LAM/MPI User’s Guide
Version 7.1.1

The LAM/MPI Team
Open Systems Lab
http://www.lam-mpi.org/

rAa
il

pervasivetechnologylabs

AT INDIANA UNIVERSITY

September 26, 2004

http://www.lam-mpi.org/

Copyright(©) 2001-2004 The Trustees of Indiana University. All rights reserved.
Copyright(© 1998-2001 University of Notre Dame. All rights reserved.
Copyright(©) 1994-1998 The Ohio State University. All rights reserved.

This file is part of the LAM/MPI software package. For license information, see the LICENSE file in the
top level directory of the LAM/MPI source distribution.

Theptmalloc package used in thgm RPI SSI module is Copyrigh®) 1999 Wolfram Gloger.

Contents

1 Don't Panic! (Who Should Read This Document?) 9
2 Introduction to LAM/MPI 11
2.1 AboUutMPI . . . 11
2.2 About LAM/MPI . . . 11

3 Release Notes 13
3.1 NewFeature OVEIVIEW ot e e e e e e e e 13
3.2 KNOWNISSUES. o e e 15
3.2.1 mpirun and MPI Applicationcr Module Disagreement. 15

3.2.2 InfinibandpiModule 15

3.3 Usage Notes 15
3.3.1 Operating System Bypass Communication: Myrinet and Infiniband. 15

3.4 Platform-Specific Notes. e 17
3.4.1 ProvidedRPMS e 17

3.4.2 FilesystemiIssues. 17

3.4.3 Dynamic/Embedded Environments. oL, 18

344 LiNUXo e e e 18

3.45 Microsoft WindowS™™)(Cygwin) 19

346 Solaris 19

4 Getting Started with LAM/MPI 21
4.1 One-TIMeSetup o o e e e 21
4.1.1 SettingthePath. e 21

4.1.2 Findingthe LAM ManualPages. 23

4.2 System Services Interface (SSL). 23
4.3 What Does Your LAM/MPI Installation Support?., 24
4.4 Booting the LAM Run-Time Environment. 24
4.4.1 The Boot Schema File (a.k.a, “Hostfile”, “Machinefile?). 24

442 Thdamboot Command 25

4.4.3 Thdamnodes Command 26

4.5 Compiling MPIPrograms o 0 e 26
451 Sample MPIPrograminC 27

452 Sample MPIPrograminC++ 28

453 Sample MPIPrograminFortran. e 29

4.6 Running MPIPrograms. e e e e 29

4.6.1 Thempirun Command. e e e 29
4.6.2 Thempiexec Command e 30
4.6.3 Thempitask Command 31
4.6.4 Thdamclean Command 32
4.7 Shutting Downthe LAMUNIVErse i e 32
Supported MPI Functionality 33
51 MPI-LSUpport 33
5.1.1 LanguageBindings. 33
5.1.2 MPI.CANCEL 33
52 MPI-2SUpport e e e e e e e 34
5.21 Miscellany e e e e 34
5.2.2 Process Creationand Management. 36
5.2.3 One-Sided Communication 36
5.2.4 Extended Collective Operations. 37
5.25 ExternalInterfaces 37
5.2.6 110 . . e 38
5.2.7 LanguageBindings. 39
System Services Interface (SSI) Overview 41
6.1 TypesandModules M
6.2 Terminology. e e e e e e 41
6.3 SSlParameters 42
6.3.1 Naming Conventions e 42
6.3.2 Setting ParameterValues. 43
6.4 Dynamic Shared Object (DSO)Modules 44
6.5 SelectingModules. 45
6.5.1 SpecifyingModules. e 45
6.5.2 Setting Priorities. 45
6.5.3 Selection Algorithm. 45
LAM/MPI Command Quick Reference a7
7.1 Thelamboot Command a7
7.1.1 Multiple Sessionsonthe SameNode. 48
7.1.2 Avoiding Runningon SpecificNodes 49
7.2 Thelamcheckpoint Command. 49
7.3 Thelamclean Command. e e 50
7.4 Thelamexec Command e 50
7.5 Thelamgrow Command i e e e 50
7.6 Thelamhalt Command 51
7.7 Thelaminfo Command e 51
7.8 Thelamnodes Command. e e 53
7.9 Thelamrestart Command. 53
7.10 Thelamshrink Command. e 54
7.11 Thempicc , mpiCC/ mpic++ , andmpif77 Commands 54

4

7.11.1 Deprecated Names. i e 56

7.12 Thempiexec Command 0 i i e e e 56
7.12.1 General Syntax e e e e e e 56
7.12.2 Launching MPMD ProCcesses v v v v v i it e e e e e 57
7.12.3 Launching MPI Processes with No Established LAM Universe 58

7.13 Thempimsg Command (Deprecated) i 58

7.14 Thempirun Command e 58
7.14.1 Simple Examples 58
7.14.2 Controlling Where Processes Are Launched. 59
7.14.3 Per-Process Controls. e 60
7.14.4 Ability to Pass Environment Variables. L. 60
7.14.5 Current Working Directory Behavior. 61

7.15 Thempitask Command 61

7.16 Therecon Command e 61

7.17 Thetping Command. e e 62

7.18 Thelamwipe Command i e e 62

Available LAM Modules 63

8.1 Booting the LAM Run-Time Environment. 63
8.1.1 Boot Schema Files (a.k.a., “Hostfiles” or “Machinefiles”) 63
8.1.2 Minimum Requirements 65
8.1.3 Selecting@ootModule 65
8.1.4 bootSSlIParameters e 65
8.1.5 ThebprocModule 65
8.1.6 TheglobusModule 67
8.1.7 Thersh Module (includingssh) 68
8.1.8 TheslurmModule 69
8.1.9 Thetm Module (OpenPBS/PBS Pro/Torque). 71

Available MPI Modules 73

9.1 General MPISSI Parameters. e 73

9.2 MPI Module Selection Process. i 73

9.3 MPI Point-to-point Communication (Request Progression Interface /RPI) 74
9.3.1 Two Different Shared Memory RPIModules. 75
9.3.2 Thecrtcp Module (Checkpoint-able TCP Communicatian) 75
9.3.3 Thegm Module (Myrinet) e e e 76
9.3.4 Theb Module (Infiniband). 79
9.3.5 Thdamd Module (Daemon-Based Communication). 82
9.3.6 Thesysv Module (Shared Memory Using System V Semaphores). 83
9.3.7 Thetcp Module (TCP Communication) 84
9.3.8 Theusysv Module (Shared Memory Using SpinLocks) 86

9.4 MPI Collective Communication. e 86
9.4.1 SelectingaollModule 87
9.4.2 collSSIParameters. e e 88
9.4.3 Thdam_basicModule. 89
9.44 ThesmpModule. 89

10

11

12

9.45 TheshmemModule 91

9.5 Checkpoint/Restartof MPIJobs 93
9.5.1 SelectingarModule e 93
9.5.2 crSSlIParameters. e e e e 94
9.5.3 TheblecrModule 94
9.5.4 TheselfModule e 96

Debugging Parallel Programs 99

10.1 Naming MPIObjects. 99

10.2 TotalView Parallel Debugger e 99
10.2.1 Attaching TotalViewto MPIProcesses 100
10.2.2 SuggestedUse e 101
10.2.3 Limitations. e 102
10.2.4 Message Queue Debugging. 103

10.3 Serial Debuggers 103
10.3.1 Lauching Debuggers. e 103
10.3.2 Attaching Debuggers. 104

10.4 Memory-Checking Debuggers 104

Troubleshooting 107

11.1 The LAM/MPIMailing Lists. 107
11.1.1 ANNOUNCEMENTS. o o e e e e e e e e e e 107
11.1.2 General Discussion/UserQuestions. 107

11.2 LAM Run-Time EnvironmentProblems 108
11.2.1 Problems with themboot Command. 108

11.3 MPIProblems e 109

Miscellaneous 111

12.1 Singleton MPIProcesses. o o v i i i i 111

12.2 MPI-2 11O SUPPOrt. e e e e e e 111

12.3 Fortran Process Names. e e 111

12.4 MPIThread Support. e e e e e e e e 112
12.4.1 Thread Level. e 112

12.5 MPI-2 Name Publishing. 113

12.6 Interoperable MPI (IMPI) Support 113
12.6.1 Purposeof IMPL. e 113
12.6.2 Current IMPI functionality. 113
12.6.3 RunninganIMPlJob. 114
12.6.4 Complex Network Setups 114

12.7 Batch Queuing System Support L 114

12.8 Location of LAM’s Session Directory. e 115

12.9 Signal Catching 115

12.10MPIAttributes o 116
Discussion Item. L e e e 116

List of Tables

3.1 SSI modules that are included in the official LAM/MPIRPMs. 17

4.1 List of common shells and the corresponding environment setup files for interactive she?2.
4.2 List of common shells and the corresponding environment setup files for non-interactive 2@ells.

5.1 Supported optional fortran datatypes. 33
5.2 Supported MPI-2 info functions. 35
5.3 Supported MPI-2 handle conversion functians.. 35
5.4 Supported MPI-2 error handler functions.. 35
5.5 Supported MPI-2 new datatype manipulation functians.. 36
5.6 Supported MPI-2 dynamic functions. Lo 36
5.7 Supported MPI-2 one-sided functions.. L oL 37
5.8 Supported MPI-2 intercommunicator collective functians.. 37
5.9 Major topics in the MPI-2 chapter “External Interfaces”, and LAM’s level of support.. . 37
5.10 Supported MPI-2 external interface functions, grouped by function.. 38
6.1 SSI module types and their correspondingscopes. 42
8.1 SSl parameters for thgroc bootmodule. oo o o oL 67
8.2 SSl parameters for tlggobus boot module..o o o oo 68
8.3 SSl parameters for thsh boot module.. L. 70
8.4 SSl parameters for tidurm bootmodule. o o L 71
8.5 SSl parameters for thm bootmodule. o Lo 72
9.1 SSlparameters fortlwetcp RPImodule. 76
9.2 SSlparameters fortlggm RPImodule. L. 77
9.3 SSlparameters forthiieRPImodule.. 80
9.4 SSl parameters for themd RPImodule., 83
9.5 SSl parameters fortlsysv RPImodule., 85
9.6 SSlparameters forthep RPImodule. 85
9.7 SSl parameters for thssysv RPImodule.. 87
9.8 Listing of MPI collective functions indicating which have been optimized for SMP environ-
MENTS. o e e e e e e 90
9.9 Listing of MPI collective functions indicating which have been implemented using Shared
Memory e e e e e e e e 92
9.10 SSl parameters fortsamemcollmodule.. oo 92

7

12.1 Valid values for the AMMPI_THREADLEVEL environment variable

Chapter 1

Don’t Panic! (Who Should Read This
Document?)

This document probably looks huge to new users. But don’t panic! It is divided up into multiple, relatively
independent sections that can be read and digested separately. Although this manual covers a lot of relevant
material for all users, the following guidelines are suggested for various types of users. If you are:

e New to MPI: First, read Chapte2 for an introduction to MPI and LAM/MPI. A good reference on
MPI programming is also strongly recommended; there are several books available as well as excellent
on-line tutorials (e.g.,d, 4, 5, 9)).
When you're comfortable with the concepts of MPI, move oN&w to LAM/MPI .

e New to LAM/MPI : If you're familiar with MPI but unfamiliar with LAM/MPI, first read Chaptef
for a mini-tutorial on getting started with LAM/MPI. You'll probably be familiar with many of the
concepts described, and simply learn the LAM terminology and commands. Glance over and use as a
reference Chaptéeffor the rest of the LAM/MPI commands. Chaptet contains some quick tips on
common problems with LAM/MPI.

Assuming that you've already got MPI codes that you want to run under LAM/MPI, read Chapter
to see exactly what MPI-2 features LAM/MPI supports.

