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Abstract

This is the supplementary material for the paper “Registration of serial sections: An evaluation method based on
distortions of the ground truths”. This document includes a pair-wise evaluation of the registrations.
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1. Feature matching

Figure 1 shows selected matches from our rigid feature-
based registration with SURF (Lobachev et al., 2017). The
input images are globally transformed and locally distorted
consecutive images from LS data set (see also Krischer
et al., 2021, for details on the biological acquisition).
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Figure 1: Feature matches for affine transform estimation.

2. Details of the EM acquisition

Our EM data set was acquired with the SBF-SEM tech-
nique (Buchacker et al., 2019). Notice that although cutting
with diamond knife might induce some non-linear distor-
tions in the block face, in a typical SBF-SEM acquisition



in variable pressure mode at most the translations are to
be corrected in post-processing. This alignment is often
required due to movement of the whole block face in the
field of view. Non-linear distortions are minimized in SBF-
SEM in contrast to, e.g., serial sectioning TEM or array
tomography. In SBF-SEM no distortions or foldings, but
also no rotations are to be expected. During the acquisi-
tion of the data, which we use as an input in this work, no
rotation or non-rigid alignment, but also specifically no
translation was applied.

3. Evaluation measures

3.1. Full-size evaluation

Figure 2 shows the uncropped image-based evaluation
results on CT data set (Grothausmann et al., 2021, Appuhn
et al. (2021)), registered with “Blending” method (Kajihara
et al., 2019). Notice the border effects. Fig. 3 compares
optical flow visualization, computed on the full image
(similar to 2d), then cropped to middle and optical flow
visualization from cropped images.

In the main text, we use SSIM (Wang et al., 2004) values
from crops. We crop SSIM visualizations, as detailed
below. We use Jaccard measures from crops. In contrast to
the main paper, the optical flow visualization (Farnebäck,
2003) in Fig. 3a is computed from the full images.

3.2. Computation of the measures in general

A lot of fine details impact the metrics and the visuals.
In the main paper, we used 500 × 500 pixels crops. Due to
its nature, SSIM on crops is a lesser image. We computed
SSIM on the full images and cropped then. This does
not change the visual distribution of the measure. SSIM
values used in the numerical comparisons were computed
on crops. This way, we do not let the border effects from
padding impact the evaluation.

Our implementation of optical flow visualization nor-
malizes the sizes of the displacements across the image.
This leads to very boring images in the case first the flow
is computed and then the visualization is cropped. Here,
we computed the optical flow on crops. Arguably, differ-
ent images are less comparable, when computed in this
manner. However, “hot spots” and movement directions
are more prominent when visualized this way.

(a) (b)

(c) (d)

Figure 2: CT data set, “Blending” method. Here image-based evaluation
methods of the full images are shown. (a): Registered image. (b): PSNR
visualization. (c): SSIM visualization. (d): optical flow visualization.

(a) (b)

Figure 3: CT data set, an older result from the “Blending” method. (a):
First optical flow then crop. (b): First crop, then optical flow. Notice the
magnitude differences in the visualization.

We computed PSNR for the visuals on color images,
even though all our result images were inherently grayscale.
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The reason is a slightly nicer visualization. However, the
PSNR values on such “fake” RGB images are misleading.
The numerical PSNR values were computed on grayscale
images.

The “original” ground truth images for EM are 16 bit.
We evaluate them, too, but consider the 8 bit converted (and
normalized) ground truth images to be a better reference
value for the evaluation of registrations.

3.3. Thresholding and Dice measure visualizations

While the Dice measure can be trivially expressed in
terms of the Jaccard measure, both of them use binary
images as inputs. We use a simple threshold for Jaccard
measure; we always state the threshold in the description of
the Jaccard measure. In this case we use a global threshold.
In the main paper, in the visualization of Dice measure
we use Otsu’s method (Otsu, 1979) on blurred images,
as implemented in OpenCV (Bradski, 2000; Kaehler and
Bradski, 2014).

This section explains our rationale behind the above de-
sign decision visually. In our Dice measure visualizations
below, the binary images were produced with multiple
methods:

• global binary threshold;
• Otsu method (Otsu, 1979);
• Otsu method in blurred images;
• with Matlab’s activecontour function at 300 itera-

tions, starting from a binary thresholded image.

