we would be quite cautions in this case because of
some ‘‘invalid’’, too low or too high Jaccard values. With
PSNR, ‘‘Deform-SURF’’ manages to match the mean with
p < 0.7875.
Somemethods (e.g., ‘‘GS’’, Elastix) have even largermean

values of PSNR. We would deem those methods as better
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FIGURE 12. Special cases, especially good or bad image pairs. Scale bars are: (a) =1 mm, (b) =500 µm, (c) =1 mm, (d) =500 µm, (e) =500 µm,
(f) =50 mm, (g) =50 mm, (h)–(j) = 500 µm.

than ‘‘Deform-SURF’’ in this case, if we did not have the
ground truth. We have to note, however, that all registrations
overshoot the maximum of the PSNR in the ground truth,
as evident from Table 3c. A repeated look on Fig. 11, pan-
els (e), (f) shows that the distributions of the PSNR values for
‘‘GS’’ and ‘‘Deform-SURF’’ are much more similar to each
other than to that of the normalized ground truth.

B. SPECIAL CASES
For the pair-wise evaluation in supplementary material we
intentionally picked the center of a series and a clearly defined
region. Here we would like to separately highlight some
especially good of bad consecutive image pairs in Fig. 12.
This is a subjective selection of image pairs, as contrasted
with the previous section.

In panel (a) a larger global shift in non-linear distor-
tion phase of the registrations’ input is shown. It is CT
data set, sections 95–96, Dice visualization. Fig. (b) shows
uncorrected global movement in Elastix-based registration,
same data set, sections 99–100, Dice visualization. There is
a ‘‘floppy end’’, a movement, in Elastix result (c), from same
data set, sections 305–306, Dice visualization. Mostly the
registration is good, but in the depicted region the offsets are
much larger.

In panels (d), (e) the measures of an interesting image pair
from ‘‘Deform-SURF’’ are depicted. We show Dice (d) and
optical flow (e) visualizations from the same region. There is
some movement, but is it all explainable with the ‘‘natural’’
differences in consecutive images?

The areas with little tissue (as found in our EM series
near its end) are a greater challenge for the feature-based
methods, as Figs. (f), (g) show. We see there a failure of the
feature-based SIFT method to find a correct rigid alignment.

Full images from EM data set, sections 702–703, are shown.
The probable reason is the low number of viable key points
found by the feature detection.

Subfigures (h)–(j) show a small evaluation of a particularly
good GS-registered image pair, LS data set, images 161–162.
We show there Dice visualization, PSNR, and SSIM, respec-
tively, for the same region. Notice the low values and very
few differences.

V. DISCUSSION
A. THE RESULTS AND THE ‘‘BANANA PROBLEM’’
We have mostly discussed the results in the previous section,
still there is an issue we would like to specially highlight.
We have quite often seen that methods which produce better
image-based metrics also seem to over-register the series.
It would be very hard to find such an over-registration
(a ‘‘banana problem’’, Fig. 7) without a ground truth.
CT scans of the specimens before sectioning might help, but,
as mentioned above, they lack on the resolution. Basically,
our ground truth bounds from above the amount of correspon-
dence between consecutive images. Such challenges as ours
would help to develop better registrations that try to reach
such a bound, but not to overstep it.

Occasionally, we have found the values of our quality
measures for a particular registration method higher than
for the ground truth. How is this possible? Our reasoning
is that the ground truth does not constitute a perfect cor-
respondence of the consecutive input images. It is merely
their real correspondence drawn from inherently 3D data.
This means that those registrations might create too much
correspondence, they over-register their inputs. We have also
seen an interesting effect, where the correspondences after a
registration where more heterogeneous than in ground truth.
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It appears to us that some areas were over-registered and some
areas were under-registered. Again, without a ground truth
such observations would be impossible.

In other words, to obtain good values overall or on average
(while high variance cannot be reduced), some registrations
seem to attempt to shift all of the correspondences between
the images towards their maximums. Naturally, this behavior
forces the maximal values to exceed the maximum of the
ground truth while the mean is still under the mean of the
ground truth. This leads to the ‘‘banana problem’’.

