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Abstract PGP public keys are relatively small binary data.
Their hashes are used and also visualized for comparison
and validation purposes. We pursue a direct, but previously
unused approach. We produce colorful images of public keys
and other binary data by generating drawing primitives from
binary input. Optionally, we also include the hashes in the
visualization. The visualization of raw data together with
its hash provides a further security benefit. With it we can
visually detect hash collisions.

The primary focus of this paper is a direct visualization
of public keys. We tune the transparency heuristics for better
results. Our method visually detects key spoofing on real
SHA1 collision data.

Keywords Visualization · cryptography · public key · hash ·
collision · PGP · SHA1 · SHA2

1 Introduction

Public key cryptography is an important application in the
modern world. Almost all communication channels in 2017
are encrypted using session keys that emerge from public-
key-based key exchange mechanisms. PGP [27] was one of
the front runners of using encryption in email exchange and
pioneered the usage of military-grade encryption standards
by the masses. Modern PGP implementation is GnuPG [10].

The typical way of obtaining a PGP public key is a key
server or an initial message with the key attached. But how
can one be sure that the key is correct and originates from
intended source? The initial approach was to verify a fin-
gerprint of a key [19]. Fingerprint is a cryptographic hash
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Figure 1 Interpreting author’s public PGP key (first few bytes are
shown at the top) as a sequence of pixel colors is not aesthetically
pleasant (bottom left), while interpreting the same data as a sequence of
drawing statements (bottom right) produces nicer images.

of a key with some metainformation added before hashing.
Ideally, a fingerprint should be obtained from an alternative
source (such as a phone call) and verified with the fingerprint
of insecurely obtained key. However, fingerprints are quite
tedious to transmit and to compare for a human. Efforts to
improve this [3,17] produce either a small ASCII-art image
or a “random art” of the fingerprint. For these visualizations
following holds:

– They are visualizations of a hash,
– They are not quite aesthetic,
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– They can serve for a fast visual validation, as varying keys
(even by few bits) should have very different hashes,

– They are prone to hash collisions if their hash function is
compromised.

A very straightforward alternative mostly fails. We might
try to interpret a key as a binary sequence of pixel colors. As
the cryptographic data is mostly randomly distributed over
the value range, the result looks mostly like random noise and
is ill-suited for a visual comparison by a human, as Figure 1
shows.

For the best presentation of our method we provide a
short introduction to public key cryptography and a notation
of cryptographic protocols first and only then list the features
of our contribution.

1.1 Formal notation for cryptographic protocols

To formally describe the interactions between multiple parties
we use a simple notation similar to one by Cervesato et al. [4].
When Alice (A) sends Bob (B) a message, we write

A ! B : message contents.

An encrypted message is denoted with {plain-text}key.

1.1.1 A typical PGP workflow

Alice (A) and Bob (B) want to communicate securely. Bob’s
public key is available at a public keyserver (S). Alice re-
quests the key, the keyserver supplies Bob’s key KB and its
fingerprint f (KB):

A ! S : request public key(B)
S ! A : KB, f (KB).

Alice should have obtained the fingerprint f̂ (K̂B) via a dif-
ferent channel, such as calling Bob per phone. If f̂ (K̂B)
and f (KB) are identical, the keyserver supplied a genuine
key KB. This step is, however, tedious and is often (and mis-
takenly!) omitted. Now Alice can use the key KB to encrypt
her plaintext message m to Bob:

A ! B : {m}KB .

Only Bob can decrypt {m}KB . The workflow is similar in
many other cryptography applications.

1.1.2 A simple attack

Now we also have the attacker Eve (E), who manages to tam-
per with Alice’s internet connection so Alice never reaches
the genuine public keyserver S:

A ! E : request public key(B)
E ! A : KE , f (KE).