When you're comfortable with all this, move onRsevious LAM user.

e Previous LAM user: As a previous LAM user, you're probably already fairly familiar with all the
LAM commands — their basic functionality hasn’t changed much. However, many of them have grown
new options and capabilities, particularly in the area of run-time tunable parameters. So be sure to
read Chapter8 to learn about LAM’s System Services Interface (SSI), Cha@ensd9 (LAM and
MPI SSI modules), and finally Chapt&p (miscellaneous LAM/MPI information, features, etc.).

If you're curious to see a brief listing of new features in this release, see the release notes in&hapter
This isn’'t really necessary, but when you're kicking the tires of this version, it's a good way to ensure
that you are aware of all the new features.

Finally, even for the seasoned MPI and LAM/MPI veteran, be sure to check out Chageerinfor-
mation about debugging MPI programs in parallel.

e System administrator. Unless you're also a parallel programmer, you're reading the wrong docu-
ment. You should be reading the LAM/MPI Installation Guidé€][for detailed information on how
to configure, compile, and install LAM/MPI.

9

10

Chapter 2

Introduction to LAM/MPI

This chapter provides a summary of the MPI standard and the LAM/MPI implementation of that standard.

2.1 About MPI

The Message Passing Interface (MP1)], is a set of API functions enabling programmers to write high-
performance parallel programs that pass messages between processes to make up an overall parallel job.
MPI is the culmination of decades of research in parallel computing, and was created by the MPI Forum —
an open group representing a wide cross-section of industry and academic interests. More information,
including the both volumes of the official MPI standard, can be found at the MPI Forum weéb site.

MPI is suitable for “big iron” parallel machines such as the IBM SP, SGI Origin, etc., but it also works in
smaller environments such as a group of workstations. Since clusters of workstations are readily available at
many institutions, it has become common to use them as a single parallel computing resource running MPI
programs. The MPI standard was designed to support portability and platform independence. As a result,
users can enjoy cross-platform development capability as well as transparent heterogenous communication.
For example, MPI codes which have been written on the RS-6000 architecture running AlX can be ported
to a SPARC architecture running Solaris with little or no modifications.

2.2 About LAM/MPI

LAM/MPI is a high-performance, freely available, open source implementation of the MPI standard that is
researched, developed, and maintained at the Open Systems Lab at Indiana University. LAM/MPI supports
all of the MPI-1 Standard and much of the MPI-2 standard. More information about LAM/MPI, including

all the source code and documentation, is available from the main LAM/MPI web site.

LAM/MPI is not only a library that implements the mandated MPI API, but also the LAM run-time
environment: a user-level, daemon-based run-time environment that provides many of the services required
by MPI programs. Both major components of the LAM/MPI package are designed as component frame-
works — extensible with small modules that are selectable (and configurable) at run-time. This component
framework is known as the System Services Interface (SSI). The SSI component architectures are fully
documented ing, 10, 11, 12, 13, 14, 15].

hitp://www.mpi-forum.org/
2http://www.lam-mpi.org/

11

http://www.mpi-forum.org/
http://www.lam-mpi.org/

12

Chapter 3

Release Notes

This chapter contains release notes as they pertain to the run-time operation of LAM/MPI. The Installation
Guide contains additional release notes on the configuration, compilation, and installation of LAM/MPI.

3.1 New Feature Overview

A full, high-level overview of all changes in the 7 series (and previous versions) can be found in the
HISTORYfile that is included in the LAM/MPI distribution.

This docuemntation was originally written for LAM/MPI1v7.0. Changebars are used extensively through-
out the document to indicate changes, updates, and new features in the versions since 7.0. The change bars
indicate a version number in which the change was introduced.

Major new features specific to the 7 series include the following:

e LAM/MPI 7.0 is the first version to feature the System Services Interface (SSI). SSl is a “pluggable”
framework that allows for a variety of run-time selectable modules to be used in MPI applications.
For example, the selection of which network to use for MPI point-to-point message passing is how a
run-time decision, not a compile-time decision. T @

SSI modules can be built as part of the MPI libraries that are linked into user applications or as stan-
dalone dynamic shared objects (DSOs). When compiled as DSOs, all SSI modules are installed in

$prefix/lib/lam ; new modules can be added to or removed from an existing LAM installation
simply by putting new DSOs in that directory (there is no need to recompile or relink user applica-
tions). 1 @y

e When used with supported back-end checkpoint/restart systems, LAM/MPI can checkpoint parallel
MPI jobs (see Sectiof..5, page93 for more details).

e LAM/MPI supports the following underlying networks for MPI communication, including several
run-time tunable-parameters for each (see Se&i8rpage74 for more details):

— TCP/IP, using direct peer-to-peer sockets

— Myrinet, using the native gm message passing library T @
— Infinband, using the Mellanox VAPI (mVAPI) message passing library L@y
— Shared memory, using either spin locks or semaphores

13

— “LAM Daemon” mode, using LAM’s native run-time environment message passing

e LAM'’s run-time environment can now be “natively” executed in the following environments (see
Section8.1, page63 for more details):

— BProc clusters
— Globus grid environments (beta level support)
— Traditionalrsh [/ ssh -based clusters

T @1 — OpenPBS/PBS Pro/Torque batch queue jobs
L@y — SLURM batch queue systems
T 7.

e Improvements to collective algorithms:

— Several collective algorithms have now been made “SMP-aware”, exhibiting better performance
when enabled and executed on clusters of SMPs (see S8ciigage86 for more details).

— Several collective now use shared memory collective algorithms (not based on MPI point-to-
point communication) when all processes in a communicator are on the same node.

— Collectives on intercommunicators are now supported.
1 @y

e Full support of the TotalView parallel debugger (see Sectior?, paged9 for more details).

e Support for the MPI-2 portable MPI process startup comnrapiexec (see Sectior.12, page56
for more details).

¢ Full documentation for system administrators, users, and develdpérg [L1, 12, 13, 14, 15].

e Various MP| enhancements:

— C++ bindings are provided for all supported MPI functionality.
— Upgraded the included ROMIO packages] 17] to version 1.2.5.1 for MPI I/O support.

— Per MPI-2:4.8 free th&1PI_COMM_SELF communicator at the beginning BfPI_FINALIZE,
allowing user-specified functions to be automatically invoked.

— Formal support foMPI_THREAD_SINGLE, MPI_THREAD_FUNNELED, andMPI_THREAD _-
SERIALIZED. MPI_.THREAD_MULTIPLE is not supported (see Sectidr2.4 pagell?2 for
more details).

— Significantly increased the number of tags and communicators supported in most RPIs.
— Enhanced scheduling capabilities fdP1_COMM_SPAWN.

e Various LAM run-time environment enhancements:

— Newlaminfo command that provides detailed information about a given LAM/MPI installa-
tion.

— UseTMPDIRenvironment variable for LAM’s session directory.
— Restore the originaimask when creating MPI processes.

14

— Allow Fortran MPI processes to change how their name shows oppitask .

— BetterSIGTERMsupport in the LAM daemon; catch the signal and ensure that all sub-processes
are killed and resources are released.

e Deprecated functionality (may disappear in future releases of LAM/MPI):

— LAMRSHTheLAMRSHenvironment variable has been deprecated in favor oftioe¢ _rsh _-
agent parameter to thesh SSI boot module.

— LAMMPI_SOCKETSUFFIX: The LAMMPI_SOCKETSUFFIX has been deprecated in favor
of the LAMMPI_SESSIONSUFFIX environment variable.

3.2 Known Issues
T .1
3.2.1 mpirun and MPI Application cr Module Disagreement

Due to ordering issues in LAM'MPI_INIT startup sequence, it is possible fopirun to believe that it
can checkpoint an MPI application when the application knows that it cannot be checkpointed. A common
case of this is when a un-checkpointable RPI module is selected for the MPI application, but checkpointing
services are available.

In this case, even though there is a mismatch betweginun and the MPI application, there is no
actual harm. Regardless of whapirun believes, attempting to checkpoint the MPI application will fail.

3.2.2 Infiniband rpi Module

The Infiniband i) module implementation in LAM/MPI is based on the IB send/receive protocol for tiny
messages and RDMA protocol for long messages. Future optmizations include allowing tiny messages to
use RDMA (for potentialy latency performance improvements for tiny messages).

Theib rpi has been tested with Mellanox VAPI thca-linux-3.2-build-024. Other versions of VAPI, to
include OpenlB and versions from other vendors have not been well tested. Whichever Infiniband driver is
used, it must include support for shared completion queues. Mellanox VAPI, for example, did not include
support for this feature until mVAPI v3.0f your Infiniband driver does not support shared completion
gueues, the LAM/MPI ib rpi will not function properly. Symptoms will include LAM hanging or crashing
duringMPLINIT. 1 @1y

1 @

3.3 Usage Notes

T .
3.3.1 Operating System Bypass Communication: Myrinet and Infiniband

The gm andib RPI modules require an additional memory manager in order to run properly. On most
systems, LAM will automatically select the proper memory manager and the system administrator / end
user doesn’'t need to know anything about this. However, on some systems and/or in some applications,
extra work is required.

The issue is that OS-bypass networks such as Myrinet and Infiniband require virtual pages to be “pinned”
down to specific hardware addresses before they can be used by the Myrinet/Infiniband NIC hardware. This
allows the NIC communication processor to operate on memory buffers independent of the main CPU

15

because it knows that the buffers will never be swapped out (or otherwise be relocated in memory) before
the operation is complefe.

LAM performs the “pinning” operation behind the scenes; for example, if applicdMiBh. SENDs a
buffer using thegm or ib RPI modules, LAM will automatically pin the buffer before it is sent. However,
since pinning is a relatively expensive operation, LAM usually leaves buffers pinned when the function
completes (e.gMPI_SEND). This typically speeds up future sends and receives because the buffer does
not need to be [re-]pinned. However, if the user frees this memory, the lmnifstbe unpinned before it is
given back to the operating system. This is where the additional memory manager comes in.

LAM will, by default, intercept calls tanalloc() , calloc() , andfree() by use of the ptmal-
loc, ptmalloc2, or Mac OS X dynlib functionality (note that Caew anddelete arenot intercepted).
However, this is actually only an unfortunate side effect: LAM really only needs to intercepbth@
function in order to catch memory before it is returned to the operating system. Specifically, an internal
LAM routine runs duringsbrk() to ensure that all memory is properly unpinned before it is given back to
the operating system.

There is, sadly, no easy, portable way to intercgpk() without also interceptingnalloc() et
al. In most cases, however, this is not a problem: the user’s application inioMéxc() and obtains
heap memory, just as expected (and the other memory functions also function as expected). However, there
are some applications do their own interceptingr@lloc() (et al.). These applications will not work
properly with a default installation of LAM/MPI.

To fix this problem, LAM allows you to disable all memory management, but only if the top-level
application promises to invoke an internal LAM handler function wkbrk() is invoked peforethe
memory is returned to the operating system). This is accomplished by configuring LAM with the following
switch:

[shell$configure——with—memory—manager:external j

“external " specifically indicates that if thgm or ib RPI modules are used, the application promises
to invoke the internal LAM function for unpinning memory as required. Note that this function is irrelevant
(but harmless) when any other RPI module is used. The function that must be invoked is prototyped in
<mpi.h> :

[void lam_handlefreeqoid +buf, sizet length): j

For applications that must use this functionality, it is probably safest to wrap the tathtdvandle _-
free() in the following preprocessor conditional:

#include <mpi.h>

int my_sbrk(...){
I* ...sbrk() functionality..x/
#if defined(LAM.MPI)
lam_handlefree(bufer, length);
#endif
Ix ...rest of sbrk() functionality.x/

}

Surprisingly, this memory management is unnecessary on Solaris. The details are too lengthy for this document.