B. DISTORTION MECHANISM
Our distortions ‘‘stretch’’ and ‘‘shrink’’ the images, but their
positions are organized in a rectilinear grid, even if the
distortions themselves are random and Rayleigh-distributed.
It would also make sense to choose the distortion positions
randomly, too. However, we opted for a grid for a better
reproducibility of the appearance of the test images: a human
would know where to look. Still, the actual distorted images
do not show that much ‘‘bad’’ regularity, the above grid is not
visible, so we argue that no problems arise from such a rec-
tilinear grid placement. If our method is used to benchmark
registrations using neural networks with a direct assignment
of neurons to either pixels or distortions, the randomization
of the distortion positions might be required.

We use a rigid transformation to model the inaccuracy in
section placement. If a fully affine or an even more generic
transform is needed, our code can be easily extended to incor-
porate it. Indeed, some registration methods, e.g., [42], [153]
use affine global transformations to model wedge-shaped
sections.

To contrast phantoms to our approach: the argument on
not fully representing the distortions might also hold for our
distortion generation, but we still work with real data. Hence,
the reasoning on lacking data complexity does not hold. This
issue is especially prominent in methods based on feature
detection.

C. FURTHER IDEAS FOR THE DISTORTION MODELING
Our method currently does not directly account for tissue
folding and tearing. Such damaged areas can be represented
with ‘‘holes’’ in the images, but they currently would not cor-
relate with larger distortions in the connected areas. A real-
istic modeling of section damage was not our current goal.
Nowadays, methods to bridge section damage exist [91].
Basically, any kinds of damage can be assessed with masks
for the repair, similar to the masks we use here to simulate
the damage. Some further recent works assess cracks and
discontinuities [154], [155].

A convolutional neural network, transforming ‘‘clean’’
images into damaged ones with some kind of a style
transfer [156]–[159] is an interesting idea. We sought
for a functional and well-defined image deformation that
allowed for using transformed images as a benchmark input.
Neural-network-generated images might have some unno-
ticeable for humans drawbacks that would obscure and

throw off-track some other (probably, also deep-learning-
based) registrations—detection of adversarial examples is
a separate problem. Our test images are produced through
simple, robust, reproducible, and well-understood image
transformations.

D. IMPACT OF A 3D SERIES
We use full-blown, inherently 3D images as a series of 2D
images. Those 2D inputs are used for our benchmark for a
reason. Some registrations do not operate on image pairs, but
optimize the spatial positions of the full image stack at one.

Next, the presence of already three-dimensional images as
the starting point enables us to state how the final image stack
should look like. We digitally simulate the distortions by
sectioning and further section handling. Then we apply a reg-
istration method (we evaluate multiple of them in this work).
The discrepancy between the distorted series is larger, than
in the registered series; this is the whole idea of registration.
But, contrary to the usual 2D registrations of serial sections,
we still have the initial starting point, the 3D images. They are
in the same resolution as the registered series. We call those
initial images the ground truth.We can compare the registered
series to the ground truth and find out, what was wrong with
the registration method in question.

E. CHALLENGES IN PROJECT EXECUTION
It was quite hard for some methods to cope with large angles
in rigid transformations, in those cases we used SURF-based
rigid registrations as an initial phase. Many registrations
are inherently trimmed for the most used input data kinds
and modalities. Adaptation to further images is possible, but
requires more or less tuning. In the best case, the tuning can
be commenced with parameter files, such as with Elastix.

The present project was quite large. A decent automation
of the workflow (we used Python, bash, and GNU Make)
was key for fast and error-free processing. This issue was of
especial importance in case of the evaluations.

F. EVALUATIONS
The different normalization issues, esp. in EM data set, might
also explain the observed variations in the measurements.
This is a typical trade-off: a better normalization allows for
better registration, but a normalization also changes the data
set, so a direct comparison with non-normalized data might
be harder.

The visualizations of optical flow we used as one of the
measures is, on the one hand, a valuable tool. Those visual-
izations show issues less visible otherwise, the ‘‘hot spots’’.
On the other hand, a direct comparison of such visualizations
with each other in their present form might be misleading
because of individual magnitudes.