Alice receives from Eve a malicious key KE with a matching
fingerprint instead of correct Bob’s key KB. If Alice never
bothers to verify the fingerprint with Bob, she now sends a
message that only Eve (still tampering with Alice’s internet
connection) can read. Eve intercepts the message:

A ! X : {m}KE .

Alice thinks X is Bob, but X is Eve. Eve can decrypt the mes-
sage, as she has created the maliciously used public key KE
and knows the corresponding private key. Having the plain-
text message m, Eve can even obtain the genuine Bob’s public
key KB (in the manner described above) and play the man in
the middle. Eve tampers the message to be m0 and sends it:

Y ! B : {m0}KB .

Bob may think Y is Alice, but Y is in fact Eve. If Alice
would verify the fingerprint, this would not happen. Our
approach allows for more visual verification of public keys.
Of course, more advanced techniques such as public key
based signature would have prevented this very simple attack
and would request more complicated approaches. However,
the core idea is the same.

1.2 Contribution

In this paper we propose a visualization of short binary se-
quences (mostly public keys) that:

– Makes key collisions are visually detectable (Sections 3.4
and 4.1), thus improving security. Basically, the visual-
izations are different for two different keys with the same
hash;

– Is aesthetically pleasant (as, e.g. Figs. 1 and 10 show);
– Is the same for same keys;
– Works for arbitrary binary data. Our method is indepen-

dent from cryptographic algorithm that utilizes the keys
we visualize.

2 Related work

To our knowledge such visualizations have not been attempted
before. The closest approaches known to us are the hash
visualizations: the work of Perrig and Song [17] and a the
visualization used in ssh [3] (called VisualHostKey, Fig. 2,
left). Our approach in same figure, right, visualizes the key
directly. Perrig and Song [17] visualize only the hashes using
the so-called “random art” technique. We deem our method
more simple. In our opinion it also produces nicer images.
Further, VisualHostKey is an ASCII-based visualization of
hashes. We convert input bytes to a (potentially scalable)
graphical visualization. Basically, where VisualHostKey
has a printable subset of ASCII characters and their position,



Direct Visualization of Cryptographic Keys for Enhanced Security 3

+---[RSA 2048]----+
|XBoo+. |
|X o=. |
|.= .o |
|+ o.o |
| E =oo. S |
|o *.B+.. |
|.+oOo+ |
|.==.+ . |
|o=+. |
+----[SHA256]-----+

Figure 2 Visualizing ssh keys. Left: an existing hash-based key visu-
alization in ssh, right: direct visualization of the key with our method.

we have coordinates and colors on the canvas. In a contrast to
both Perrig and Song and VisualHostKey, we visualize the
keys directly. It is possible to combine the key and the hash
visualizations in our method. Awni [2] shows an interesting
approach. There, faces are generated from hashes of the keys
to provide better recognition. While one might argue, that
people can better differentiate faces than abstract patterns,
Awni still utilizes hash functions, while we use the public
key and add, optionally, its hash.

Hash function attacks [26,25,12,21] are the reason why
hash-only visualizations are vulnerable. In this paper we use
SHA2 hashes for which no collisions are yet known. Gener-
ally, our approach can be used with any hash algorithm, but
also completely without it. Our method facilitates a detection
of a changed key even if the hash value is the same. We
show this on a mock example (Fig. 8), but also on real SHA1
collision data (Fig. 12, data courtesy of Stevens et al. [21]).
Counter-cryptanalysis [20] also detects possible collisions,
as they typically rely on very special circumstances.

Loosely related to our method are graphical passwords
[9,23]. Visual cryptography [13,11] is a completely different
technique, where cryptographic methods are used to convey
and securely share visual information. We, however, visual-
ize cryptographic data.