16

Note that when LAM is configured this wagll MPI applications that use thggm or ib RPI modules
must invoke this function as required. Failure to do so will result in undefined behavior. 1

3.4 Platform-Specific Notes

3.4.1 Provided RPMs

If you install LAM/MPI via an official RPM from the LAM/MPI web site (or one of its mirrors), you may
not have all the SSI modules that are described in Chaftensl9. The modules that are shipped in 7.1.1
are listed in Table3.1 If you need modules that are not provided in the RPMs, you will likely need to
download and install the source LAM/MPI tarball.

| Boot | Collective | Checkpoint/Restart | RPI |

globus | lam_basic self crtcp
rsh smp lamd
slurm shmem sysv
tcp
usysv

Table 3.1: SSI modules that are included in the official LAM/MPI RPMs.
This is for multiple reasons:

¢ If provided as a binary, each SSI module may require a specific configuration (e.g., a specific version
of the back-end software that it links to/interacts with). Since each SSI module is orthogonal to other
modules, and since the back-end software systems that each SSI module interacts with may release
new versions at any time, the number of combinations that would need to be provided is exponential.

The logistics of attempting to provide pre-compiled binaries for all of these configurations is beyond
the capability of the LAM Team. As a direct result, significant effort has going into making building
LAM/MPI from the source distribution as simple and all-inclusive as possible.

e Although LAM/MPI is free software (and freely distributable), some of the systems that its modules
can interact with are not. The LAM Team cannot distribute modules that contain references to non-
freely-distributable code.

Thelaminfo command can be used to see which SSI modules are available in your LAM/MPI instal-
lation.

3.4.2 Filesystem Issues

Case-insensitive filesystems.On systems with case-insensitive filesystems (such as Mac OS X with
HFS+, Linux with NTFS, or Microsoft Window&™) (Cygwin)), thempicc andmpiCC commands will

both refer to the same executable. This obviously makes distinguishing betwempittee and mpiCC
wrapper compilers impossible. LAM will attempt to determine if you are building on a case-insensitive
filesystem. If you are, the C++ wrapper compiler will be calbegic++ . Otherwise, the C++ compiler will

be calledmpiCC (althoughmpic++ will also be available).

17

NFS-shared/tmp . The LAM per-session directory may not work properly when hosted in an NFS di-
rectory, and may cause problems when running MPI programs and/or supplementary LAM run-time en-
vironment commands. If using a local filesystem is not possible (e.g., on diskless workstations), the use
of tmpfs ortinyfs is recommended. LAM’s session directory will not grow large; it contains a small
amount of meta data as well as known endpoints for Unix sockets to allow LAM/MPI programs to contact
the local LAM run-time environment daemon.

AFS and tokens/permissions. AFS has some peculiarities, especially with file permissions when using
rsh /ssh.

Many sites tend to install the AFSh replacement that passes tokens to the remote machine as the
defaultrsh . Similarly, most modern versions e§h have the ability to pass AFS tokens. Hence, if you are
using thersh boot module withrecon or lamboot , your AFS token will be passed to the remote LAM
daemon automatically. If your site does not install the AFS replacenséntas the default, consult the
documentation or-with-rsh to see how to set the path to theh that LAM will use.

Once you use the replacemesh or an AFS-capablesh , you should get a token on the target node
when using thesh boot module® This means that your LAM daemons are running with your AFS token,
and you should be able to run any program that you wish, including those that angsterh:anyuser
accessible. You will even be able to write into AFS directories where you have write permission (as you
would expect).

Keep in mind, however, that AFS tokens have limited lives, and will eventually expire. This means that
your LAM daemons (and user MPI programs) will lose their AFS permissions after some specified time
unless you renew your token (with tkkog command, for example) on the originating machine before the
token runs out. This can play havoc with long-running MPI programs that periodically write out file results;
if you lose your AFS token in the middle of a run, and your program tries to write out to a file, it will not
have permission to, which may cause Bad Things to happen.

If you need to run long MPI jobs with LAM on AFS, itis usually advisable to ask your AFS administrator
to increase your default token life time to a large value, such as 2 weeks.

3.4.3 Dynamic/Embedded Environments

In LAM/MPI version 7.1.1, some RPI modules may utilize an additional memory manager mechanism
(see Sectior8.3.1, pagel5 for more details). This can cause problems when running MPI processes as
dynamically loaded modules. For example, when running a LAM/MPI program as a MEX function in a
Matlab environment, normal Unix linker semantics create situations where both the default Unix and the
memory management systems are used. This typically results in process failure.

Note that thisonly occurs when LAM/MPI processes are used in a dynamic environment and an addi-
tional memory manager is included in LAM/MPI. This appears to occur because of normal Unix semantics;
the only way to avoid it is to use thewith-memory-manager parameter to LAM’sconfigure
script, specifying eitherrfone” or “external " as its value. See the LAM/MPI Installation Guide for
more details.

3.4.4 Linux

LAM/MPI is frequently used on Linux-based machines (IA-32 and otherwise). Although LAM/MPI is
generally tested on Red Hat and Mandrake Linux systems using recent kernel versions, it should work on

2If you are using a different boot module, you may experience problems with obtaining AFS tokens on remote nodes.

18

other Linux distributions as well.

Note that kernel versions 2.2.0 through 2.2.9 had some TCP/IP performance problems. It seems that
version 2.2.10 fixed these problems; if you are using a Linux version between 2.2.0 and 2.2.9, LAM may
exhibit poor TCP performance due to the Linux TCP/IP kernel bugs. We recommend that you upgrade to
2.2.10 (or the latest version). Saép://www.lam-mpi.org/linux/ for a full discussion of the
problem.

3.4.5 Microsoft Windows ™) (Cygwin)

LAM/MPI is supported on Microsoft WindowS™) (Cygwin 1.5.5). Currentlycp, sysv, usysv andtcp
RPIs are supported. ROMIO is not suported.

In Microsoft Window$™) (Cygwin), IPC services are provided by the CyglPC module. Hence, in-
stallation and use of theysv andusysv RPIs require this module. Specificallyysv and usysv RPIs
are installed if and only if the librarlfbcygipc.a is found andpc-daemon2.exe is running when
configuring LAM/MPI. Furthermore, to use these RPIs, it is necessary toipexgaemon2.exe run-
ning on all the nodes. For detailed instructions on configuring these RPIs, please refer to the LAM/MPI
Installation Guide.

Since there are some issues with the use of the native Cygwin terminal for standard 10 redirection, it is
advised to run MPI applications on xterm. For more information on getting X services for Cygwin, please
see the XFree86 web site.

Although we have tried to port the complete functionality of LAM/MPI to Cygwin, because of some
outstanding portability issues, execution of LAM/MPI applications on Cygwin may not always be reliablex)

T .1

3.4.6 Solaris

Thegm RPI will fail to function properly on versions of Solaris older than Solaris 7. T @1
The default amount of shared memaory available on Solaris is fairly small. It may need to be increased

to allow running more than a small number of processes on a single Solaris node usgguvioe usysv

RPI modules. For example, if running the LAM test suite on a single node, some tests run several instances

of the executable (e.g., 6) which may cause the system to run out of shared memory and therefore cause the

test to fail. Increasing the shared memory limits on the system will allow the test to pass. Ly

Shttp://www.cygwin.com/
“Seehttp://sunsite.uakom.sk/sunworldonline/swol-09-1997/swol-09-insidesolaris.html for
a good examplantion of Solaris shared memory.

19

http://www.lam-mpi.org/linux/
http://www.cygwin.com/
http://sunsite.uakom.sk/sunworldonline/swol-09-1997/swol-09-insidesolaris.html

20

Chapter 4

Getting Started with LAM/MPI

This chapter provides a summary tutorial describing some of the high points of using LAM/MPI. It is not
intended as a comprehensive guide; the finer details of some situations will not be explained. However, it is
a good step-by-step guide for users who are new to MPI and/or LAM/MPI.

Using LAM/MPI is conceptually simple:

e Launch the LAM run-time environment (RTE)
e Repeat as necessary:

— Compile MPI program(s)
— Run MPI program(s)

e Shut down the LAM run-time environment

The tutorial below will describe each of these steps.

4.1 One-Time Setup

This section describes actions that usually only need to be performed once per user in order to setup LAM
to function properly.

4.1.1 Setting the Path

One of the main requirements for LAM/MPI to function properly is for the LAM executables to be in your
path. This step may vary from site to site; for example, the LAM executables may already be in your path —
consult your local administrator to see if this is the case.

NOTE: If the LAM executables are already in your path, you can skip this step and proceed to Sec-
tion 4.2

In many cases, if your system does not already provide the LAM executables in your path, you can add
them by editing your “dot” files that are executed automatically by the shell upon login (both interactive and
non-interactive logins). Each shell has a different file to edit and corresponding syntax, so you'll need to
know which shell you are using. Tabldsl and4.2list several common shells and the associated files that
are typically used. Consult the documentation for your shell for more information.

21

Shell name Interactive login startup file
sh (or Bash| .profile

named sh")

csh .cshrc followed by.login

tcsh .tcshre if it exists, .cshrc if it does not, followed by
Jogin

bash .bash _profile if it exists, or.bash _login if it exists, or
.profile if it exists (in that order). Note that some Linux dis-

tributions automatically come withbash _profile scripts for
users that automatically executeashrc as well. Consult the
bash manual page for more information.

Table 4.1: List of common shells and the corresponding environmental setup files commonly used with each
for interactive startups (e.g., normal login). All files listed are assumed to be H@dMElirectory.

Shell name Non-interactive login startup file
sh (or Bash| This shell does not execute any file automatically, so LAM will
named Sh”) execute theprofile script before invoking LAM executables
on remote nodes
csh .cshrc
tcsh .tcshre if it exists,.cshrc if it does not
bash .bashrc ifit exists

Table 4.2: List of common shells and the corresponding environmental setup files commonly used with each
for non-interactive startups (e.g., normal login). All files listed are assumed to be $HB&IElirectory.

22

You'll also need to know the directory where LAM was installed. For the purposes of this tutorial, we’ll
assume that LAM is installed ifusr/local/lam . And to re-emphasize a critical point: these are only
guidelines — the specifics may vary depending on your local setup. Consult your local system or network
administrator for more details.

Once you have determined all three pieces of information (what shell you are using, what directory
LAM was installed to, and what the appropriate “dot” file to edit), open the “dot” file in a text editor and
follow the general directions listed below:

e Forthe Bash, Bourne, and Bourne-related shells, add the following lines:

PATH=/usr/local/lam/bin:$PATH
export PATH

e For the C shell and related shells (suchiash), add the following line:

[set path= (/usr/local/lam/bin $path) j

4.1.2 Finding the LAM Manual Pages

LAM includes manual pages for all supported MPI functions as well as all of the LAM executables. While
this stepis not necessarfor correct MPI functionality, it can be helpful when looking for MPI or LAM-
specific information.

Using Tablest.1 and4.2, find the right “dot” file to edit. Assuming again that LAM was installed to
{usr/local/lam , open the appropriate “dot” file in a text editor and follow the general directions listed
below:

e For the Bash, Bourne, and Bourne-related shells, add the following lines:

MANPATH=/usr/local/lam/man:$MANPATH
export MANPATH

e For the C shell and related shells (suchash), add the following lines:

if ($?MANPATH == Q)then

setenvMANPATH /usr/local/lam/man
else

setenvMANPATH /usr/local/lam/man:$MANPATH
endif

4.2 System Services Interface (SSI)
LAM/MPI is built around a core of System Services Interface (SSI) plugin modules. SSI allows run-time

selection of different underlying services within the LAM/MPI run-time environment, including tunable
parameters that can affect the performance of MPI programs.

