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ABSTRACT
We present a device for detection of hail dents in passenger cars. For this purpose we have constructed a new
multi-camera deflectometric setup for large specular objects. Deflectometric measurements have strict constraints
how cameras can be placed – for instance: angular restrictions and distance limitations. An important trait of our
system is the static setup – we use a single setup for camera configuration for all objects to be scanned.
We render the camera images and analyze them for the deflectometric needs to optimize the camera placement
w.r. t. multiple parameters. Important ones are the positions of the cameras – reflections of the patterns should be
clearly visible. Camera parameters are computed using a global optimization procedure for which we efficiently
generate a good starting configuration. We introduce an empiric quality measure of a particular camera configuration
and present both visual and quantitative results for the generated camera placement. This configuration was then
used to build the actual device.
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Figure 1: We optimize the camera positions for optimal inspection of specular surfaces using reflections of projected
patterns. From left to right: an overview of the setup with color coding to show different projection screens; view
through one of the cameras where the borders between screens are clearly visible; a picture of the actual device; hail
damage on a (white) car where the dents are clearly visible as distortions of the reflected pattern.

1 INTRODUCTION

One of the most problematic events for car insurance
companies are hailstorms as numerous claims need to be
processed in the shortest possible time. Currently, each
car needs to be assessed and documented by a human
expert using a camera and a pattern that is reflected by
the damaged surface. As this process is very time con-
suming, insurance companies are highly interested in
automating assessment and documentation. The main
challenge is reducing the recording time to process all
damaged cars shortly after the event. Analysis and as-
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sessment may take longer since the claims settlement –
i.e., repair – is the limiting factor anyways.

Traditional methods like laser measurement can only
reconstruct an object if it consists of a diffuse material
(see, e.g., [19]). For the inspection of specular surfaces,
these methods are not applicable. One possible solution
to this problem deflectometry. Cameras record reflec-
tions from a specific pattern on the surface. Once the
pattern and the positions of the camera and the pattern
generator (e.g., a fixed pattern or a display) are known,
the surface normals can be calculated by comparing the
distorted pattern reflection with the expected one.

In this joint project with i-Lumica AG, PHIcom GmbH,
OGP Messtechnik GmbH, ALTRAN Group, AXA
Auto Competence Center and ExactVision Bildver-
abeitungssysteme GmbH, we developed a specific
deflectometric measurement system. The goal was
to detect hail damage in cars, shown in the rightmost
image in Figure 1. The whole measurement procedure,
including driving the car in and out should take no more



than three minutes. Our setup significantly differs from
the traditional approach where a human expert uses a
single camera and pattern to document the hail damage:

• We consider complete large objects: passenger cars.

• A large variety of different objects – any car, not a
particular brand and model – should be measured
with a completely static setup.

• We do not move a single camera and pattern projector
above the surface, but use a multi-camera setup with
multiple projectors.

In Figure 1 the third image shows the actual mea-
surement device. It is built using 13 back projection
screens, in between cameras can be mounted on alu-
minum beams.

For objects with a complex form, one camera alone can
not measure the complete surface. However, setting up
more than one camera can mitigate this problem and lead
to an almost complete coverage – we will show this fact
practically. Positioning the cameras and maximizing the
coverage is performed using global optimization. An
important issue in our setting is the optimality of camera
positioning for a broad set of scanned objects. We do
not optimize the setup for a single particular target, but
for a set of different targets.

In this paper we address the optimization of the cam-
era placement. We use optimization metaheuristics to
maximize the coverage, i.e., the amount of the surface
that the cameras can inspect. Car insurance companies
require at most 3% tolerance in the number of hail dents.
If we reach a sufficient coverage, we can presume that
the remaining area has the same density of hail dents or
less. This assumption is feasible as the uncovered area
is both visually and physically less accessible and thus a
lower density of hail dents can be assumed. If we obtain
a coverage of 94% and estimate ∼ 3.2% more hail dents
than found, we have 3% too many if there are none and
3% too few if the density is the same as on the covered
area.

The main contributions of this paper are:

• We present and discuss our novel setup and its opti-
mization.

• Using ray tracing we obtain qualitative measures for
the coverage of a given camera configuration.

• We propose an algorithm for the initial camera place-
ment that produces good starting values, essential for
the subsequent optimization.

• Using quantum annealing for further optimization,
we have achieved almost complete coverage (≥ 94%
of the visible surface).