Visualizations in other areas of computer security include
[24,7,14]. Generally speaking, both Teoh et al. [24] and
Conti et al. [7] visualize network traffic on a 2D canvas.
Conti et al. [7] focus on data analysis. Features like typical
packet size and other characteristics can be seen in their visu-
alizations. Their goal is the detecting of reoccurring patterns
and overall structure. We focus on generating memorable
shapes—at least our user should notice if the visualization
is suddenly different from how it always was, as detailed
below. Teoh et al. [24] showcase an activity visualization
in a network as a 2D plot. In their visualizations, e.g. an
ongoing attack can be easily identified. They also mention
further techniques and 3D visualizations, such as classical
information visualizations of network activities. Our visual-
izations do not look at the network at large, but focus on a
single most critical information during a concrete network

session, the identity of the counterpart. We are not concerned
with network connections at all in this paper and visualize
the public keys as such.

Nataraj et al. [14] visualize malware as grayscale im-
ages. Such visualizations allow for similarity classifications.
Basically, we allow our users to do the same with crypto-
graphic keys. In contrast to our approach, they use a more
sophisticated visualization technique. Further, Nataraj et
al. use GIST features [15] in a post-mortem analysis, while
in our application non-similarities are striking enough to be
noticed with a naked eye. Our application strategy is to vi-
sualize cryptographic data during each session. The user
would notice a quite different image (Fig. 8) if an attack is
being executed. A yet another difference is that Nataraj et
al. concentrate on malware payloads, somewhat large data,
while cryptographic keys and accompanying data typically
stay well under 10 KB. Precisely their small size allows us
to visualize the data directly.

A long-time companion of cryptography in practical ap-
plications is steganography. It is not concerned with how to
make a message unreadable to third parties, but with hiding
the fact the message is present [22]. A connected issue is dig-
ital watermarking [8]. Typical targets are images, although
there are methods to hide information in meshes [5,6].

3 Methods

3.1 Informal description

We interpret the input bytes as (parts of) vector graphics state-
ments. For example, two bytes state the starting coordinates,
two bytes state the end coordinates and four bytes state RGB
color and alpha channel (Fig. 3). While it is possible to use
an additional byte for the line thickness (Fig. 4), we decided
against it. The final result of our “line” visualization is shown
in Figures 3 and 9. This approach is much more aesthetically
pleasant than the direct depiction of values (Figs. 1, 3). The
visualization also shows how large the input is (Figs. 3 and 9),
as its size in bytes influences the number of line strokes. Key
size is a crucial information that is often needed, as it defines
the grade of security. Keys with shorter key size (in the same
cryptographic algorithm) might be compromised earlier, so
they need to be replaced sooner.

Still, we were not yet satisfied with this visualization and
changed a major detail. Instead of painting lines, we paint
ellipses. In this way the first four bytes specify the parameters
of the ellipse. The next three bytes define the color and
the last, eighth byte defines the transparency. Basically this
approach produces our visualizations in Figures 1 and 10. We
provide more visualizations in the supplementary material
(https://dx.doi.org/10.5281/zenodo.817656).

https://dx.doi.org/10.5281/zenodo.817656
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Figure 3 Visualizing 192 KB of random data directly (top line) and its
SHA256 hash (bottom) as RGB pixels (left) and with our “line” method
(right). Notice how our method shows the size of input data, while
remaining in the same gist of visualization for data range from 32 to
192K bytes.

Figure 4 Here we also include line thickness into the set of varying pa-
rameters. For best results, here the transparency also should be adjusted,
however this was not the case with these images.

3.2 Formal description

For our “line” method, in an 8-byte sequence a, . . . ,h we
define

from = [a,g] and to = [b,h],

the line of constant thickness is drawn on a 256⇥256 canvas
between points from and to. The bytes c, . . . , f define directly
RGBA color of said line. This method produces images in
Figure 9—simple but already more visually pleasing than a
direct pixel-based visualization (Fig. 3) or hash-based ASCII
visualization (Fig. 2). We have also experimented with vary-
ing line thickness, but were less satisfied with these results
(Fig. 4).

Figure 5 The transparency problem. The visualization left uses direct
transparency values from the visualized key. On the right hand side the
same key is visualized using adjusted transparency values.