To give an example, consider Fig. 4 that shows a region
from LS data set. The masks, such as (b), were computed
using the activecontour function in Matlab with the thresh-
old 150. We see that the Dice measure in (d) roughly
midway between (c) and (e). We cannot hope to reach
values similar to (e) with the method used, as no non-rigid
alignment happens in this case. Thus, the result of the rigid
alignment is acceptable. It manages to align the sections
rigidly, despite additional non-rigid distortions induced by
our generation of input data.

Figure 5 shows the same region as Fig. 4, the Rigid-SIFT
method (d). Here, the same image pair is evaluated using
different thresholding methods. We conclude that Otsu’s
method on blurred images produces best visualizations,
although little difference is seen to Otsu without blur. For
our Dice measure visualizations in the main text we use

Table 1: Numerical values for the evaluation of the registrations on the
CT data set, in the middle of the series (Figs. 6, 7). In Jaccard measure,
we used a global threshold of 100. Low quality values in blending
transforms can be explained by residual shifts. Notice the differences
between the rigid-only and non-rigid methods. Notice also the lower
values in the ground truth, when compared to elastix. The ”Locally
distorted” line shows the local distortions only, without global rigid
transforms. There was some larger movement (as seen in Fig. 7), this
fact affects the measures. The registrations’ inputs, however, were also
rigidly transformed beforehand.
The larger the values, the better—up to the ground truth value.

CT

Method Jaccard PSNR SSIM

Rigid-SIFT 0.126 22.2 0.476
Rigid-SURF 0.135 22.7 0.508

Deform-SURF 0.375 28.5 0.772
GS 0.443 30.9 0.874

Blending 0.123 22.3 0.466
elastix 0.567 33.0 0.898

Locally distorted 0.0283 19.9 0.394
Ground truth 0.517 31.4 0.875

Otsu’s method on blurred images. For Jaccard evaluation
in the main text, we use the global thresholding for its
consistency. One of the reasons for these decisions: Our
input images are individually normalized. (See Section 6.)
Even if they are normalized back to a “common denomina-
tor”, some differences may remain. We also use the input
images (with all their discrepancies) in the evaluation.

Notice, that the meaning of colors white and black in
Figures 4 and 5 is different. We argue that using white for
the overlap is better.

We use two consecutive not distorted images from the
middle of each series as a ground truth for the evaluation
of multiple registration methods. We also use two consecu-
tive images at the same positioning from the registrations’
results. (An evaluation of the full series is in the main
text.) The input of the registrations is the series in its com-
pleteness after the application of distortions presented in
this paper. Both local distortions and rigid transformations
were applied. Two consecutive result images from the
middle of the registered series are subjected to the qual-
ity measures Jaccard, PSNR and SSIM, as outlined in the
main text. We also utilize two consecutive locally distorted
images to produce comparison values. In the image-based
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(a) Original data (b) Mask (c) Dice measure = 0.887,
locally distorted data, rigid
transform to follow

(d) Dice measure = 0.917,
after Rigid-SIFT

(e) Dice measure = 0.983,
ground truth

Figure 4: An example of an evaluation based on Dice measure in Matlab. (a): The region of interest, which we evaluate. It is a rat lung, obtained
with LS microscopy. Using Matlab’s activecontour function, the mask (b) is computed with threshold 150. (c): The Dice measure after the local
distortions from our method, but before rigid transform. The rigidly transformed series serves then as an input to the registration. (d): Dice measure
on the result of Rigid-SIFT method. No non-rigid steps are performed. The original, undistorted data is in (e). The higher the Dice measure is the
better.

(a) Otsu+blur threshold (b) Dice on global 100 (c) Dice on global 150 (d) Dice on Otsu w/o blur (e) Dice on Otsu with blur

Figure 5: An example of an evaluation based on Dice measure in Python. The region of interest, which we evaluate, same as above. The mask (a) is
computed with Otsu’s method on blurred images, using OpenCV. All the measures (c)–(e) are computed for an image pair, registered with Rigid-SIFT.
In contrast to Matlab, here is white the common area in both thresholded images. (b): The Dice measure visualization on global threshold of 100. (c):
The Dice measure visualization on global threshold of 150. (d): The Dice measure visualization on Otsu’s thresholding without a blur. (e): The Dice
measure visualization on Otsu’s thresholding on blurred images with blur radius 5. The higher the overlap in Dice measure the better.

evaluation we show a 500×500 pixels crop from the image
center to highlight details.

