(1)

(1)

(1)

(2)

Dr. Helga Lohöfer

Grundlagen der Mathematik für Biologen

- Blatt 9 -

Abgabe: Montag, den 16.12.2013, vor der Vorlesung, spätestens14:05 Uhr

Lektüreaufgabe: Skript Kap. 5.3 und 5.4

Themen: Logistisches Wachstum, natürliche Wachstums- und Abbauprozesse, Regeln für exp und ln.

1. Die Untersuchung eines Signalübertragungsprozesses in der Zelle erbrachte, dass die Aktivierung A des Zielmoleküls (in % der maximalen Aktivierung) von der relativen Konzentration [S] der Signalmoleküle wie folgt abhing:

11118,							
	[S]	1,2	1,4	1,6	1,8	2,0	2,2
	A	15,5	31,0	52,5	73,1	87,0	94,3

- a) Skizzieren Sie den Graph von A als Funktion von [S] (waagerechte Achse: 1 Kästchen = 0,1 und senkrechte Achse: 1 Kästchen = 10).
- b) Berechnen Sie für $1.4 \le [S] \le 2.0$ näherungsweise die momentane Änderungsrate von A bezüglich [S] und die momentane relative Änderungsrate von A bezüglich [S] (je 1 Nachkommastelle).
- c) Überprüfen Sie durch einen geeigneten graphischen Test, ob, ja oder nein, A als Funktion von [S] ein logistisches Wachstumsgesetz erfüllt. (1)
- 2. Aus Blatt 7, Nr. 1 ging hervor, dass bei konstant 700 0 C die **Reaktion 1. Ordnung**

$$C_2H_6 \rightarrow 2 CH_3$$

die Geschwindigkeitskonstante $k = 0.03262 \text{ min}^{-1}$ besitzt.

- a) Wie lautet bei dieser Temperatur die Berechnungsformel für die Konzentration [C₂H₆] als Funktion der Zeit? (Tipp: Blatt 8, Nr. 3 verwenden)
- b) Wie viel % (1 Nachkommastelle) der Anfangangskonzentration sind nach 15 min noch übrig? (1)
- c) Wie viele Minuten (2 Nachkommastellen) dauert es bei dieser Temperatur, bis 99% der Anfangskonzentration zerfallen sind? (2)
- 3. Eine mit Schimmelpilz befallene Fläche A vergrößere sich mit der Zeit t nach einem natürlichen Wachstumsgesetz mit der Wachstumskonstante $\alpha = 0.0515h^{-1}$. Wie lange dauert es, bis die vom Pilz befallene Fläche sich von 1 cm² auf 100 cm² vergrößert hat? (2)
- 4. Die Konzentrationsabhängigkeit des Elektrodenpotenzials eines Redox-Paares Ox + ze → Red wird durch die Nernst-Gleichung (1889) beschrieben:

$$E = E_0 + \frac{R \cdot T}{z_e \cdot F} \cdot \ln \left(\frac{c_{Ox}}{c_{Red}} \right)$$

Dabei ist E = Elektrodenpotenzial, E_o = Standardpotential, R = Universelle Gaskonstante, T = Temperatur, z_e = Äquivalentzahl, F = Faraday-Konstante, c = Konzentration.

Welche Gleichung ergibt sich daraus für c_{Red} als Funktion der übrigen Größen? (4)

5. Der Bleigehalt C_B des menschlichen Blutes, gemessen in μg/100ml, wächst mit dem mittleren Bleigehalt der Umgebungsluft C_L , gemessen in $\mu g/m^3$, im Bereich $5 < C_L < 100$ nach der Formel $C_B = 26 \cdot \ln C_L - 20$.

Bei einem Patienten wurde ein Bleigehalt im Blut von 76μg/100ml gemessen. Welcher Bleigehalt der Luft (1 Nachkommastelle) besteht in seinem Lebensraum?

Die Exponentialfunktion exp:

(E1) Die Exponentialfunkion $y = \exp(x)$ ist eindeutig charakterisiert durch ihr natürliches Wachstumsgesetz $\frac{y'}{y} = 1$ und den Anfangswert y(0) = 1. Sie ist nur näherungsweise berechenbar mittels

$$y = \exp(x) = \lim y_n$$
, wobei $y_n = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!}$

Fehlerabschätzung: $|y_n - \exp(x)| \le \frac{|x|^n}{n!}$ gilt, sobald $n \ge 2|x|$ ist.

(E2)
$$\exp(0) = 1$$
 (Anfangswert = 1)

(E3)
$$\exp'(x) = \exp(x)$$
 (Wachstumsgesetz $y' = y$)

(E4) Sind y_0 und c beliebige Konstante $\neq 0$, so gibt es genau eine Funktion y = g(x) mit dem natürlichen Wachstumsgesetz $\frac{y'}{y} = c$ und dem Anfangswert $y(0) = y_0$.

Ihr Name: Allgemeine Exponentialfunktion,

Berechnungsformel: $y = y_0 \cdot exp(c \cdot x)$,

Ableitung:
$$y' = c \cdot y = c \cdot y_0 \cdot \exp(c \cdot x)$$

(E5) $\exp(a+b) = \exp(a) \cdot \exp(b)$ für alle $a, b \in \mathbb{R}$.

(E6)
$$\frac{1}{\exp(x)} = \exp(-x)$$
, insbesondere gilt $\exp(x) \neq 0$ stets.

Die Zahl $\exp(1) = e$ heißt die **Eulersche Konstante**. Sie ist eine Dezimalzahl mit unendlich vielen nichtperiodischen Nachkommastellen (d.h. $e \notin \mathbb{Q}$) und ist nur näherungsweise berechenbar mittels (E1). Aus (E5) und (E6) ergibt sich, dass alle Funktionswerte $\exp(n)$ mit ganzzahligem n als Potenzen der Konstante e verstanden werden können:

$$exp(n) = e^n$$
 für alle $n \in \mathbb{Z}$

Daher stammen die Namen "Exponentialfunktion" und "e-Funktion". Man beachte, dass für $x \notin \mathbb{Z}$ die vermeintliche "Potenz" e^x nur näherungsweise mittels der Schätzformel aus (E1) für exp(x) berechnet werden kann. X-fache Multiplikation von e mit sich selber macht dann keinen Sinn.

Der natürliche Logarithmus In:

(L1)
$$\ln(a \cdot b) = \ln a + \ln b$$

(L2)
$$\ln\left(\frac{1}{a}\right) = -\ln a$$

(L3)
$$\ln\left(\frac{a}{b}\right) = \ln a - \ln b$$

Ableitung:
$$(\ln x)' = \frac{1}{x}$$
 für alle $x > 0$.

Umkehrregeln:

Für alle reellen x gilt ln(exp(x)) = x

Für alle positiven x gilt $\exp(\ln(x)) = x$