For our “ellipse” method, in an 8-byte sequence a, . . . ,h
we define on a 256⇥256 canvas an ellipse position and size
using a, . . . ,d, per

C = [a,b], D1 = c, D2 = d,

where C is the center of the ellipse, D1 and D2 are both
diameters. The RGB color of the current ellipse is defined as
e, f ,g. Using the “real” transparency byte h as the input value
t in the below procedure, we obtain the adjusted transparency
value t̂ (Section 3.3). This results in visualizations shown in
Fig. 1, bottom right, Fig. 2, right, Fig. 5, right, Fig. 6, right,
Figs. 10, and 11.

Possible future adjustments may include varying the
drawing primitive or using segments of ellipses instead of
permanent full 360� primitive.

3.3 Transparency adjustments

When we directly use transparency values from eighth byte of
the block, it produces less nice images. Basically, it happens
when the transparency is low and the ellipse size is high, as
Figure 5, left shows. To adjust this, the final method uses a
distance measure obtained from a not quite straightforward
heuristics.

A direct approach would be to take the area of the ellipse,
or a heuristics for that, and to increase the transparency for
large area ellipses. We still want to factor in the last, eighth
byte from the input into the transparency value. However, we
found that such approach produces less visually appealing
images (Fig. 6 compares with our actual method). The reason
is clear: now absent larger opaque features yield a bleak,
not very memorable images (Fig. 7). Hence, we follow a
different, more involved, heuristics.

Our transparency heuristics uses the first four input bytes
(“coordinates”) and the “real” transparency value t (i.e. value
of the eighth byte). It computes the adjusted transparency t̂
from D:

t̂ =
j

d +
st
D

k
mod T.
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Figure 6 Adjusting transparency values. Left: a straightforward way
with area heuristics, right: our final approach.

Figure 7 Examples when straightforward transparency is aesthetically
bad.

In our implementation we used the constants d = 10, s= 100,
and T = 200. We compute D as |a� c|+|b�d| for first four
bytes a, . . . ,d. This is in a sense a Manhattan norm. To
give an example, for D = 500 and t = 200 the adjusted trans-
parency value is t̂ = 50. Figure 5, right, Figure 6, right, and
Figure 10 show visualizations with transparency values ad-
justed. Notice that this means a non-even distribution of
transparency across the image, but the particular configura-
tion presented was empirically found to be quite aesthetically
pleasant. The more “linear” adjustment of transparency was
visually less viable, as Figs. 6 and 7 show.

For the visualization the input is processed in eight byte
sequences. The trailing number of bytes that is smaller as
eight is discarded from visualizations shown here.

3.4 Benefit for security

Our method is suited to visualize any kind of binary data.
Visualizing a key alone makes the visualization prone to sub-
tle key changes that would be immediately detected with a
cryptographic hash function, but might go undetected with
a key-only visualization. Further, if a hash function is com-
promised, and collisions are easy to find, then key validation
and visualization with these hashes is also compromised.

To combat this we visualize both the raw key and its
SHA256 hash—a 256 bit version of the SHA2 family of hash
functions [1]. Figure 8 showcases the result. If a key is
changed in a manner undetected by our key visualization, the
hash will be different (Fig. 8, top). For demonstration pur-
poses we decoupled the key and hash visualizations and used
the genuine key with a different hash. If the hash function
is compromised and allows to create hash collisions easily,
the key would be very different, even if the hash is the same.
Fig. 8, left, shows this. Even with the same hash the actual
keys differ a lot, which can be visually detected.

To circumvent such a combined visualization, the attacker
needs to find hash collisions in a cryptographic hash function
at will, while minimally changing the key bits (such that di-
rect key visualizations look similar), and freely changing the
last < 8 bits in the key that are currently omitted in our visu-
alizations. The latter is circumvented easily by padding the
key to a length divisible by eight before visualizing. Finding
a collision that only minimally changes the the visualization
output might be quite hard, as Figs. 9 and 11 showcase quite
different images all the time. These figures show key-only
visualizations of public keys from author’s key chain.