The tables below show the Jaccard, PSNR and SSIM
values for the ground truth (undistorted images), as well
as the locally deformed images. In part, the values for
the normalized ground truth images were also given, to
give an idea about the impact of intensity variations on
the ground truth measures. Same intensity variations as in
“normalized ground truths” were also present in registra-
tions’ inputs.

Hence, the effect of the non-rigid registrations can be
read as an improvement between “locally distorted” and

“normalized ground truths”, but there was also a global
rigid transformation. Undoing it with a rigid registration
might have lead to a worse starting point for the non-rigid
registration than “locally distorted”.

4. Results of the pair-wise evaluation

Basically, Figs. 6 and 7 show the pair-wise image-based
evaluations for the CT data set; Figs. 8 and 9 show the
pair-wise evaluation for the EM data set; Figs. 10 and 11
show the pair-wise evaluation for the LS data set. Table 1
shows the numerical values of the pair-wise image-based
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Figure 6: Evaluation of CT data set with image measures, part 1. Continued in Fig. 7. All scale bars are 1 mm.
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Figure 7: Evaluation of CT data set with image measures, part 2. Continued from Fig. 6. “Local only” means the distorted ground truth, but with no
global transforms applied. The registrations’ input had global transforms applied. All scale bars are 1 mm.

metrics for CT; Table 2 shows these for EM; Table 3 for
LS. The full-series evaluation is in the main text.

4.1. CT data set
Consider Fig. 6. Both rigid-only methods leave some

incongruences, these are then greatly reduced by “Deform-
SURF” (Lobachev et al., 2017). “GS” (Gaffling et al.,
2015) also works on rigidly pre-registered input, but pro-
duces a very different image of residual movements in

optical flow visualization. It reaches also very good values
with respect to other measures, e.g., SSIM. The elastix-
based registration (Fig. 7) reaches even better values with
respect to SSIM and PSNR. We see more movement in
Dice visualization, but it is not reflected in Jaccard measure
(Tab. 1). The apparent reason might be the varying thresh-
olding methods. “Blending” has some residual movement,
as seen in PSNR and optical flow visualization. The goal
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Figure 8: Evaluation of EM data set with image measures, part 1. Continued in Fig. 9. All scale bars are 10 µm.
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Figure 9: Evaluation of EM data set with image measures, part 2. Continued from Fig. 8. All scale bars are 10 µm.

of “Blending” was a coarse alignment, hence the lower
quality measures. Notice, however, that it copes with the
random global transformations on its own, without the
initial “Rigid-SURF” stage. In “local only” we see some
global movement with is a residue of a local distortion at a
larger scale. Not surprisingly, there are still some residues
of it left in rigid methods, as discussed above.

Consider the ground truth as the “ideal”, fully corre-
sponding image pair. Small signal in PSNR means little

change. It is also visible in the visualizations as less red.
SSIM and optical flow visualizations show that these dif-
ferences are local and evenly distributed across the region.
In registered images there are typically more differences;
those are also more concentrated in a region. Such concen-
trated “change” means stronger local transformations.

The visualized differences in the ground truth appear to
be less than in most of the registration results (all in Fig. 6)
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Figure 10: Evaluation of LS data set with image measures, part 1. The ground truth is normalized. Continued in Fig. 11. All scale bars are 500 µm.
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Figure 11: Evaluation of LS data set with image measures, part 2, mostly variations over “Deform-SURF”, abbreviated here as “D.-SURF”. We
differentiate the “stretch” parameter of the non-rigid phase. The default value is the factor 5 · 10−3 of the image size. We also test “Deform-SURF”
with the values 10−3 and 10−2. The ground truth is normalized. Continued from Fig. 10. All scale bars are 500 µm.
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Table 2: Numerical values for the evaluation of the registrations on the
EM data set, in the middle of the series (Figs. 8, 9). In Jaccard measure,
we use global thresholds of 100 and 150, as indicated with “J 100” and
“J 150”. “Locally distorted” means images resulting from our method
applied to normalized ground truth for local distortions, but no global
rigid transformations were used in this case. The actual registrations op-
erate on images that were also rigidly transformed. Notice the differences
between the rigid-only and non-rigid methods. Notice also the differences
between both rigid versions as well as the impact of normalization and
8 bit discretization on the ground truth values.
The larger the values, the better—up to the ground truth value.