• We verified our method on a broad set of car models,
including a car that was not used during optimization.

• We use a static setup, i.e. a single configuration is
used for all models.

2 RELATED WORK
There are many applications for which it is necessary
to reconstruct the surface of an arbitrary object. Often,
only contactless measurement methods are possible [2].
Existing approaches that measure the quality and char-
acteristics of a surface mainly depend on diffuse materi-
als. Highly specular materials and objects with complex
form are harder to measure. Two different methods form
the so called traditional techniques. These include, but
are not limited to, stereoscopic vision and triangulation.

Stereoscopic vision uses two images that are recorded
from different positions to create a 3D representation
of a given object [9]. The two images can be matched
by a set of feature points or by dense matching. The
distance to the camera can then be estimated for each
pixel based on the parallax. This is also used by almost
all primates for spatial vision [26]. Stereoscopic vision
fails in case of specular surfaces because the points can
not be matched in the exact surface plane, but only in
the mirror plane, which lies behind the actual surface.

The second approach is the triangulation of incident
light on a surface [19]. A laser scanline is projected
onto the surface and recorded by a camera above the
laser. Then the distance to the surface can be calculated
from the vertical displacement using triangulation. This
process depends on diffuse or partially diffuse surfaces
and does not work for highly specular objects. If the
diffuse reflection is too dim, the surface needs to be
coated, which is not possible for all types of objects.
These techniques can be used as a fallback for surfaces
that are not specular enough and therefore not suitable
for deflectometry.

2.1 Deflectometry
The deflectometric inspection of specular surfaces [15,
27] simulates the way how humans recognize the shape
of such surfaces: we look at the distortion of the reflected
patterns and infer the shape of the surface from the
reflection and the original form of the pattern. A stereo
setup makes it possible to infer the point cloud of the
surface from a set of specular reflections [2, 20]. The
reflected patterns are projected on a back light screen
using a pattern generator. A camera records the reflected
image of the pattern on the surface. Because the pattern
has a known structure and can additionally be modified
when taking several consecutive images, it clearly shows
the distortions induced by the shape of the surface.

Although deflectometry has been known for 25 years,
practical methods became feasible only recently [7, 14,



16, 18]. Our method differs from these in several aspects,
although others also compare with a reference [2, 16].

multiple cameras Most approaches use a single cam-
era and move it along the object. We use many fixed
cameras.

static setup Our setup is not repeatedly optimized for
each particular model, but the camera positions and
orientations remain fixed in productive use.

multiple objects Our system scans multiple different
cars without modifications of the setup in-between.

optimization We optimize the camera positions, which
is not considered in most papers on deflectometry.
We discuss related work for optimal camera place-
ment below.

stereo We could also use deflectometric stereo, i.e., the
reconstruction of 3D image with multiple sensors [2,
3, 18, 28]. In an interesting alternative approach,
Zheng et al. [31] rotate their objects in order to spare
the number of cameras and projection screens.

Directly related to our work are the papers by Balzer et
al. [2] and Hong et al. [14]. The first uses a deflectomet-
ric setup to find a dent in a part of a passenger car. In
contrast to our work, a single sensor and a single projec-
tion screen are moved on a robot arm. The second utilize
two cameras and five screens for deflectometry of solder
joints. They were not concerned with the optimization
of camera positions; further we use much more cameras.

2.2 Optimization
For deflectometric measurements, the camera must be
placed in such a way that the whole surface of the object
is visible and entirely covered by the reflected pattern.
For objects with increased complexity, such as car bod-
ies, this is not feasible using a single camera and pattern
only. Multiple cameras must record the surface. The
necessary condition is that every point on the surface
can be seen by at least one camera. This is known as the
art gallery problem and has received profound research
attention. While this is necessary for any measurement,
it is not sufficient. The cameras must view the surfaces
in such an angle that every point on the surface is also
covered by a reflection of the pattern [8, 11, 23].

In mechanical measurement apparatuses, the placement
of cameras can not be arbitrary. Certain conditions must
be met, such as traverses and beams that can be fitted
with cameras and there must be a minimum distance
between two cameras. As the installation of cameras is
tedious and time-consuming, a preceding optimization
of camera positioning is crucial to build the device. Cam-
era position optimization [13] was most often researched
for a single camera. The random walk method [29] is

often used for camera positioning, while some other ap-
proaches, like genetic algorithms [24], are viable. See
also the references in Olague and Mohr [24].