We deem the attack a quite challenging task as mapping
minor changes in the input to large changes in the output
is the essence of a good hash function. The attacker would
need to find a hash collision (i.e. a very different “fake” key
with the same hash as genuine key) while maintaining a low
bit-wise difference between the genuine key and the fake key.

Section 4.1 shows a real-world example using SHA1
collision data.

3.5 Protocol descriptions of prevented attacks

Next, let us regard two scenarios in which our visualizations
would be of an immediate utility. We use the formalism from
Section 1.1.

3.5.1 Weak hashes

Imagine, the hash function used for fingerprinting is compro-
mised, but Alice never took notice of it. Eve tricks Alice into
using a wrong key; Eve can intercept Alice’s communication
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Figure 8 Showcasing how key spoofing can be detected with our
method, a synthetic image. (Figure 12 shows real collision detection
in SHA1.) All visualizations use the same method. Top left: Original
PGP key with its genuine SHA256 hash. This is the initial reference
for the user. Top right: We assume the key is rigged in a way that is
not detectable in our visualization, but the hash has changed. This is
strikingly visible. To produce this image, we have basically changed the
hash, but not the key. Bottom left: Assume it was possible to find a hash
collision, the hash is the same as the genuine hash. But the key itself
has drastically changes to allow the collision, which is detected with
our visualization. In other words, in case of key spoofing, a key with
the same hash can be found, but the key visualization of the spoofed
key differs. Bottom right: For completeness, a fake key with a hash that
does not match the reference hash. (In this image we merely visualized
a different key with its hash.)

to Bob.

A has Bob’s key KB and is aware of its fingerprint f (KB)

E creates a fake key KE with matching fingerprint.

The key KE is maliciously generated in such a manner that
fingerprint f (KE) is the same as f (KB). This is only possible
because f is compromised.

E tricks A into using KE instead of KB.
A computes the fingerprint of KX , it is valid.

The key KX is what Alice believes is KB, but it is really KE .
The fingerprint did not change. Now Alice sends a message
using this key:

A ! X : {m}KX .

Eve can intercept the encrypted message and read it, because
the key KX is actually KE . All key visualization systems
based on the same fingerprint method f would fail, as the
hash function at the heart of f is compromised. With our

approach, the key is visualized directly and Alice can im-
mediately see the difference (Fig. 8). Next, regard a more
real-life example.

3.5.2 Online banking example

As of now, too many people are tricked into entering their
online banking credentials at a wrong website. Illegitimate
acquisition of credentials is called “phishing”. Thus the
question “How can I allow the user to quickly verify that
the public key of this online banking site is genuine and the
same as it was on the real online banking site yesterday?”
has, unfortunately, enough motivation. We regard this case
next.

In a HTTPS session [18], a session key KA,B is negoti-
ated. A certificate c, a combination of server public key and
metainformation, such as domain name, is cryptographically
signed during the initial setup of the service. To alleviate the
validation procedure, a hierarchy of certificate authorities is
used. Basically, a chain of “who trusts whom” is established,
from the server certificate c up to a root certificate that is
universally trusted. At a HTTPS session, the certificate of the
website is checked whether it is still trusted. Here, we replace
the hierarchy of certificate authorities with a stronger version:
a direct query to the trusted third party. The problem is that
in both cases the validity is established for the link website–
entity that obtained the certificate. Bluntly, if a bank has
a legitimate certificate for bankname.com, the attacker can
obtain a legitimate certificate for mybankname.net. Both
certificates are valid and legitimate. It is the user’s responsi-
bility to discern if the domain name is correct and whether
the certificate was issued to the correct legal entity. The users,
however, often make mistakes and trust wrong websites.