EM

Method J 100 J 150 PSNR SSIM

Rigid-SIFT 0.928 0.923 15.6 0.813
Rigid-SURF 0.925 0.925 16.5 0.771

Deform-SURF 0.975 0.976 22.4 0.885
GS 0.964 0.967 21.8 0.885

Blending 0.925 0.919 16.3 0.816
elastix 0.979 0.981 23.4 0.900

Locally distorted 0.910 0.906 13.9 0.772
Ground truth, norm’ed 0.974 0.974 21.8 0.925
Ground truth, original 1.000 0.982 37.1 0.869

Table 3: Numerical values for the evaluation of the registrations on
the LS data set, in the middle of the series (Figs. 10, 11.). In Jaccard
measure, we used a global threshold of 100. Low values in “Blending”
and in rigid-only methods can be explained by residual shifts. Notice the
improvements in non-rigid methods. The shorthand s stands for “stretch”.
The larger the values, the better—up to the ground truth value.

LS

Method Jaccard PSNR SSIM

Rigid-SIFT 0.929 24.9 0.759
Rigid-SURF 0.599 19.0 0.479

Deform-SURF, s = 10−3 0.930 36.0 0.962
Deform-SURF, s = 5 · 10−3 0.933 36.4 0.965

Deform-SURF, s = 10−2 0.933 36.4 0.964
GS 0.940 37.1 0.973

Blending 0.928 25.3 0.777
elastix 0.941 37.2 0.968

Locally distorted 0.909 23.3 0.710
Ground truth, norm’ed 0.981 40.3 0.946

and also more scattered across the image: compare, e.g.,
the optical flow visualization between ground truth, “GS”,
and “Deform-SURF”. As for elastix (Klein et al., 2010;

Shamonin et al., 2014), there are less differences between
two consecutive images than in the ground truth. The
SSIM and optical flow visualization of elastix results show
the differing parts to be more concentrated in the certain
areas (e.g., the bottom part and the first third part of the
crop) when compared to the same areas of the ground truth.
Such a behavior is hinting at overfitting. In the ground truth
the “change” is more evenly distributed across the image.
(We can easily make statements about the localization of
the movement or local differences with the visualization
of optical flow. Optical flow highlights the movement
across consecutive images. However, in its present form,
it is rather hard to make statements about the magnitude
of the movement across multiple visualizations. In this
work we need to rely on other measures for a comparable
assessment.)

If we look at the numerical values, we observe that
all three measures are lower for the ground truth than
for elastix. The verdict appears to be that elastix (with
our parameter file) over-registers the CT data set. (The
over-registration or over-fitting of the registration is ba-
sically the “banana problem”, too much correspondence
is created.) However, there is still some noise in the data
that is irrelevant for real-world tasks. The noise, however,
still contributes to the measures and is also the subject of
registration—we did not use a mask. Such “unnecessary”
alignments of the noise might explain the too large values
for elastix. Still, the GS method is remarkable in how close
it gets to the values of the ground truth quality measures.

4.2. EM data set
We have applied a prior individual normalization in EM

data set (Buchacker et al., 2019), hence it might be less
fair to compare the registered images to original data, that
has additionally 16 bit depth. Hence, we also show the
normalized ground truth images.

The differences between rigidly registered images with
SIFT and SURF in Fig. 8 appear to be the effect of different
normalizations—we were attempting to undo the individ-
ual normalization of the image in inputs of the “Rigid-
SURF” method. Again, we see residual incongruences
with rigid-only methods. Both “Deform-SURF” (Fig. 8)
and elastix (Fig. 9) have multiple small “movements” in
optical flow visualization, as opposed to a more or less
uniform color of a global shift. “Blending” (Fig. 8) shows
somewhat uncompensated distortion in the middle of the
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image, in Dice, SSIM, and optical flow visualizations. It
appears that in this method the effect of our local distortion
(Fig. 9) has not been corrected completely, but the random
global transformation was undone well.