23

While this tutorial won't go into much detail about SSl, just be aware that you’'ll see mention of “SSI”
in the text below. In a few places, the tutorial passes parameters to various SSI modules through either
environment variables and/or thgsi command line parameter to several LAM commands.

See other sections in this manual for a more complete description of SSI (CBaptage41), how it
works, and what run-time parameters are available (Chaptansl9, page3and73, respectively). Also,
thelamssi(7) ,lamssi _boot(7) ,lamssi _coll(7) ,lamssi _cr(7) ,andlamssi _rpi(7) man-
ual pages each provide additional information on LAM’s SSI mechanisms.

4.3 What Does Your LAM/MPI Installation Support?

LAM/MPI can be installed with a large number of configuration options. It depends on what choices your
system/network administrator made when configuring and installing LAM/MPI.|diménfo command
is provided to show the end-user with information about what the installed LAM/MPI supports. Running
“laminfo " (with no arguments) prints a list of LAM’s capabilities, including all of its SSI modules.

Among other things, this shows what language bindings the installed LAM/MPI supports, what under-
lying network transports it supports, and what directory LAM was installed to. -paesable option
prints out all the same information, but in a conveniently machine-parsable format (suitable for using with
scripts).

4.4 Booting the LAM Run-Time Environment

Before any MPI programs can be executed, the LAM run-time environment must be launched. This is
typically called “booting LAM.” A successfully boot process creates an instance of the LAM run-time
environment commonly referred to as the “LAM universe.”

LAM’s run-time environment can be executed in many different environments. For example, it can be
run interactively on a cluster of workstations (even on a single workstation, perhaps to simulate parallel
execution for debugging and/or development). Or LAM can be run in production batch scheduled systems.

This example will focus on a traditionath / ssh -style workstation cluster (i.e., not under batch
systems), wheresh or ssh is used to launch executables on remote workstations.

4.4.1 The Boot Schema File (a.k.a, “Hostfile”, “Machinefile”)

When usingsh orssh to boot LAM, you will need a text file listing the hosts on which to launch the LAM
run-time environment. This file is typically referred to as a “boot schema”, “hostfile”, or “machinefile.” For
example:

My boot schema
nodel.cluster.example.com
node2.cluster.example.com
node3.cluster.example.com cpu=2
node4.cluster.example.com cpu=2

Four nodes are specified in the above example by listing their IP hosthames. Note atgoutkiz™that
follows the last two entries. This tells LAM that these machines each have two CPUs available for running
MPI programs (e.g.node3 andnode4 are two-way SMPs). It is important to note that the number of
CPUs specified here ham correlation to the physicial number of CPUs in the machine. It is simply a

24

convenience mechanism telling LAM how many MPI processes we will typically launch on that node. The
ramifications of thepu key will be discussed later.

The location of this text file is irrelevant; for the purposes of this example, we'll assume that it is named
hostfile and is located in the current working directory.

442 Thelamboot Command

Thelamboot command is used to launch the LAM run-time environment. For each machine listed in the
boot schema, the following conditions must be met for LAM'’s run-time environment to be booted correctly:

e The machine must be reachable and operational.

e The user must be able to non-interactively execute arbitrary commands on the machine (e.g., without
being prompted for a password).

e The LAM executables must be locatable on that machine, using the user’s shell search path.
e The user must be able to write to the LAM session directory (usually somewhere/tmgey.
e The shell’s start-up scripts must not print anything on standard error.

¢ All machines must be able to resolve the fully-qualified domain name (FQDN) of all the machines
being booted (including itself).

Once all of these conditions are met, flaenboot command is used to launch the LAM run-time
environment. For example:

shell$lamboot—v —ssi boot rsh hostfile
LAM 7.0/MPI 2 C++/ROMIO — Indiana University

n0<1234> ssi:boot:base:linear: booting N0 (nodel.cluster.example.com)
n0<1234> ssi:boot:base:linear: booting n1 (node2.cluster.example.com)
n0<1234> ssi:boot:base:linear: booting n2 (node3.cluster.example.com)
n0<1234> ssi:boot:base:linear: booting N3 (node4.cluster.example.com)
n0<1234> ssi:boot:base:linear: finished

The parameters passedamboot in the example above are as follows:

e -v : Makelamboot be slightly verbose.

e -ssi boot rsh : Ensure that LAM uses thiesh /ssh boot module to boot the LAM universe.
Typically, LAM chooses the right boot module automatically (and therefore this parameter is not
typically necessary), but to ensure that this tutorial does exactly what we want it to do, we use this
parameter to absolutely ensure that LAM usds or ssh to boot the universe.

e hostfile : Name of the boot schema file.
Common causes of failure with themboot command include (but are not limited to):

25

T @

1 @

e User does not have permission to execute on the remote node. This typically involves setting up a
$HOME/.rhosts file (if usingrsh), or properly configured SSH keys (using usssi).

Setting up.rhosts and/or SSH keys for password-less remote logins are beyond the scope of this
tutorial; consult local documentation fesh andssh, and/or internet tutorials on setting up SSH
keys?!

e The first time a user usessh to execute on a remote nodesh typically prints a warning to the
standard error. LAM will interpret this as a failure. If this happeaspboot will complain that
something unexpectedly appearedstderr , and abort. One solution is to manuadigh to each
node in the boot schema once in order to eliminatestiderr warning, and then tryfamboot
again. Another is to use thmot _rsh _ignore _stderr SSI parameter. We haven't discussed SSI
parameters yet, so it is probably easiest at this point to mansstilyto a small humber of nodes to
get the warning out of the way.

If you have having problems wittamboot , try using the-d option tolamboot , which will print
enormous amounts of debugging output which can be helpful for determining what the problem is. Addi-
tionally, check théamboot(1) man page as well as the LAM FAQ on the main LAM web %iteder the
section “Booting LAM” for more information.

4.4.3 Thelamnodes Command

An easy way to see how many nodes and CPUs are in the current LAM universe is widmihedes
command. For example, with the LAM universe that was created from the boot schema in ettlpn
running thlamnodes command would result in the following output:

shell$lamnodes

nO nodel.cluster.example.com:1:origin,thsde
nl node2.cluster.example.com:1:

n2 node3.cluster.example.com:2:

n3 node4.cluster.example.com:2:

The “n” number on the far left is the LAM node number. For exampted™ uniquely refers tanode4 .
Also note the third column, which indicates how many CPUs are available for running processes on that
node. In this example, there are a total of 6 CPUs available for running processes. This information is from
the “cpu” key that was used in the hostfile, and is helpful for running parallel processes (see below).
Finally, the ‘origin " notation indicates which nodemboot was executed from. this _node”
obviously indicates which nodamnodes is running on.

4.5 Compiling MPI Programs

Note that it isnotnecessary to have LAM booted to compile MPI programs.
Compiling MPI programs can be a complicated process:

As of this writing, a Google search for “ssh keys” turned up several decent tutorials; including any one of them here would
significantly increase the length of this already-tremendously-long manual.
2http://www.lam-mpi.org/fag/

26

http://www.lam-mpi.org/faq/

e The same compilers should be used to compile/link user MPI programs as were used to compile LAM
itself.

e Depending on the specific installation configuration of LAM, a varietylof-L , and-l flags (and
possibly others) may be necessary to compile and/or link a user MPI program.

LAM/MPI provides “wrapper” compilers to hide all of this complexity. These wrapper compilers sim-
ply add the correct compiler/linker flags and then invoke the underlying compiler to actually perform the
compilation/link. As such, LAM’s wrapper compilers can be used just like “real” compilers.

The wrapper compilers are namegbicc (for C programs)mpiCC andmpic++ (for C++ programs),
andmpif77 (for Fortran programs). For example:

shell$mpicc—g —c foo.c
shell$mpicc—g —c bar.c
shell$mpicc —g foo.o bar.o—o0 my_mpi_program

Note that no additional compiler and linker flags are required for correct MPI compilation or linking.
The resultingmy_mpi _program is ready to run in the LAM run-time environment. Similarly, the other
two wrapper compilers can be used to compile MPI programs for their respective languages:

shell$mpiCC —O c++_program.cc—0 my_c++_mpi_program
shell$mpif77 —O f77_program.f—o my_f77_mpi_program

Note, too, that any other compiler/linker flags can be passed through the wrapper compilers {guch as
and-0); they will simply be passed to the back-end compiler.

Finally, note that giving theshowme option to any of the wrapper compilers will show both the name
of the back-end compiler that will be invoked, and also all the command line options that would have been
passed for a given compile command. For example (line breaks added to fit in the documentation):

shell$mpiCC —O c++_program.cc-0 my_c++ program—showme

g++ —I/usr/local/lam/include-pthread—O c++program.cc-o \
my_c++_program—L/ustr/local/lam/lib—llammpio —llammpi++ —Ipmpi \
—llamf77mpi—Impi —llam —lutil —pthread

T @
Note that the wrapper compilers only add all the LAM/MPI-specific flags when a command-line argu-

ment that does not begin with a dash (“-") is present. For example:

shell$mpicc

gcc: no input files

shell$mpicc ——version

gcc (GCC) 3.2.2 (Mandrake Linux 9.1 3.2.2mdk)

Copyright (C) 2002 Free Software Foundation, Inc.

This is free software; see tlswurcefor copying conditions. There is NO

warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

1 @y

45.1 Sample MPI Programin C

The following is a simple “hello world” C program.

27

#include <stdio.h>
#include <mpi.h>

int main(nt argc,char «argv[]) {
int rank, size;

MPI_Init(&argc, &argv);
MPI_Commrank(MPLCOMM_WORLD, &rank);
MPI_Commsize(MPLCOMM_WORLD, &size);

printf(“Hello, world! | am %d of %d\n”, rank, size);

MPI_Finalize();
return O;

This program can be saved in a text file and compiled witmmtpecc wrapper compiler.

{shell$mpicc hello.c—o hello

4.5.2 Sample MPI Program in C++

The following is a simple “hello world” C++ program.

#include <iostream-
#include <mpi.h>

using hamespacstd;

int maingnt argc,char xargv[]) {
int rank, size;

MPI::Init(argc, argv);
rank = MPIl::COMMWORLD.Getrank();
size = MPI::COMMWORLD.Getsize();

cout<< “Hello, world! lam” << rank<< “of " << size<< endl;

MPI::Finalize();
return O;

This program can be saved in a text file and compiled witimipe&CC wrapper compiler (ompic++ if
on case-insensitive filesystems, such as Mac OS X’s HFS+).

[shell$mpiCC hello.cc—o hello

28

4.5.3 Sample MPI Program in Fortran

The following is a simple “hello world” Fortran program.

program hello
include 'mpif.h’
integer rank,size ierr

call MPL_INIT (ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)
call MPI_COMM_SIZE(MPLLCOMM_WORLD, sizeg ierr)

print x, "Hello,_world!__l_am__", rank, "_of_", size
call MPI_FINALIZE(ierr)

stop
end

This program can be saved in a text file and compiled withmbpé77 wrapper compiler.

Lshell$mpif77 hello.f—o hello j

4.6 Running MPI Programs

Once you have successfully established a LAM universe and compiled an MPI program, you can run MPI
programs in parallel.

In this section, we will show how to run a Single Program, Multiple Data (SPMD) program. Specifically,
we will run thehello program (from the previous section) in parallel. Timpirun and mpiexec
commands are used for launching parallel MPI programs, andnglitask commands can be used to
provide crude debugging support. Tleenclean command can be used to completely clean up a failed
MPI program (e.g., if an error occurs).

4.6.1 Thempirun Command

Thempirun command has many different options that can be used to control the execution of a program
in parallel. We'll explain only a few of them here.
The simplest way to launch thello program across all CPUs listed in the boot schema is:

[shell$mpirun C hello J

The C option means “launch one copy b&llo on every CPU that was listed in the boot schema.”
TheC notation is therefore convenient shorthand notation for launching a set of processes across a group of
SMPs.