One of the ideas for further improvement of our work is
to compare not images, but deformation fields from various
methods. However, multiple implementation questions would
arise. One of the issue is the registration ‘‘drift’’ that would
be different in various methods: Currently, our challenge
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is complete open: the participants need to obtain the input
images and produce the result images, the registrationmethod
itself does not need to be adapted or changed, it can remain
closed-source or even a commercial secret. If we would like
to compare the deformation fields, we would need to provide
a consistent way to output comparable distortions across all
the implementations, libraries, programming languages the
participants use. The code for the actual method needs to
be changed, which means it should be available and human
resources for the change need to be allocated.

G. CONTINUOUS INTEGRATION
Our visualizations and measures are computed automatically.
No human interaction what so ever is needed: the distortions
of the ground truth, registrations, and evaluations can happen
fully automatically. Thus, our evaluation method is a gateway
to wide-scale registration challenges and to regression testing
of further developing registration methods. Our method can
be applied as a part of a continuous integration workflow
[160]. With our approach, better and more thorough regres-
sion testing of registration becomes possible.

Basically, this paper shows a further path towards automat-
ically testing different regularizations in image registrations.
The goal would be to reduce the magnitude of the ‘‘banana
problem’’, while still maintaining good registration results.
Such testing can be done with image-based metrics, as we do
here, but any other metric would work too.

VI. CONCLUSION
We introduce an approach to generate individual 2D dis-
tortions applied to existing 3D medical data. Those distor-
tions have the basic statistic properties of the cutting-induced
variations in serial sections. The distortions are computed in
a straightforward, understandable, and reproducible manner.
We also apply a global rigid transform to mimic the inexact
placement of a section on glass slide. Modeling damaged
sections is also possible. Combined, we can simulate the
transition from a tissue block to a set of serial sections. Thus,
we are able to test registration methods on such simulated
data originating from real tissues.

We provide an overview of the existing registration and
evaluation efforts. To our knowledge, the approach, we pur-
sue in this work, has not been undertaken previously.

The key contribution of this work is the utilization of the
original, undistorted data for the evaluation. Previously, it was
impossible to evaluate registrations of serial sections with
ground truth, as the tissue block is destroyed by sectioning.
Micro-CT scans currently do not have sufficient resolution
and can serve only as a coarse guide in a co-registration
of micro-CT to real serial sections. Phantoms and synthetic
images might not have the needed complexity. We use real,
micrometer-scale lung images from other modalities in this
work. By using real images of animal lungs we affirm that the
kind of the images used is comparable to real serial sections of
the same tissue. Our method is, however, directly applicable
to other organs or generic images (Figs. 1, 2).

In this work we evaluate six registration methods on three
distorted data sets. In each of them, a ground truth is present.
With the ground truth, we can not only compare the regis-
trations with each other, but also with the inherent 3D data,
in other words: with original data, with how the 2D ‘‘slices’’
should have been aligned if no cutting took place. We address
the quality of registrations with four visualizations of image
metrics and three image-based quality measures. In this work,
we both look at a specific image pair (in the supplementary
material) and provide an evaluation over the full range of the
series. Our method can be applied in a continuous integration
workflow.

We make the source code and the data sets publicly avail-
able. Further contributions, both in form of additional regis-
tration results and further data sets, are welcome.

A. FUTURE WORK
Utilization of our method, statistical analysis of real sections
[similar to 137], and an introduction of better quality mea-
sures may lead to better registrations, both utilizing deep
learning and not. We definitely look forward to more compar-
isons of registration methods. If the sectioning distortions in
resin embeddings are found to be similar to the model we use
here, or if a different model is derived, our method can be also
adapted to simulate distortions in such embeddings. Further
tests on CT or MRT data sets with artificially increased
anisotropy can be of interest.

It would be very interesting to find a way to compare the
registration result to ground truth directly. (In this work we
compare consecutive images from each of the results and
evaluate the resulting measures.) Presently, the accumula-
tion of registration ‘‘drift’’ and some global offsets make a
well-founded assessment more complicated than our present
evaluation.
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