From the visualizations, “GS” (Fig. 8) and normal-
ized ground truth have definitely less movement than,
e.g., “Deform-SURF”. The movement in “GS” seems
more evenly distributed, normalized ground truth has a
“hot spot” in the optical flow visualization. Curiously, the
original ground truth has both more details (because it is
not clamped-down 16 bit data) and more movement can be
detected therein (compare flows and SSIM of the normal-
ized and original ground truths). At the same time, PSNR
is higher with the original image pair.

Numerically, elastix has best Jaccard measures (both
at 100 and 150 thresholds, indicated with postfix in the
following), PSNR, and SSIM among all registrations. Es-
pecially with Jaccard 100, “Deform-SURF” is a very close
follow-up, at 99.6 % of the performance of elastix. Now,
if we look at the measures’ values of the objective ground
truths—the luxury we did not have before in an evalua-
tion of registrations of serial sections—an issue is appar-
ent. Both Jaccard 100 and Jaccard 150 values for elastix
and (less so) for “Deform-SURF” are higher than for the
normalized ground truth! This issue might indicate an
over-optimization by those registrations.

To give some values, Jaccard 150 measure for elastix
is 0.748 % higher than normalized ground truth, same
method has also 7.34 % higher PSNR than normalized
ground truth; “Deform-SURF” reaches 95.7 % of the nor-
malized ground truth SSIM. Notably, from the visualiza-
tions we would deem “GS” as a very good registration,
comparable, if not beating elastix. But numerically, elastix
has much higher values.

4.3. LS data set
In LS data set the individual normalization was also used

for challenge data, in methods with SURF we also aimed to
fix those discrepancies that we created in the challenge data
to ensure better rigid registration. This explains the visual
differences between the results. As we compare images
from each of the series to each other and not across the
series, this problem is less an issue. Still, it highlights the
importance of the input normalization for good registration
results. We also used this data set to study the effect of
different distortion magnitudes in “Deform-SURF”.

In Figure 10 we see a larger movement in the rigid
method. It originates from our local distortions in the re-
gion of interest (“Local dist.”), but cannot be undone with
rigid methods only. “Blending” still suffers from these dis-
tortions, but restores the coarse correspondence well. “GS”
recovers very well from those local movements, however it
might over-register, based on visual comparison with nor-
malized ground truth. Both in optical flow visualizations
for “GS” and for the ground truth we see multiple small
“movements”, originating from the fact that we compare
two consecutive non-equal images. However, “GS” shows
less movement than ground truth, hence our above suspi-
cion. Numerical values would provide more clarity, we
will look at them next. As for elastix, Dice, PSNR, and
SSIM visualizations look very good, similar as in “GS”. In
elastix, the visualization of optical flow appears in general
to be lower than the ground truth, but it also shows a “hot
spot” at the top part of the image. However, as already
mentioned, we should be careful with such comparisons
between optical flow visualizations.

Figure 11 shows quite confident results from “Deform-
SURF”, but the “Rigid-SURF” is even worse than “Rigid-
SIFT” (Fig. 10). We use three different values for the
non-linear “stretch” in the non-rigid feature-based regis-
tration method “Deform-SURF”. The “stretch” values
we state are a factor of image size in pixels, limiting the
magnitude of the “movement” in the non-linear registra-
tion. When the deformation magnitude is apparently too
small (10−3), SSIM (and less so, PSNR) visualizations are
slightly worse, but the optical flow shows the problem “hot
spot” near the center of the image. The default magnitude
of 5 · 10−3 is already much better and does not have the
aforementioned problem. An even larger magnitude 10−2

also looks similar to the standard setting. Whether those
two parameters in “Deform-SURF” over-register can be
determined from the numerical values below. For now, we
can say that normalized ground truth is slightly better in
PSNR, Dice, and SSIM, but appears more “noisy”, but
also more “even” than “Deform-SURF”. We attribute the
variations in intensity of the registered images in different
methods to the normalization.