Alice (A) is going to visit her online banking site (B).
Their communication is encrypted by a session key KA,B. The
correctness of the communication can be verified by checking
the certificate c of the website with a trusted third party (T ).
The certificate is basically a public key with metadata. The
correct behavior is:

A ! B : {access website}KA,B

B ! A : {login form, c, f (c)}KA,B

A ! T : {is c valid?}KA,T

T ! A : {our fingerprint for ĉ is f̂ (ĉ)}KA,T

A compares f (c) and f̂ (ĉ) and they are identical
A ! B : {credentials for money transfer}KA,B .

Notice that we do not automatically verify if the certifi-
cate c belongs to the bank B, but if it is a correct, valid
certificate. An attacker might also own such a certificate, of
course for a different website. She can lure Alice to it, while

bankname.com
mybankname.net
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pretending to be the bank, as we will see below.

A is lured to a website E, thinking it is B

A ! E : {access website}KA,E

E ! A : {login form, c0, f (c0)}KA,E

A ! T : {is c0 valid?}KA,T

T ! A : {our fingerprint for ĉ0 is f̂ (ĉ0)}.
A compares f (c0) and f̂ (ĉ0) and they are identical.

Notice that all Alice knows is that the certificate is valid. It
is her responsibility to check that c0 is actually a certificate
of her bank B. If Alice has failed to notice the counterpart E
she is talking to is not the bank:

A ! E : {credentials for money transfer}KA,E .

A looses all her money to E.

If Alice would have compared our visualization of the cer-
tificate c with the visualization of malicious c0, she would
have noticed the fact of an attack. The point is to recognize
that the malicious website uses a different certificate c0, as
valid as it might be. Now, online banking is a quite routine
operation. If the original visualization is displayed every
time Alice uses online banking, we speculate that she would
remember it after few sessions. Our visualizations are quite
distinctive to be easily remembered and discerned by humans
(Figs. 9–11).

The bank might even supply the visualization on a differ-
ent channel, so Alice does not need to remember the genuine
certificate image. For example, the visualization of genuine
online banking certificate could be placed on the banking
card. Of course, Alice would also notice every goodwilled
change of the certificate, and hence her card would need to be
re-issued every time the certificate changes. This is a distinct
issue, however.

4 Results and Discussion

We have visualized keys from author’s key ring with lines in
Figure 9. Figure 10 shows the same keys, visualized using
ellipses with adjusted transparency. In this case we add the
SHA256 [1] hash to the visualized data. We utilized the
SHA256 implementation from Open SSL [16]. All images
are quite different, it is easy for a human to distinguish them.
In most cases the visualizations are even quite artistic.

4.1 SHA1 Collision

The weaknesses of SHA1 hash algorithm have been known
for more than a decade [25]. Recently, the first actual col-
lision became publicly available [21]. As lined out in Sec-
tion 3.4, our visualization should reveal key spoofing based

on hash collisions. Hence, we have tried our approach on
the collision example with SHA1 hashes. Notice that every-
where else in this work we use SHA2 hashes. For this hash
function no practical collisions are known. Available files1

with collision are small PDF files. We have produced a series
of images from 512 byte chunks at same offsets in the respec-
tive files. We additionally compute and visualize in the same
image a SHA1 hash of each chunk. (This does not help, as
the hashes suffer from the collision and are identical.) Both
files are mostly identical, with a smaller sequence with the
collision that is different in respective files. These sequences
have however the same SHA1 hash [21]. Figure 12 shows
that in our visualization said differences are detected despite
the collision. This distinguishes our system from all other
methods used for visualization of public keys, as all these
methods utilize hashes.

4.2 Discussion

Should our visualization provide similar, but subtly different
images for varying keys, these keys are also similar in their
byte-wise values. This is a corollary from using a direct vi-
sualization and requiring same visualizations for same keys.
For production use, however, we augment the key visualiza-
tion with a subsequent hash visualization. Now we obtain
different visualizations also for similar keys. We are able
to visually detect the key spoofing, as the visualizations are
different for two different keys with the same hash.