Random walk. This optimization method [6, 29], ab-
breviated here with RW, is a typical approach to camera
placement [30]. It is often used in computer vision
[5, 12, 22]. The camera positions and target directions
are “jittered” a bit with random values, then the new
position is evaluated. If it is better than the previous one
it is kept and otherwise discarded. This method often
gets stuck in a local optimum if the step size is too small.

Adaptive simulated annealing. The adaptive simulated
annealing method, in short ASA, is a global optimization
metaheuristic [17]; it is adaptive because the step size is
adjusted to the current state of the problem. ASA has
an important property of being a global optimization
method. “Usual” optimization algorithms are local, i.e.,
as soon as the local optimum is found, no better solution
is reached. In contrast, the ASA can “move away” from
the local optimum in a search for a global optimum.

Quantum annealing. This method [1, 10] (abbreviated
QA) slightly differs from ASA. To achieve global maxi-
mum, ASA allows certain “setbacks”: the result might
be worse temporarily. In contrast, QA “tunnels” through
regions between local optima, which also allows QA to
find a global optimum. More formally, in QA the tun-
neling distance for the current step determines possible
candidates for the next state; in ASA this depends on the
notion of temperature in the annealing analogy. QA can
be seen as a quantum Monte-Carlo method. QA is also
similar to RW, the key difference lies in how the “jitter”
radius is defined, depending on the step count. In RW
this radius is constant. In QA the radius is chosen based
on a normal distribution. The variance of this distribu-
tion is steadily decreasing, but very large, “tunneling”
jumps are still possible, although less and less probable
with increasing number of steps.

While ASA and QA could be used in our case, the latter
has several advantages. The possible camera positions
do not form a connected manifold and thus jumps are
inevitable. While this is natural in QA, it needs to be
specially handled in ASA. In addition, QA has been
evidenced to need relatively few iterations compared to
ASA in order to find a good solution [21]; in our case
iterations are quite costly for setups with many cameras
and objects.

3 MEASUREMENT SYSTEM
Our setup includes 13 projection screens placed in a
“greenhouse” structure as shown in Figure 1. Note
the spaces between the screens. First of all, this is a
construction-induced limitation; however, we also use
these spaces to place cameras without obstructing the
projection screens. The placement of the cameras on



the supporting beams induces some limitations to the
camera placement, as discussed below in Section 3.1.

Each camera records several images using different pat-
terns on the projection screens. Based on that data, the
hail dents are detected as shown in Figure 2. To register
the dents on the car and remove duplicate ones, we need
to determine the exact position of the car. For this pur-
pose, we mount four wide-angle cameras: to the left, to
the right, behind and above the car. Then we use back-
ground subtraction [25] to detect the car. We compare
the captured images to the views of 3D models, mini-
mizing the difference between the covered pixels. This
gives us the position and actual reference model of the
car. Note that the reference car models are segmented,
as we need to assign the hail damage to construction
parts. Projecting the images back onto the reference
model gives us the exact positions of the hail dents. Sub-
sequently, duplicates are removed. The final list per part
is the result of the deflectometric measurement.

Figure 2: Camera image showing detected hail dents. In
addition, the dents are classified into those that can be
repaired without much effort (cyan circles) and those
that cannot (red circles).

3.1 Constraints
Our approach considers a number of constraints regard-
ing the installation and then optimizes the complete
camera set. All parameters are subject to a global op-
timization procedure that will generate the parameter
values with the highest coverage possible with respect
to the specified constraints.

We change both position and orientation of the camera,
as well as the focal length of the lens. Hence, each
camera theoretically possesses 7 degrees of freedom: 6
DOFs for the camera position and orientation and one
for the focal length, which we choose from a fixed set.
The position is limited by the construction constraints:
the cameras are placed on beams between the projection
screens (see Figure 3) and the orientation is also limited
to 2 DOFs. So in total there are only 3+ 1 DOFs per
camera. A further constraint is the distance between
cameras. Due to construction limitations two cameras
need to be almost 10 cm apart. We set this distance to
exactly 10 cm in our optimization.