Table 3 shows numerical values. The Jaccard measure
is computed with threshold 100. “Rigid-SIFT” was very
successful with respect to Jaccard measure, but PSNR and
SSIM are lower than in a typical non-rigid registration. In
a contrast, “Rigid-SURF” is quite bad with respect to all
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(a) elastix (b) Deform-SURF (c) local distortions (d) ground truth, normalized

Figure 12: Selected volume renderings for LS data set.

three measures. Still, it manages to be a good input for
the non-rigid methods “Deform-SURF”, GS, and elastix.
Comparing different “stretch” values with “Deform-SURF”
numerically, we see that the default value of 5 · 10−3 is
slightly better than the larger value. Too small “stretch”
decreases the measures slightly, but it is still better than all
rigid methods, for PSNR and SSIM with a larger margin.
The “Blending” method has some problems, also evident
in visualizations. We discussed this issue above.

The methods “GS” and elastix are very similar with
respect to Jaccard measure. Interestingly, PSNR is slightly
higher with elastix, but SSIM is higher with “GS”. Both
“GS” and elastix have better numerical values than all
“Deform-SURF” methods tested here—but let us consider
the ground truth!

When compared to the (normalized) ground truth, Jac-
card and PSNR measures in all registrations are lower. Still,
the Jaccard measures for “GS” and elastix are closer to the
ground truth than in other methods. However, the SSIM
value for “Deform-SURF” is less than 2 % larger than
the actual SSIM for the normalized ground truth image
pair. Still, “GS” and elastix have even larger SSIM values
than the ground truth: 2.31 % and 2.80 % correspondingly.
Such larger SSIM values might signal over-registration.

5. Visual comparisons for LS

This section presents selected volume renderings of the
full stacks. While 3D representations typically convey
more information, a 3D overview can show only the most
coarse incongruences. We demonstrate here the volume
renderings, but base out actual evaluation on a sequence
of objective measures, as presented above and also in the
main paper.

Our volume renderings were produced with ImageVis3D
(Fogal and Krüger, 2010). Fig. 12 shows the frontal views
of the LS data set. We used the same, standard settings for
all the images.

6. Effect of individual normalizations

The individual normalizations have an effect of varying
intensity of the images through the series. Such varia-
tions should mimic the effect of varying section thickness
that is normally countered by a series-wide normalization
prior to the registrations. Fig. 13 showcases the individual
normalizations in form of a z-stack from EM series.
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Figure 13: Individual normalizations of EM series, z stacks. We show the
original data, the ground truth, after individual normalizations.

7. Effect of distortions on LS

Figure 14 shows full optical flow and SSIM visualization
of a consecutive image pair from the LS data set. Con-
cerning the locally distorted images (a), (c), notice that
there is some global movement that creates problems for
the rigid-only methods. Some traces of these problems are
still evident in the results of, e.g., “Blending”, see main
text. Panels (b), (d) show the normalized ground truth. We
use the same image pair (150–151) that is used everywhere
else for the pair-wise evaluation.

8. A violin plot

For the statistical evaluation, instead of box plots, violin
plots can be used. We advocated against them in the main
paper, as we would be more interested in the inliers. For
the completeness, we show here an example violin plot
in Fig 15. It is the Jaccard evaluation of the whole CT
series. We see there some interesting consequences on the
distribution of the outliers, but in this case little cannot be
inferred from the corresponding box plot in the main paper.
It is less clearer to see in this vioplot plot without training
which method has a higher median, though.

9. Gallery of distortion visualizations

Figure 16 shows the visualizations of our generated
distortions for the LS data set. The images are normalized;
HSV colorspace is used to visualize directions.
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C. Mühlfeld, “Capillary changes precede disordered
alveolarization in a mouse model of bronchopulmonary
dysplasia,” Am. J. Respir. Cell. Mol. Biol., Mar. 2021.

T. Kajihara, T. Funatomi, H. Makishima, T. Aoto, H. Kubo,
S. Yamada, and Y. Mukaigawa, “Non-rigid registration
of serial section images by blending transforms for 3D
reconstruction,” Pattern Recogn., vol. 96, p. 106956,
Dec. 2019.

14



(a) (b)

(c) (d)

Figure 14: Consecutive images from LS data set after local distortions with our method (a), (c), and before (b), (d), i. e., on ground truth. Figures (a),
(b) show optical flow visualizations, (c), (d) show SSIM.



0.
0

0.
2

0.
4

0.
6

R.-SIFT R.-SURF D.-SURF GS Blending elastix local Gr. truth

CT, Jaccard

Figure 15: Violin plot of the Jaccard measures over the whole CT data set, registered with various methods.

Figure 16: Visualizations of our local distortions on LS data set.
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