Tabelle der üblichen Begriffe zur Beschreibung des Änderungsverhaltens einer Funktion y = f(x)

Die Begriffe sind anwendbar auf alle Funktionen y = f(x), die beiden letzten in der Tabelle auf alle differenzierbaren Funktionen y = f(x) (= Graph ohne Sprünge und Knicke). Zur Veranschaulichung sind die Begriffe hier formuliert am Beispiel der Massenänderung eines Reaktanden A im Verlaufe einer chemischen Reaktion. Die Rolle der freien Variablen x spielt hier also die Zeit t [s], die Rolle der abhängigen Variablen y die Masse y [g]. Ist A ein Edukt der Reaktion, so handelt es sich um einen **Abbauprozess** und alle Größen in der Tabelle sind **positiv**.

Bezeichnung:	Baugesetz:	mathematische Formel:	Dimension:
Änderung von m	Differenz neuer Wert minus alter Wert von m	$m_2 - m_1$	g
relative Änderung von m	Änderung von m , bezogen auf den alten Wert von m	$\frac{m_2 - m_1}{m_1}$	dimensionslos (bzw. %)
mittlere Änderungsrate von m	Änderung von m , bezogen auf die Zeitspanne Δt	$\frac{m_2-m_1}{t_2-t_1}$	g·s ⁻¹
mittlere relative Änderungsrate von m	Änderung von m , bezogen auf den alten Wert und auf die Zeitspanne	$\frac{m_2-m_1}{m_1\cdot(t_2-t_1)}$	s ⁻¹ (bzw. % pro s)
	= relative Änderung von m , bezogen auf die Zeitspanne Δt	$=\frac{\frac{m_2-m_1}{m_1}}{t_2-t_1}$	
	= mittlere Änderungsrate von m , bezogen auf den alten Wert von m	$=\frac{\frac{m_2-m_1}{t_2-t_1}}{m_1}$	
momentane Änderungsrate von m	Grenzwert der mittleren Änderungsrate von m für $\Delta t \rightarrow 0$	$\lim_{t_2 \to t_1} \frac{m_2 - m_1}{t_2 - t_1} = m'(t_1)$ $\text{kurz:} m'$	g·s ⁻¹
momentane relative Änderungsrate von m	Grenzwert der mittleren relativen Änderungsrate von m für $\Delta t \rightarrow 0$	$\lim_{t_2 \to t_1} \frac{m_2 - m_1}{m_1 \cdot (t_2 - t_1)} = \frac{m'(t_1)}{m(t_1)}$ kurz: $\frac{m'}{m}$	s ⁻¹ (bzw. % pro s)

Faustregel: Von (relativer) Änderungsrate von y spricht man, wenn die (relative) Änderung von y durch die Spanne & dividiert wurde.

Von momentaner (relativer) Änderungsrate von y spricht man, wenn man den Grenzwert der (relativen) Änderungsrate für & 0 meint.