Summarizing, some constraints are implied by the phys-
ical properties of the cameras: focal distance, depth of
field, resolution of the sensor. Other constraints emerge

Figure 3: Camera mounted between two projections
screens. Note that while the view direction can be modi-
fied, the up vector of the camera is fixed.

from the physical construction: we place cameras not
everywhere, but only where it is mechanically feasible.

We define several criteria that need to be fulfilled for
each point on the surface of the car body in order to
be classified as covered. These include basic visibil-
ity (visible by at least one camera), extended visibility
(visible by at least two cameras if 3D reconstruction is
desired), visible reflection of pattern display, and reflec-
tion adequate for deflectometry. In the following, we
will discuss these criteria in detail.

Notably, surface parts with interreflections (e.g., con-
cave parts of the car surface) are marked as not covered.

3.2 Visibility
The most basic requirement for coverage is the visibility
of each point. This is easily determined: If a point
can be seen by at least one camera, it is visible. To
compute the visibility of a certain point, several steps
are performed. The images resulting from all of the
cameras in the scene are processed. Covered pixels are
transformed into covered patches on the surface of the
object. Any area not covered by a camera is not visible.

3.3 Reflections of pattern display
For each point, the eye vector describes the direction
from which the camera sees this point. A reflection
can occur when the reflection vector ~R belonging to the
eye vector ~V hits one of the pattern displays. Figure 4
illustrates this concept.

One problem during the optimization with respect to the
visibility of reflected patterns are the gaps between the
display segments. They result from technical and me-
chanical constraints during construction of the system.

Figure 4: Fresnel reflection angles on the surface and
display.



Solving this problem is easy, as the affected points have
to be covered by a different camera.

The reflection quality is the most interesting and difficult
requirement. An adequate reflection is one that fulfills
the deflectometric requirements [16]. For our system,
we can reduce these requirements to the following:

• Possible reflection

• Actually visible reflection

• Reflected image must not hide details.

The possible reflection is already guaranteed by the pre-
ceding paragraph. It is necessary for any further calcula-
tions. Whether the reflection is actually visible depends
on several factors. The viewing angle influences the
strength of reflections on the surface. This is known
as the Fresnel effect. The angle between surface nor-
mal and viewing direction θ1 differs between points on
the surface. The glass panels of the projection screens
induce another limitation of the viewing angles. The
angle θ2 between the normal of the screen surface and
the view vector ~R must not be too large, otherwise the
Fresnel reflection creates an overlay on the pattern. In
our experiments, we found that up to 60◦ the reflection
does not cause measurement artifacts.

Furthermore, we want to maintain a good quality of the
reflected image. Shrinking1 the image in one direction
leads to severe loss of resolution. We do not want the
shrinking in lateral direction to exceed 1 : 2. This leads
to the second limitation: the viewing angle θ1 between
surface normal and view vector ~V must be less than
θmax, the angle where the lateral shrinking is 0.5. Any
angles larger than θmax = 60◦ are still visible, but lead to
distortions due to the extreme shrinking of the reflected
pattern. Since we want to avoid such errors, θmax is the
upper bound for the acceptable reflection angle.

The final restriction is the minimum resolution on the
surface. The projected pixel should be smaller than a
given threshold in both directions. Note that the pro-
jected size is not only distance and focus dependent, but
also changes with θ1.

4 OPTIMIZATION
The goal of our simulation approach is to optimize the
camera placement in a scene of multiple cameras and an
object. The more parts of the object’s surface are visible,
the better the placement is. Therefore the coverage, a

1 Strictly speaking, there are two kinds of lateral shrinking of the
pattern: if the surface curvature is too large and if the projected
pattern is viewed under a too sharp angle. Both are important
for our application, but in the following we discuss the one
that is actually controllable with camera placement.

measure for covered surface, is an important objective
function. We aim to optimize the input parameters (po-
sition and view direction of every camera in the setup)
leading to the best possible coverage. The simulation
data was used to determine the number of required cam-
eras and their optimal position and orientation for the
construction of the actual physical device, see Figure 1.
The coverage is the value we are maximizing, i.e., the
quality measure of the camera placement. We define it
as the relative car body surface area, which is seen by
a camera and covered with a suitable pattern reflection.
We combine the individual coverages for all cameras
to obtain the total covered area per model. Then we
combine the relative coverages of all models using

xmax = argmax
x∈D

(
min

1≤i≤N

{
Acov,i(x)
Atotal,i

}
+

λ

N

N

∑
i=1

Acov,i(x)
Atotal,i

)
,

where D is the search space, as discussed in Section 3.1,
and i iterates through the N car models. We use the
penalty weight λ to increase the convergence rate. In
this manner not only the worst case is optimized, but
also the others. We use quantum annealing to compute
xmax and thus maximize the coverage.