The method is specifically geared towards small files,
such as public keys. However, it makes also little sense to
visualize a large file directly, rather interesting is its hash. Au
contraire, in public keys both hash and direct visualizations
are viable. Hash visualization contributes the cryptographic
information: keys that differ only in few bits should be con-
sidered as radically different. Hash collisions, though, would
deem two radically different keys as the same. Our method
(in key+hash mode) shows similar (but varying, because of
hash) visualizations for similar keys. Our method cannot fall
into the pitfall of an eventual hash collision as not only hash-
ing is used. In the actual key+hash visualization, two kinds of
attacks can be detected. A “visual” key spoofing attack—that
does not exist yet—can be detected via depiction of varying
hash values of an uncompromised hash function. A hash
collision (stemming from usage of a compromised hash func-
tion) can also be detected via direct key visualization. We
model these two situations in Figure 8.

Compared to Perrig and Song [17] we provide a nice
and potentially scalable graphics by directly painting the key
(and, eventually, additional data). Our method is more direct,
this conveys more security. The VisualHostKey visualiza-

1 SHA1 collision files were obtained from http://shattered.
it/.

http://shattered.it/
http://shattered.it/
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Figure 9 Lines visualization of public keys from author’s PGP keyring. This is a key-only visualization.
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Figure 10 Ellipse visualizations of both key and a SHA-256 hash in a single image. The public keys originate from author’s PGP keyring.
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Figure 11 Ellipse visualization, keys only.
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Figure 12 Detecting differences in real SHA1 collision data. We pro-
cess 512 bytes at once as a single block, visualized together with SHA1
hash for the block. We also show the SHA1 hash for each block below
its visualization. Left and right shows two different files, as top line
shows. Their SHA1 hashes (shown in Base64) are, however, identical.
The files are mostly identical, as visualized further 512 B block in the
bottom row shows. The block [512, . . . ,1024) features a lot of zeros
and close to zero values, hence it looks more sparse in our visualization.
The blocks in the middle row [0, . . . ,512) are noticeably different in the
visualization; this is clearly visible. However, their SHA1 hashes are
the same. Thus, key spoofing based on hash collisions can be detected
with our method.

tion from Open SSH [3] is used in production. It visualizes
hashes as an ASCII-art. Displaying an image and not an
ASCII-art should be a non-issue nowadays. However, it has
the same weakness as other hash visualizations. All crypto-
graphic security visualizations known to us, visualize hashes

of the keys. This makes them prone to hash collisions. Our
method does not have this weakness. We enhance security by
visualizing the keys directly and optionally adding the hash
visualization.

Even if the current implementation of our method omits
the last few (< 8) bytes from the input, it might be possible to
reconstruct or at least approximate parts of the key from the
visualization. Hence, only public keys (which are available
to anyone per design) should be visualized with our method.

5 Conclusions and future work

We present an approach to visualize cryptographic public
keys with their hashes. Unlike previous approaches, our
visualization is direct. Our method produces aesthetically
pleasant visualizations (Fig. 10). Further, when both the key
itself and its hash are visualized, our approach makes key
spoofing and similar man-in-the-middle attacks much more
complicated for the attacker. We made two binary data blocks
with the same SHA1 hash visually distinguishable (Fig. 12).

One possible idea for the future work is to spend more
bytes for further decisions during image generation. Possible
options include using multiple visualization methods in one
image and using gradients instead of solid colors. Line thick-
ness could be also utilized as an input parameter, though for
such visualizations (Fig. 4), a similar kind of transparency
heuristics is needed as we introduced for our ellipse visual-
izations.

While visualizing binary data and its hash, we treat both
as equal binary data. It makes sense to visualize data and hash
in the same image, but with different methods, e.g. “ellipse”
for data and “lines” for hash. Because presented method
provides additional security, it would make sense to integrate
it into cryptographic software and sensible communication
protocols, e.g. online banking.
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