Another method for running in parallel is:

[shell$mpirun N hello j

29

TheNoption has a different meaning th@s- it means “launch one copy btllo on every node in the
LAM universe.” HenceN disregards the CPU count. This can be useful for multi-threaded MPI programs.
Finally, to run an absolute number of processes (regardless of how many CPUs or nodes are in the LAM
universe):

[shell$mpirun—np 4 hello j

This runs 4 copies diello . LAM will “schedule” how many copies dfiello will be run in a round-
robin fashion on each node by how many CPUs were listed in the boot schemaGiteexample, on the
LAM universe that we have previously shown in this tutorial, the following would be launched:

e lhello would be launched on0O (namednodel)
e lhello would be launched onl (namednode2)
e 2hello swould be launched om2 (namedhode3)

Note that any number can be used — if a number is used that is greater than how many CPUs are in
the LAM universe, LAM will “wrap around” and start scheduling starting with the first node again. For
example, usingnp 10 would result in the following schedule:

e 2hello sonnO (1 from the first pass, and then a second from the “wrap around”)
e 2hello sonnl (1 from the first pass, and then a second from the “wrap around”)
e 4hello sonn2 (2 from the first pass, and then 2 more from the “wrap around”)

e 2hello sonn3

Thempirun(l) man page contains much more information amgirun and the options available.
For examplempirun also supports Multiple Program, Multiple Data (MPMD) programs, although it is not
discussed here. Also see Sectibf4(page58) in this document.

4.6.2 Thempiexec Command

The MPI-2 standard recommends the usenpiexec for portable MPI process startup. In LAM/MPI,
mpiexec is functionaly similar tanpirun . Some options that are availablertpirun are not available
to mpiexec , and vice-versa. The end result is typically the same, however — both will launch parallel MPI
programs; which you should use is likely simply a personal choice.

That being saidnpiexec offers more convenient access in three cases:

e Running MPMD programs
e Running heterogeneous programs
¢ Running “one-shot” MPI programs (i.e., boot LAM, run the program, then halt LAM)

The general syntax fanpiexec is:

[shell$mpiexec<g|obaLoptions> <cmdl> : <cmd2> : ...]

3Note that the use of the word “schedule” does not imply that LAM has ties with the operating system for scheduling purposes
(it doesn't). LAM “scheduled” on a per-node basis; so selecting a process to run means that it has been assigned and launched on
that node. The operating system is solely responsible for all process and kernel scheduling.

30

Running MPMD Programs

For example, to run a manager/worker parallel program, where two different executables need to be launched
(i.e.,manager andworker , the following can be used:

[shell$mpiexec—n 1 manager : worker }

This runs one copy ahanager and one copy ofvorker for every CPU in the LAM universe.

Running Heterogeneous Programs

Since LAM is a heterogeneous MPI implementation, it supports running heterogeneous MPI programs. For
example, this allows running a parallel job that spans a Sun SPARC machine and an IA-32 Linux machine
(even though they are opposite endian machines). Although this can be somewhat complicated to setup
(remember that you will first need tamboot successfully, which essentially means that LAM must be
correctly installed on both architectures), timpiexec command can be helpful in actually running the
resulting MPI job.

Note that you will need to have two MPI executables — one compiled for Solarist{ellg.solaris)
and one compiled for Linux (e.cdhello.linux). Assuming that these executables both reside in the same
directory, and that directory is available on both nodes (or the executables can be founldAT then their
respective machines), the following command can be used:

[shell$mpiexec—arch solaris hello.solaris—=arch linux hello.linux j
This runs théhello.solaris command on all nodes in the LAM universe that have the string “so-
laris” anywhere in their architecture string, anello.linux on all nodes that have “linux” in their ar-

chitecture string. The architecture string of a given LAM installation can be found by runnitentimefo
command.

“One-Shot” MPI Programs

In some cases, it seems like extra work to boot a LAM universe, run a single MPI job, and then shut down
the universe. Batch jobs are good examples of this — since only one job is going to be run, why does it take
three commandsfpiexec provides a convenient way to run “one-shot” MPI jobs.

{shell$mpiexec—machinefile hostfile hello }

This will invokelamboot with the boot schema nameldstfile 7, run the MPI prograniello on
all available CPUs in the resulting universe, and then shut down the universe wieimthalt command
(which we’ll discuss in Sectiod.7, below).

4.6.3 Thempitask Command

Thempitask command is analogous to the sequential Unix comnpandt shows the current status of the
MPI program(s) being executed in the LAM universe, and displays primitive information about what MPI
function each process is currently executing (if any). Note that in normal practiceyimesg command
only gives a snapshot of what messages are flowing between MPI processes, and therefore is usually only
accurate at that single point in time. To really debug message passing traffic, use a tool such as message
passing analyzer (e.g., XMPI), or a parallel debugger (e.g., TotalView).

mpitask can be run from any node in the LAM universe.

31

4.6.4 Thelamclean Command

Thelamclean command completely removed all running programs from the LAM universe. This can be
useful if a parallel job crashes and/or leaves state in the LAM run-time environment (e.g., MPI-2 published
names). It is usually run with no parameters:

[shell$lamclean j

lamclean is typically only necessary when developing / debugging MPI applications —i.e., programs
that hang, messages that are left around, etc. Correct MPI programs should terminate properly, clean up all
their messages, unpublish MPI-2 names, etc.

4.7 Shutting Down the LAM Universe

When finished with the LAM universe, it should be shut down withldmehalt command:
[shell$lamhalt j

In most cases, this is sufficient to kill all running MPI processes and shut down the LAM universe.
However, in some rare conditiongmhalt may fail. For example, if any of the nodes in the LAM
universe crashed before runnilagnhalt , lamhalt will likely timeout and potentially not kill the entire

LAM universe. In this case, you will need to use taenwipe command to guarantee that the LAM
universe has shut down properly:

[shell$lamwipe—v hostfile J

wherehostfile is the same boot schema that was used to boot LAM (i.e., all the same nodes are listed).
lamwipe will forcibly kill all LAM/MPI processes and terminate the LAM universe. This is a slower
process thatamhalt , and is typically not necessary.

32

Chapter 5

Supported MPI Functionality

This chapter discusses the exact levels of MPI functionality that is supported by LAM/MPI.

5.1 MPI-1 Support

LAM 7.1.1 has support for all MPI-1 functionality.

5.1.1 Language Bindings

LAM provides C, C++, and Fortran 77 bindings for all MPI-1 functions, types, and constants. Profiling
support is available in all three languages (if LAM was configured and compiled with profiling support).
Thelaminfo command can be used to see if profiling support was included in LAM/MPI. T @

Support for optional Fortran types has now been added. Tallksts the new datatypes. Note that
MPI_INTEGERS8 andMPI_REAL16 are listed even though they are not defined by the MPI standard. Sup-
port for these types is included per request from LAM/MPI users.

| Supported Datatypes |

MPILINTEGER1 MPI_LINTEGER2
MPI_INTEGER4 MPI_INTEGERS
MPI_REAL4 MPI_REALS
MPI_REAL16

Table 5.1: Supported optional fortran datatypes.
1 @

5.1.2 MPI_CANCEL

MPI_CANCEL works properly for receives, but will almost never work on serd®l_CANCEL is most
frequently used with unmatch@&dPI_IRECV'’s that were made “in case” a matching message arrived. This
simply entails removing the receive request from the local queue, and is fairly straightforward to implement.

Actually canceling a send operation is much more difficult because some meta information about a
message is usually sent immediately. As such, the message is usually at least partially sent béRire an
CANCEL is issued. Trying to chase down all the particular cases is a nightmare, to say the least.

33

As such, the LAM Team decided not to implem&fel_CANCEL on sends, and instead concentrate on
other features.

But in true MPI Forum tradition, we would be happy to discuss any code that someone would like to
submit that fully implement&PI_CANCEL.

5.2 MPI-2 Support

LAM 7.1.1 has support for many MPI-2 features. The main chapters of the MPI-2 standard are listed below,
along with a summary of the support provided for each chapter.

5.2.1 Miscellany

Portable MPI Process Startup. Thempiexec command is now supported. Common examples include:

Runs 4 copes of the MPI program mpi_program
shell$mpiexec—n 4 my_mpi_program

Runs mylinux_program on all available Linux machines, and runs
my solaris program on all available Solaris machines
shell$mpiexec—arch linux mylinux_program :—arch solaris mysolarisprogram

Boot the LAM run-time environment, run mgnpi_program on all
available CPUs, and then shut down the LAM +tdime environment.
shell$mpiexec—machinefile hostfile mynpi_program

See thanpiexec(l) man page for more details on supported options as well as more examples.
PassingNULL to MPLINIT. PassingNULL as both arguments tdPI_INIT is fully supported.
Version Number. LAM 7.1.1 reports its MPI version as 1.2 through the functdRI_GET_VERSION.

Datatype Constructor MPI_TYPE_CREATE _INDEXED_BLOCK. The MPIfunctionMPI_TYPE_CREATE -
INDEXED_BLOCK is not supported by LAM/MPI.

Treatment of MP|_Status. Although LAM supports the constankdPI_STATUS_IGNORE andMPI -
STATUSES_IGNORE, the functionMPI_ REQUEST_GET_STATUS is not provided.

Error class for invalid keyval. The error class for invalid keyval/PI_ERR_KEYVAL, is fully sup-
ported.

Committing committed datatype. Committing a committed datatype is fully supported; its end effect is
a no-op.

Allowing user functions at process termination. Attaching attributes ttPI_COMM _SELF that have
user-specified delete functions will now trigger these functions to be invoked as the first phdbe_of
FINALIZE. When these functions are run, MPI is still otherwise fully functional.

34

Determining whether MPI has finished. The functionMPI_FINALIZED is fully supported.

The Info object. Full support forMPI_Info objects is provided. See Talie2

] Supported Functions

MPI_INFO_CREATE MPI_INFO_FREE MPILINFO_GET_NTHKEY
MPI_INFO_DELETE MPI_INFO_GET MPI_INFO_GET_VALUELEN
MPI_INFO_DUP MPI_INFO_GET_NKEYS MPI_INFO_SET

Table 5.2: Supported MPI-2 info functions.

Memory allocation. TheMPI_ALLOC_MEM andMPI_FREE_MEM functions will return “special” mem-

ory that enable fast memory passing in RPIs that support it. These functions are simply wrappers to
malloc() andfree() (respectively) in RPI modules that do not take advantage of “special” memory.
These functions can be used portably for potential performance gains.

Language interoperability. Inter-language interoperability is supported. Itis possible to initialize LAM/MPI
from either C or Fortran and mix MPI calls from both languages. Handle conversions for inter-language in-
teroperability are fully supported. See Tabl&.

] Supported Functions \

MPI_COMM_F2C MPI_.COMM_C2F
MPI_.GROUP_F2C MPI_.GROUP_C2F
MPI_TYPE_F2C MPI_TYPE_C2F
MPI_REQUEST_F2C MPI_.REQUEST_C2F
MPI_INFO_F2C MPI_INFO_C2F
MPI_WIN_F2C MPI_WIN_C2F
MPI_STATUS_F2C MPI_STATUS_C2F

Table 5.3: Supported MPI-2 handle conversion functions.

Error handlers. Communicator and window error handler functions are fully supported; this functionality
is not yet supported faviP1_File handles. See Tabk4

] Supported Functions |

MPI_COMM_CREATE_ERRHANDLER MPI_WIN_CREATE_ERRHANDLER
MPI_COMM_GET_ERRHANDLER MPI_WIN_GET_ERRHANDLER
MPI_COMM_SET_ERRHANDLER MPI_WIN_SET_ERRHANDLER

Table 5.4: Supported MPI-2 error handler functions.