4.1 Computing the coverage
We use ray-tracing on commodity graphics hardware to
simulate the recorded images for a set of cameras and
then compute the covered area Acov,i of each car. During
this process, we estimate the total area of the car body
surface in which the pattern reflection is clearly visible
and which meets all constraints discussed in Section 3.1.
Basically, we add up all pixels of the specular car surface
for that the above constraints are satisfied. This value is
then divided by the total externally visible area that is
computed before starting the optimization.
Each car model is prepared in order to efficiently mea-
sure the covered area. The model is first split into reflec-
tive parts that need to be measured – i.e., the car body –
and the remaining parts that may occlude the reflective
ones or the screens. In addition to calculating per face
and per vertex normals for the reflections, a texture map
is created by unwrapping the car body using simple box
mapping [4]. The Figure 5, left, shows the generated
texture atlas of a car body. We use the texture map to
determine if a pixel is externally visible: we simply trace
several rays outward and check them for occlusion.
For each optimization pass the view of every camera is
rendered to determine which parts are visible and contain
usable reflections. Then each pixel of the camera view
is mapped into the texture atlas. As the only information
we need for this mapping is the texture coordinate of
the pixel, we simply store that in the render buffer. For
pixels that do not meet the constraints, we simply store
invalid coordinates (e.g., [−1,−1]). Figure 6 shows the
content of this render buffer for one of the cameras.



Figure 5: Texture atlas of a sample car (left) and com-
puted coverage mapped onto the model (right). Almost
everything is green, meaning sufficient coverage.

Figure 6: Intermediate buffer storing the texture coordi-
nates of each pixel containing a suitable reflection of a
pattern. These images are generated for every camera
and mapped into the texture atlas.

4.2 Initial placement
All random-walk based methods, including QA, are lo-
cal search methods. Good start values are crucially im-
portant for the quality of the result and the runtime. The
first phase generates an initial placement of all cameras.

We place a camera, to cover the largest “hole”. These
are detected by low pass filtering the texture atlas using
a Gaussian filter of radius 0.1 of the texture size. Then
we search for the local maxima and keep the largest 10.
To place a camera, we choose randomly one of these
and determine position and normal at the closest texel
containing a part of the surface. Based on position and
normal, we first place the camera 1 m above that point.
Then we choose a random position within a distance of
1 m from that point and project the camera to the closest
free location on a beam. This process is repeated 100
times for each camera and the placement with the highest
coverage is chosen. Note that the filtering and search
are performed once for each camera, so the additional
overhead is relatively low compared to QA iterations.

Note that the initialization search phase is not required,
as QA would have found good solutions anyway, but
greatly improves the speed of the computation.

4.3 Output
To visualize the quality of the currently found solution
and build the actual device, we produce several outputs.
These are a texture depicting the current coverage, a
text output of the minimum coverage, and the camera
placement itself. Using color-coding, we can show each
point’s characteristics. Pixels that are covered are green
and the others are red. In addition, pixels that are not
visible from above or beside the car are black. The latter

100 cameras, 1000 iterations

Method RW SA QA IP+QA*

Time, s. 8344.34 7851.55 6995.35 3256.38

Table 1: Left columns: run time for three optimization
methods, right: mean run time for the performance-
tuned QA method with initial placement phase, desig-
nated “IP+QA*”. All approaches use 100 cameras, we
measure the time for 1000 iterations. Time is in seconds.

is, e.g., the case for pixels covered by the license plate,
in joints, or in the bottom-facing parts of the car. The
right image in Figure 5 shows such a visualization.

The textual output of the simulation is the list of cameras
with their position in the construction coordinates and
their look-at point. We also implemented a script to
import these in 3D-modeling/CAD software to visualize
the cameras and for the construction of the actual device.