New datatype manipulation functions. Several new datatype manipulation functions are provided. Ta-
ble 5.5lists the new functions.

35

Supported Functions \

MPI_GET_ADDRESS MPI_TYPE_CREATE_SUBARRAY
MPI_TYPE_CREATE_DARRAY MPI_TYPE_CREATE_STRUCT
MPI_TYPE_CREATE_HINDEXED MPI_TYPE_GET_EXTENT
MPI_TYPE_CREATE_HVECTOR MPILTYPE_GET_TRUE_EXTENT
MPI_TYPE_CREATE_RESIZED

Table 5.5: Supported MPI-2 new datatype manipulation functions.

New predefined datatypes. Support has been added for ¥i®1_LONG_LONG_INT, MPI_UNSIGNED _-
LONG_LONG andMPI_WCHAR basic datatypes.

Canonical MPI_PACK, MPI_UNPACK. Support is not provided foMPI_PACK_EXTERNAL, MPI_-
UNPACK_EXTERNAL, or MPI_PACK_EXTERNAL _SIZE.

5.2.2 Process Creation and Management

LAM/MPI supports all MPI-2 dynamic process management. Talbdists all the supported functions.

] Supported Functions \

MPI_CLOSE_PORT MPI_.COMM_GET_PARENT MPI_LOOKUP_NAME
MPI_COMM_ACCEPT MPI_.COMM_JOIN MPI_OPEN_PORT
MPI_COMM_SPAWN MPI_COMM_CONNECT MPI_PUBLISH_.NAME
MPI_COMM_DISCONNECT MPI_.COMM_SPAWN_MULTIPLE MPI_.UNPUBLISH_.NAME

Table 5.6: Supported MPI-2 dynamic functions.

As requested by LAM user$dPI_COMM_SPAWN and MPI_COMM_SPAWN_MULTIPLE supports
someMPI_Info keys for spawning MPMD applications and for more fine-grained control about where chil-
dren processes are spawned. SeaRé Commspawn(3) man page for more details.

These functions supersede thi®IL_COMM_SPAWN function that LAM/MPI introduced in version
6.2b. HenceMPIL_COMM_SPAWN is no longer available.

5.2.3 One-Sided Communication

Support is provided for get/put/accumulate data transfer operations and for the post/wait/start/complete and
fence synchronization operations. No support is provided for window locking.

The datatypes used in the get/put/accumulate operations are restricted to being basic datatypes or single
level contiguous/vectors of basic datatypes.

The implementation of the one-sided operations is layered on top of the point-to-point functions, and
will thus perform no better than them. Nevertheless it is hoped that providing this support will aid developers
in developing and debugging codes using one-sided communication.

Tableb5.7lists the functions related to one-sided communication that have been implemented.

36

] Supported Functions \

MPI_ACCUMULATE MPI_WIN_CREATE MPI_WIN_POST
MPI_GET MPI_WIN_FENCE MPI_WIN_START
MPI_PUT MPI_-WIN_FREE MPI_WIN_WAIT
MPI_WIN_COMPLETE MPI_WIN_GET_GROUP

Table 5.7: Supported MPI-2 one-sided functions.

5.2.4 Extended Collective Operations
T 7

LAM implements the new MPI-2 collective functioddPI_EXSCAN andMPI_ALLTOALLW for intracom-
municators.

Intercommunicator collectives are implemented for all the functions listed in Ta8léNotably, inter-
communicator collectives amot defined forMPI_SCAN (because the MPI standard does not define it),
MPI_ALLGATHERV, andMPI_EXSCAN.!

] Supported Functions \

MPI_ALLGATHER MPI_ALLGATHERV MPI_ALLTOALL
MPI_ALLTOALLV MPI_ALLTOALLW MPI_ALLREDUCE
MPI_REDUCE_SCATTER MPI_GATHER MPI_GATHERV
MPI_REDUCE MPI_BCAST MPI_SCATTER
MPI_SCATTERV MPI_BARRIER

Table 5.8: Supported MPI-2 intercommunicator collective functions.
1 @y
5.2.5 External Interfaces

The external interfaces chapter lists several different major topics. LAM'’s support for these topics is sum-
marized in Tablé.9, and the exact list of functions that are supported is listed 1A

| Supported| Description \
no Generalized requests
no Associating information wittMPI_Status
yes Naming objects
no Error classes
no Error codes
yes Error handlers

yes Decoding a datatype

yes MPI and threads

yes New attribute caching functions
yes Duplicating a datatype

Table 5.9: Major topics in the MPI-2 chapter “External Interfaces”, and LAM’s level of support.

These two functions were unfortunately overlooked and forgotten about when LAM/MPI v7.1 was frozen for release.

37

] Supported Functions

MPI_.COMM_SET_NAME MPI_TYPE_SET_NAME MPI_WIN_SET_NAME
MPI_COMM_GET_NAME MPI_TYPE_GET_NAME MPI_WIN_GET_NAME
MPI_.COMM_CREATE_ERRHANDLER | MPI.WIN_CREATE_ERRHANDLER
MPI_COMM_GET_ERRHANDLER MPI_WIN_GET_ERRHANDLER
MPI_COMM_SET_ERRHANDLER MPI_WIN_SET_ERRHANDLER
MPI_TYPE_GET_CONTENTS MPI_INIT_-THREAD

MPI_TYPE_GET_ENVELOPE MPI_QUERY_THREAD

MPI_TYPE_GET_EXTENT MPI_IS_.THREAD_MAIN
MPI_TYPE_GET_TRUE_EXTENT MPI_TYPE_DUP

MPI_.COMM_CREATE_KEYVAL | MPI_.TYPE_CREATE_KEYVAL | MPI_WIN_CREATE_KEYVAL
MPI_COMM_FREE_KEYVAL MPI_TYPE_FREE_KEYVAL MPI_WIN_FREE_KEYVAL
MPI_.COMM_DELETE_ATTR MPI_TYPE_DELETE_ATTR MPI_WIN_DELETE_ATTR
MPI_COMM_GET_ATTR MPI_TYPE_GET_ATTR MPI_WIN_GET_ATTR
MPI_COMM_SET_ATTR MPI_TYPE_SET_ATTR MPI_WIN_SET_ATTR

Table 5.10: Supported MPI-2 external interface functions, grouped by function.

5.2.6 10

MPI-IO support is provided by including the ROMIO package from Argonne National Ealession
1.2.5.1. The LAM wrapper compilersnpicc , mpiCC/mpic++ , andmpif77) will automatically pro-
vide all the necessary flags to compile and link programs that use ROMIO function calls.

Although the ROMIO group at Argonne has included support for LAM in their package, there are still
a small number of things that the LAM Team had to do to make ROMIO compile and install properly with
LAM/MPI. As such, if you try to install the ROMIO package manually with LAM/MPI, you will experience
some difficulties.

There are some important limitations to ROMIO that are discussed irothe/README file. One
limitation that is not currently listed in the ROMIO README file is that atomic file access will not work
with AFS. This is because of file locking problems with AFS (i.e., AFS iteself does not support file locking).
The ROMIO test prograratomicity will fail if you specify an output file on AFS.

Additionally, ROMIO does not support the following LAM functionality:

e LAM MPI-2 datatypes cannot be used with ROMIO; ROMIO makes the fundamental assumption that
MPI-2 datatypes are built upon MPI-1 datatypes. LAM builds MPI-2 datatypes natively — ROMIO
cannot presently handle this case.

This will hopefully be fixed in some future release of ROMIO. The ROMIO test progieoiis _-
test ,fcoll _test ,large _array ,andcoll _perf willfail because they usethe MPI-2 datatype
MPI_DARRAY.

Please see the sections “"ROMIO Users Mailing List” and “Reporting Bugsdmmio/README for
how to submit questions and bug reports about ROMIO (that do not specifically pertain to LAM).

2http://www.mcs.anl.gov/romio/

38

http://www.mcs.anl.gov/romio/

5.2.7 Language Bindings

LAM provides C, C++, and Fortran 77 bindings for all supported MPI-2 functions, types, and constants.
LAM does not provide a Fortran 90 module. However, it is possible to use the Fortran 77 bindings with a
Fortran 90 compiler by specifying the F90 compiler as your Fortran compiler when configuring/compiling
LAM/MPI. See the LAM Installation Guidell4] for more details.

The C++ bindings include support for the C++ oi\Pl::BOOL, MPI::COMPLEX, MPI::DOUBLE_-
COMPLEX, andMPI1::LONG_DOUBLE_COMPLEX datatypes.

Note that there are some issues with using MPI and Fortran 90 together. See the FO0 / C++ chapter in
the MPI-2 standard]] for more information on using MP1 with Fortran 90.

As mentioned in Sectiob.1.1, profiling support is available in all three languages (if LAM was compiled
with profiling support). Thdaminfo command can be used to see if profiling support was included in
LAM/MPI.

39

40

Chapter 6

System Services Interface (SSI) Overview

The System Services Interface (SSI) makes up the core of LAM/MPI. It influences how many commands
and MPI processes are executed. This chapter provides an overview of what SSI is and what users need to
know about how to use it to maximize performance of MPI applications.

6.1 Types and Modules

SSI provides a component framework for the LAM run-time environment (RTE) and the MPI communica-
tions layer. Components are selected from each type at run-time and used to effect the LAM RTE and MPI
library.

There are currently four types of components used by LAM/MPI:

boot: Starting the LAM run-time environment, used mainly with tamboot command.

coll: MPI collective communications, only used within MPI processes.

cr: Checkpoint/restart functionality, used both within LAM commands and MPI processes.

rpi: MPI point-to-point communications, only used within MPI processes.

The LAM/MPI distribution includes instances of each component type referred to as modules. Each
module is an implementation of the component type which can be selected and used at run-time to provide
services to the LAM RTE and MPI communications layer. Chap8eand 9 list the modules that are
available in the LAM/MPI distribution.

6.2 Terminology

Available The term “available” is used to describe a module that reports (at run-time) that it is able to run
in the current environment. For example, an RPI module may check to see if supporting network
hardware is present before reporting that it is available or not.

Chapters8 and 9 list the modules that are included in the LAM/MPI distribution, and detail the
requirements for each of them to indicate whether they are available or not.

Selected The term “selected” means that a module has been chosen to be used at run-time. Depending on
the module type, zero or more modules may be selected.

41

Scope Each module selection has a scope depending on the type of the module. “Scope” refers to the
duration of the module’s selection. Tallel lists the scopes for each module type.

| Type | Scope description |
boot | A module is selected at the beginninglamboot (or recon)
and is used for the duration of the LAM universe.

coll | A module is selected every time an MPI communicator is created
(includingMPI_COMM_WORLD andMPI_COMM_SELF). It re-
mains in use until that communicator has been freed.

cr Checkpoint/restart modules are selected at the beginning of an
MPI job and remain in use until the job completes.
rpi RPI modules are selected durinPI_INIT and remain in use until
MPI_FINALIZE returns.

Table 6.1: SSI module types and their corresponding scopes.

6.3 SSI| Parameters

One of the founding principles of SSl is to allow the passing of run-time parameters through the SSI frame-
work. This allows both the selection of which modules will be used at run-time (by passing parameters to
the SSI framework itself) as well as tuning run-time performance of individual modules (by passing param-
eters to each module). Although the specific usage of each SSI module parameter is defined by either the
framework or the module that it is passed to, the value of most parameters will be resolved by the following:

1. If avalid value is provided via a run-time SSI parameter, use that.

2. Otherwise, attempt to calculate a meaningful value at run-time or use a compiled-in defautt value.

As such, it is typically possible to set a parameter’s default value when LAM is configured/compiled,
but use a different value at run time.
6.3.1 Naming Conventions

SSI parameter names are generally strings containing only letters and underscores, and can typically be
broken down into three parts. For example, the paranietet _rsh _agent can be broken into its three
components:

e SSI module type: The first string of the name. In this case libist .

e SSI| module name: The second string of the name, corresponding to a specific SSI module. In this
case, itigsh .

e Parameter name: The last string in the name. It may be an arbitrary string, and include multiple
underscores. In this case, itagent .

!Note that many SSI modules provide configure flags to set compile-time defaults for “tweakable” parameterg. See [

42

Although the parameter name is technically only the last part of the string, it is only proper to refer to
it within its overall context. Hence, it is correct to say “theot _rsh _agent parameter” as well as “the
agent parameter to thesh boot module”.

Note that the reserved strifigise may appear as a module name, referring to the fact that the parameter
applies to all modules of a give type.

6.3.2 Setting Parameter Values

SSI parameters each have a unique name and can take a single string value. The parameter/value pairs can
be passed by multiple different mechanisms. Depending on the target module and the specific parameter,
mechanisms may include:

e Using command line flags when LAM was configured.
e Setting environment variables before invoking LAM commands.
e Using the-ssi command line switch to various LAM commands.

e Setting attributes on MPI communicators.

Users are most likely to utilize the latter three methods. Each is described in detail, below. Listings and
explanations of available SSI parameters are provided in Chapserd9 (pages$63 and73, respectively),
categorized by SSI type and module.

Environment Variables

SSI parameters can be passed via environment variables prefixetlAWtVIPI_SSI . For example, se-
lecting which RPI module to use in an MPI job can be accomplished by setting the environment variable
LAMMPI_SSI _rpi to a valid RPI module name (e.dcp).

Note that environment variables must be Isetoreinvoking the corresponding LAM/MPI commands
that will use them.

-ssi Command Line Switch

LAM/MPI commands that interact with SSI modules accept-d48 command line switch. This switch
expects two parameters to follow: the name of the SSI parameter and its corresponding value. For example:

[shell$mpirun C—ssi rpi tcp mympi_program }

runs themy_mpi_program on all available CPUs in the LAM universe using tise RPI module.

Communicator Attributes

Some SSI types accept SSI parameters via MPlI communicator attributes (notably the MPI collective com-
munication modules). These parameters follow the same rules and restrictions as normal MPI attributes.
Note that for portability between 32 and 64 bit systems, care should be taken when setting and getting
attribute values. The following is an example of portable attribute C code:

43

int flag, attributeval,

void xsetattribute;

void xxgetattribute;

MPI_Comm comm = MPICOMM_WORLD;

int keyval = LAM_MPI_SSLCOLL_BASE ASSOCIATIVE;

/x Set the value/
setattribute = oid %) 1;
MPI_Commsetattr(comm, keyval, &sesttribute);

/% Get the value:/
getattribute = NULL;
MPI_Commgetattr(comm, keyval, &getttribute, &flag);
if (flag == 1){
attributeval = (int) xgetattribute;
printf(“Got the attribute value: %", attribute val);

}

Specifically, the following code is neither correct nor portable:

int flag, attributeval,
MPI_Comm comm = MPICOMM_WORLD;
int keyval = LAM_MPI_SSLCOLL_BASE ASSOCIATIVE;

/x Set the value/
attributeval = 1;
MPI_Comm.setattr(comm, keyval, &attributeval);

/% Get the value:/
attributeval = —1;
MPI_Commgetattr(comm, keyval, &attributeral, &flag);
if (flag==1)
printf(“Got the attribute value: %", attribute val);

6.4 Dynamic Shared Object (DSO) Modules
T @1
o LAM has the capability of building SSI modules statically as part of the MPI libraries or as dynamic shared
objects (DSOs). DSOs are discovered and loaded into LAM processes at run-time. This allows adding (or
removing) functionality from an existing LAM installation without the need to recompile or re-link user
applications.
The default location for DSO SSI modules3prefix/lib/lam . If otherwise unspecified, this is
where LAM will look for DSO SSI modules. However, the SSI paramégse _module _path can be
used to specify a new colon-delimited path to look for DSO SSI modules. This allows users to specify their
own location for modules, if desired.

44

Note that specifying this parameter overrides the default location. If users wish to augment their search
path, they will need to include the default location in the path specification.

[shell$mpirun C—ssi basamodulepath $prefix/lib/lam:$HOME/myam_modules ...

1 @

6.5 Selecting Modules

As implied by the previous sections, modules are selected at run-time either by examining (in order) user-
specified parameters, run-time calculations, and compiled-in defaults. The selection process involves a
flexible negotitation phase which can be both tweaked and arbitrarily overriden by the user and system
administrator.

6.5.1 Specifying Modules

Each SSI type has an implicit SSI parameter corresponding to the type name indicating which module(s)
to be considered for selection. For example, to specify in thatcihn&P1 module should be used, the SSI
parameterpi should be set to the valuep . For example:

Eshell$mpirun C—ssi rpi tcp mympi_program J

The same is true for the other SSI typbsdt, cr, andcoll), with the exception that theoll type can be
used to specify a comma-separated list of modules to be considered as each MPI communicator is created
(includingMPI_COMM _WORLD). For example:

{shell$mpirun C—ssi coll smp,shmem,larhasic mympi_program }

indicates that themp andlam_basic modules will potentially both be considered for selection for each
MPI communicator.

6.5.2 Setting Priorities

Although typically not useful to individual users, system administrators may use priorities to set system-
wide defaults that influence the module selection process in LAM/MPI jobs.

Each module has an associated priority which plays role in whether a module is selected or not. Specif-
ically, if one or more modules of a given type are available for selection, the modules’ priorities will be at
least one of the factors used to determine which module will finally be selected. Priorities are in the range
[—1,100], with —1 indicating that the module should not be considered for selectionl@hdeing the
highest priority. Ties will be broken arbitrarily by the SSI framework.

A module’s priorty can be set run-time through the normal SSI parameter mechanisms (i.e., environment
variables or using thessi parameter). Every module has an implicit priority SSI parameter in the form
<type >_<module name >_priority

For example, a system administrator may set environment variables in system-wide shell setup files (e.qg.,
letc/profile ,letc/bashrc , or/etc/csh.cshrc) to change the default priorities.

6.5.3 Selection Algorithm

For each component type, the following general selection algorithm is used:

45

e Alist of all available modules is created. If the user specified one or more modules for this type, only
those modules are queried to see if they are available. Otherwise, all modules are queried.

e The module with the highest priority (and potentially meeting other selection criteria, depending on
the module’s type) will be selected.

Each SSI type may define its own additional selection rules. For example, the seleatah of, and
rpi modules may be inter-dependant, and depend on the supported MPI thread level. Clippte73)
details the selection algorithm for MPI SSI modules.

46

Chapter 7

LAM/MPI Command Quick Reference

This section is intended to provide a quick reference of the major LAM/MPI commands. Each command
also has its own manual page which typically provides more detail than this document.

7.1 Thelamboot Command

Thelamboot command is used to start the LAM run-time environment (RT&hboot is typically the
first command used before any other LAM/MPI command (notable exceptions are the wrapper compilers,
which do not require the LAM RTE, anaipiexec which can launch its own LAM universelamboot
can use any of the availabtmot SSI modules; Sectiod.1 details the requirements and operations of each
of theboot SSI modules that are included in the LAM/MPI distribution.
Common arguments that are used withldmmboot command are:

e -b : When used with thesh boot module, the “fast” boot algorithm is used which can noticeably
speed up the execution time @mboot . It can also be used where remote shell agents cannot
provide output from remote nodes (e.g., in a Condor environment). Specifically, the “fast” algorithm
assumes that the user’s shell on the remote node is the same as the shell on the noldenkbete
was invoked.

e -d : Printdebugging output. This will printlat of output, and is typically only necessaryafnboot
fails for an unknown reason. The output is forwarded to standard out as well ag#itheor syslog
facilities. The amount of data produced can fill these filesystems, leading to general system problems.

e -| : Use local hosthame resolution instead of centralized lookups. This is useful in environments
where the same hostname may resolve to different IP addresses on different nodes (e.g., clusters
based on Finite Neighborhood Netwotks T ()

o -prefix <lam/install/path >: Use the LAM/MPI installation specified in thelam/install/path-
- where<lam/install/path- is the top level directory where LAM/MPI is installed. This is typically
used when a user has multiple LAM/MPI installations and want to switch between them without
changing the dot files or PATH environment variable.

This option is hot compatible with LAM/MPI versions prior to 7.1. Loy

1Seehttp://www.aggregate.org/ for more details.

47

http://www.aggregate.org/

e -s . Close thestdout andstderr of the locally-launched LAM daemon (they are normally left
open). This is necessary when invokiagnboot via a remote agent such esh orssh .

e -v . Print verbose output. This is useful to show progress dudangboot ’s progress. Unliked ,
-v does not forward output to a file or syslog.

e -X : Run the LAM RTE in fault-tolerant mode.

e <filename >: The name of the boot schema file. Boot schemas, while they can be as simple as a
list of hostnames, can contain additional information and are discussed in detail in Sdctidrasd
8.1.1 page24 and63, respectively.

Booting the LAM RTE is where most users (particularly first-time users) encounter problems. Each
boot module has its own specific requirements and prerequisites for success. Altamimgiot typically
prints detailed messages when errors occur, users are strongly encouraged to rea® Sdatitire details
of the boot module that they will be using. Additionally, thd switch should be used to examine exactly
what is happening to determine the actual source of the problem — many problemamilibot come
from the operating system or the user’s shell setup; not from within LAM itself.

The most commotamboot example simply uses a hostfile to launch acrosshn'ssh -based cluster
of nodes (the-“ssi boot rsh ”is nottechnically necessary here, but it is specified to make this example
correct in all environments):

shell$lamboot—v —ssi boot rsh hostfile
LAM 7.0/MPI 2 C++/ROMIO — Indiana University

n0<1234> ssi:boot:base:linear: booting N0 (nodel.cluster.example.com)
n0<1234> ssi:boot:base:linear: booting n1 (node2.cluster.example.com)
n0<1234> ssi:boot:base:linear: booting n2 (node3.cluster.example.com)
n0<1234> ssi:boot:base:linear: booting n3 (node4.cluster.example.com)
n0<1234> ssi:boot:base:linear: finished

7.1.1 Multiple Sessions on the Same Node

In some cases (such as in batch-regulated environments), it is desirable to allow multiple universes owned
by the same on the same node. TMPDIR LAMMPI_SESSIONPREFIX, andLAMMPI_SESSION-

SUFFIX environment variables can be used to effect this behavior. The main issue is the location of LAM’s
session directory; each node in a LAM universe has a session directory in a well-known location in the
filesystem that identifies how to contact the LAM daemon on that node. Multiple LAM universes can
simultaneously co-exist on the same node as long as they have different session directories.

LAM recognizes several batch environments and automatically adapts the session directory to be specific
to a batch job. Hence, if the batch scheduler allocates multiple jobs from the same user to the same node,
LAM will automatically do the “right thing” and ensure that the LAM universes from each job will not
collide. Sectiond2.7and12.8(starting on pagé14) discuss these issues in detail.

48

7.1.2 Avoiding Running on Specific Nodes

Once the LAM universe is booted, processes can be launched on any nodenpirbha , mpiexec |,
andlamexec commands are most commonly used to launch jobs in the universe, and are typically used
with the N and C nomenclatures (see the descriptiommbirun in Section7.14for details on theN and

C nomenclature) which launch jobs on all schedulable nodes and CPUs in the LAM universe, respectively.
While finer-grained controls are available throughirun (etc.), it can be convenient to simply mark some
nodes as “non-schedulable,” and therefore avoid hawipgun (etc.) launch executables on those nodes
when usingN andC nomenclature.