5 RESULTS
We optimized the camera positions for twelve different
car models. These models were chosen to be as variative
as possible to ensure covering maximal shape space.2

The cameras we use have a 6.9 mm × 5.5 mm CCD
sensor with a resolution of 1280× 1024 pixels. The
cameras are capable of producing images at 100 fps.
These parameters where chosen because of the sharp
capture time limitations. The focal lengths of the lenses
are 9 mm, 12 mm, 16 mm, 25 mm, and 35 mm. As
desired resolution on the car body surface, we set a min-
imum of one pixel per mm. Relatively small resolution
of the cameras is compensated by their speed; more
cameras are added to achieve the desired resolution on
the car surface. We found the minimum number of cam-
eras required to achieve the desired coverage of 94%
to be 99 for our test set. While the minimum coverage
was 94.0006% (Chevrolet Lumina), the peak coverage
was 97.0595% (Volkswagen Golf 6). Still remaining
red spots (see Figure 7) are outliers outside the desired
coverage. The high number of cameras stems from the
desired accuracy of ∼ 0.5 mm for the detection.

The optimization was performed on an Intel Core-i7-
3770K at 3.5 GHz with 16 GB RAM and NVIDIA
GeForce GTX 680, running Windows 7. For the quan-
tum annealing we used λ = 10−3. The number of iter-
ations is 10000, disregarding heat-up. In each iteration
we either changed the position of a single camera or
moved all cameras. In the first case the distance of the
camera “jitter” ranged from 50 cm to 0.1 mm, and in the

2 The models were: Audi R8, BMW X5, Chevrolet Lumina,
Fiat Grande Punto, Ford Focus ST, Volkswagen Golf 6, Mazda
MX5, Mercedes C, Peugeot 107, Porsche Carrera GT, Renault
Clio 2, Toyota Auris.



second case from 5 m to 1 mm. The cool-down factor
was ε− ≈ 0.99915, the heat-up factor was ε+ ≈ 1.1857.
Each time, we found a better solution, the temperature
was increased by that factor. In total, the optimization
took 25.5 hours. The optimization time is less than the
three days required to set up the rest of the device before
the cameras could be mounted.

We compared the number of required cameras for all cars
against the number required when optimizing for each
car separately. Figure 7 shows the coverage–number of
cameras relation. For all 12 cars in a static setup, the
number of cameras (99) roughly doubles the number
required for each car alone (35–67).
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Figure 7: Comparison of coverage when optimizing
for each car independently (left) vs. optimizing for all
cars together (right). The horizontal axis represents the
number of cameras, the vertical axis shows the coverage.

Figure 8 shows the coverage visualized on some of the
car models. Most important here is the top view as hail
dents are much more common on horizontal surfaces.
The rightmost image shows an experiment to test our
approach. After optimizing the cameras for the 12 cars,
we used this setup to compute the coverage of the first
generation Pontiac Firebird, which was not included in
the optimization set. We reach a coverage of 93.87%.
Hence, an acceptable coverage is also possible for cars
that were not considered during the optimization of the
camera placement. This makes it easy to use the camera
setup for cars that are newly introduced to the market,
because the shape space changes only marginally in
short time. Still, the setup needs to be revised at some
point as those chances in shape space can add up and
need to be covered. The bigger the shape space is during
optimization, the less revisions are due. This has also a
positive effect on custom car alterations, e.g., spoilers.
Surface parts occluded by these are less prone to dents.

6 CONCLUSION & FUTURE WORK
We have presented an approach to build a deflectometric
measurement system for large specular objects using
a multi-camera setup. The objects measurable by our
setup are complete cars – a quite large field of work. The
device we describe here was actually built and is now
operational at AXA, Bern. We use quantum annealing
combined with an effective initial camera placement to
determine the optimal camera placement. We consis-
tently reached high coverage rates for multiple simulated

vehicles using a single configuration – the set of cam-
era positions, orientations and focal lengths, shared for
all vehicles. Approximately 48% more cameras are re-
quired for all cars than for the most difficult one alone.
There are some issues to investigate in our future work.
Other build forms for the supportive constructions for
projection panels and camera mounting could be viable.
It could make sense to try some further optimization
methods on the whole setup, not only for the cameras.
The cameras also have further advanced parameters one
could change during the optimization, like the tilt for the
selective focus. We will further investigate the possibil-
ity to dynamically group the cameras for 3D reconstruc-
tion without reference models. It would also be possible
to use multiple camera triples for a 3D reconstruction.
We have tested this approach in our simulation, but do
not use it in the actual device due to the higher number
of cameras and availability of reference models. While
3D reconstruction is not necessary in the current system,
it could be of interest for future projects.
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