For example, it may be convenient to boot a LAM universe that includes a controller node (e.g., a
desktop workstation) and a set of worker nodes. In this case, it is desirable to mark the desktop workstation
as “non-scheduable” so that LAM will not launch executables there (by default). Consider the following
boot schema:

Mark myworkstation as “nor-schedulable”
my_workstation.office.example.com schedule=no
All the other nodes are, by default, schedulable
nodel.cluster.example.com
node2.cluster.example.com
node3.cluster.example.com
node4.cluster.example.com

Booting with this schema allows the convenienve of:

{shell$mpirun C mympi_program j

which will only run my_mpi _program on the four cluster nodes (i.e., not the workstation). Note that this
behavioronly applies to theC andN designations; LAM will always allow execution on any node when
using thenX or cX notation:

{shell$mpirun c0 C mympi_program }

which will run my_mpi _program on all five nodes in the LAM universe.

7.2 Thelamcheckpoint Command
T @1
Thelamcheckpoint command is provided to checkpoint a MPI application. One of the arguments to
lamcheckpoint is the name of the checkpoint/restart module (which can be either diler@ndself).
Additional arguments ttamcheckpoint depend of the selected checkpoint/restart module. The name
of the module can be specified by passingdh8SI parameter.
Common arguments that are used withldmacheckpoint command are:

e -ssi : Justlike withmpirun , the-ssi flag can be used to pass key=value pairs to LAM. Indeed, itis
required to pass at least one SSI parameter:indicating whichcr module to use for checkpointing.

e -pid : Indicate the PID ompirun to checkpoint.
Notes:

49

1 @

¢ If the blcr cr module is selected, the name of the directory for storing the checkpoint files and the PID
of mpirun should be passed as SSI parametetartcheckpoint

e If the self cr module is selected, the PID ofpirun should be passed via thpid parameter.

See Sectiod.5for more detail about the checkpoint/restart capabilities of LAM/MPI, including details
about theblcr andself cr modules.

7.3 Thelamclean Command

Thelamclean command is provided to clean up the LAM universe. It is typically only necessary when
MPI processes terminate “badly,” and potentially leave resources allocated in the LAM universe (such as
MPI-2 published names, processes, or shared memory)lafimdean command will kill all processes
running in the LAM universe, and fredl resources that were associated with them (including unpublishing
MPI-2 dynamicly published names).

7.4 Thelamexec Command

Thelamexec command is similar tonpirun but is used for non-MPI programs. For example:

shell$lamexec N uptime
5:37pm up 21 days, 23:49, 5 users, load average: 0.31, 0.26, 0.25
5:37pm up 21 days, 23:49, 2 users, load average: 0.01, 0.00, 0.00
5:37pm up 21 days, 23:50, 3 users, load average: 0.01, 0.00, 0.00
5:37pm up 21 days, 23:50, 2 users, load average: 0.87, 0.81, 0.80

Most of the parameters and options that are availablagibun are also available ttamexec . See
thempirun description in Sectiofi.14for more details.

7.5 Thelamgrow Command

Thelamgrow command adds a single node to the LAM universe. It must use the Isaoténodule that
was used to initially boot the LAM universdamgrow must be run from a node already in the LAM
universe. Common parameters include:

e -v : Verbose mode.
e -d : Debug mode; enabledat of diagnostic output.

e -n <nodeid >: Assign the new host the node Iibdeid . nodeid must be an unused node ID.
If -n is not specified, LAM will find the lowest node ID that is not being used.

e -no-schedule : Has the same effect as puttingd’_schedule=yes " in the boot schema. This
means that th€ andN expansion used impirun andlamexec will not include this node.

e -ssi <key > <value >:Passin SSI| parametkey with the valuevalue .

e <hostname >: The name of the host to expand the universe to.

50

For example, the following adds the nodiénky to the existing LAM universe using thesh boot
module:

{shell$lamgrow—ssi boot rsh blinky.cluster.example.com }

Note thatlamgrow cannot grow a LAM universe that only contains one node that has an IP ad-
dress of 127.0.0.1 (e.g., i@mboot was run with the default boot schema that only contains the name
localhost). In this caselamgrow will print an error and abort without adding the new node.

7.6 Thelamhalt Command

Thelamhalt command is used to shut down the LAM RTE. Typicalmhalt can simply be run with
no command line parameters and it will shut down the LAM RTE. Optionally;ther -d arguments can
be used to makamhalt be verbose or extremely verbose, respectively.

There are a small number of cases wHamehalt will fail. For example, if a LAM daemon becomes
unresponsive (e.g., the daemon was killéatnhalt may fail to shut down the entire LAM universe. It will
eventually timeout and therefore complete in finite time, but you may want to use the lastagsoipe
command (see Sectiahl8).

7.7 Thelaminfo Command

Thelaminfo command can be used to query the capabilities of the LAM/MPI installation. Running
laminfo with no parameters shows a prettyprint summary of information. Usingpdisable com-
mand line switch shows the same summary information, but in a format that should be relatively easy to
parse with common unix tools such@®p , cut , awk, etc.

laminfo supports a variety of command line options to query for specific information - haption
shows a complete listing of all options. Some of the most common options include:

e -arch : Show the architecture that LAM was configured for.

e -path : Paired with a second argument, display various paths relevant to the LAM/MPI installation.
Valid second arguments include:

— prefix : Main installation prefix

— bindir : Where the LAM/MPI executables are located

— libdir : Where the LAM/MPI libraries are located

— incdir : Where the LAM/MPI include files are located

— pkglibdir : Where dynamic SSI modules are instafled
— sysconfdir : Where the LAM/MPI help files are located

e -version : Paired with two addition options, display the version of either LAM/MPI or one or
more SSI modules. The first argument identifies what to report the version of, and can be any of the
following:

2Dynamic SSI modules are not supported in LAM/MPI 7.0, but will be supported in future versions.

51

T 7.

1 7

— lam: Version of LAM/MPI
— boot : Version of all boot modules

boot:module : Version of a specific boot module
— coll : Version of all coll modules

— coll:module : Version of a specific coll module
— cr : Version of all cr modules

— cr:module : Version of a specific cr module

— rpi : Version of all rpi modules

— rpi:module : Version of a specific rpi module

The second argument specifies the scope of the version number to display — whether to show the entire
version number string, or just one component of it:

full : Display the entire version number string

major : Display the major version number

minor : Display the minor version number

release : Display the release version number

alpha : Display the alpha version number

beta : Display the beta version number
svn : Display the SVN version number

e -param : Paired with two additional arguments, display the SSI parameters for a given type and/or
module. The first argument can be any of the valid SSI types or the special name “base,” indicating
the SSI framework itself. The second argument can be any valid module name.

Additionally, either argument can be the wildcard “any” which will match any valid SSI type and/or
module.

Multiple options can be combined to query several attributes at once:

shell$laminfo —parsable—arch—version lam major-version rpi:tcp full—param rpi tcp
version:lam:7

ssi:boot:rsh:version:ssi:1.0

ssi:boot:rsh:version:api:1.0

ssi:boot:rsh:version:module:7.0

arch:i686-pc—linux—gnu

ssi:rpi:tcp:param:rptcp_short:65536

ssi:rpi;tcp:param:rptcp_sockbuf—1

ssi:rpi:tcp:param:rptcp_priority:20

3The value will either be 0 (not built from SVN), 1 (built from a Subverstion checkout) or a date encoded in the form YYYYM-
MDD (built from a nightly tarball on the given date)

52

Note that three version numbers are returned foit¢henodule. The firstgsi) indicates the overall
SSi version that the module conforms to, the secaipd § indicates what version of thgi API the module
conforms to, and the lasinodule) indicates the version of the module itself.

Runninglaminfo with no arguments provides a wealth of information about your LAM/MPI instal-
lation (we ask for this output when reporting problems to the LAM/MPI general user’'s mailing list — see
Sectionll.1on pagel07). Most of the output fields are self-explanitory; two that are worth explaining are:

e Debug support: This indicates whether your LAM installation was configured withvlid-debug
option. It is generally only used by the LAM Team for development and maintenance of LAM itself;
it doesnotindicate whether user's MPI applications can be debugged (specifically: user's MPI appli-
cations caralwaysbe debugged, regardless of this setting). This option defaults to “no”; users are dis-
couraged from using this option. See the Install Guide for more information atvath-debug

e Purify clean: This indicates whether your LAM installation was configured with-thigh-purify
option. This option is necessary to prevent a number of false positives when using memory-checking
debuggers such as Purify, Valgrind, and bcheck. It is off by default because it can cause slight
performance degredation in MPI applications. See the Install Guide for more information about
--with-purify

7.8 Thelamnodes Command

LAM was specifically designed to abstract away hostnames tamboot has completed successfully.
However, for various reasons (usually related to system-administration concerns, and/or for creating human-
readable reports), it can be desirable to retrieve the hostnames of LAM nodes lorigmafieot .

The commandamnodes can be used for this purpose. It accepts bothNh&nd C syntax from
mpirun , and will return the corresponding names of the specified nodes. For example:

{shell$lamnodes N }

will return the node that each CPU is located on, the hostname of that node, the total number of CPUs on
each, and any flags that are set on that node. Specific nodes can also be queried:

[shell$lamnodes no,3 J

will return the node, hostname, number of CPUs, and flags on n0 and n3.
Command line arguments can be used to customize the outfarhobdes . These include:

e -C . Suppress printing CPU counts
e -i : Print IP addresses instead of IP names

e -n : Suppress printing LAM node IDs

7.9 Thelamrestart Command

The lamrestart can be used to restart a previously-checkpointed MPI application. The arguments to
lamrestart depend on the selected checkpoint/restart module. Regardless of the checkpoint/restart mod-
ule used, invokingamrestart results in a newnpirun being launched.

53

The SSI parameter must be used to specify which checkpoint/restart module should be used to restart
the application. Currently, only two values are possibler andself

e Ifthe blcr module is selected, the SSI parameterblcr _context _file should be used to passin
the filename of the context file that was created during a pevious successful checkpoint. For example:

[shell$lamrestart—ssi cr blcr—ssi crblcr_contextfile flename j

¢ If the self module is selected, the SSI parameaterrestart _args must be passed with the argu-
ments to be passed tapirun to restart the application. For example:

[shell$lamrestart—ssi cr self—ssi crrestartargs "argsto_mpirun” j

See Sectio®.5for more detail about the checkpoint/restart capabilities of LAM/MPI, including details
about theblcr andself cr modules.

7.10 Thelamshrink Command

Thelamshrink command is used to remove a node from a LAM universe:

[shell$lamshrink n3 j

removes node n3 from the LAM universe. Note that all nodes with ID’s greater than 3 will not have their
ID’s reduced by one — n3 simply becomes an empty slot in the LAM univenpgun andlamexec will
still function correctly, even when used wi@andN notation — they will simply skip the n3 since there is
no longer an operational node in that slot.
Note that thdamgrow command can optionally be used to fill the empty slot with a new node.

7.11 Thempicc , mpiCC/ mpic++ , and mpif77 Commands

Compiling MPI applications can be a complicated process because the list of compiler and linker flags
required to successfully compile and link a LAM/MPI application not only can be quite long, it can change
depending on the particular configuration that LAM was installed with. For example, if LAM includes
native support for Myrinet hardware, tAgm flag needs to be used when linking MPI executables.

To hide all this complexity, “wrapper” compilers are provided that handle all of this automatically. They
are called “wrapper” compilers because all they do is add relevant compiler and linker flags to the command
line before invoking the real back-end compiler to actually perform the compile/link. Most command line
arugments are passed straight through to the back-end compiler without modification.

Therefore, to compile an MPI application, use the wrapper compilers exactly as you would use the real
compiler. For example:

shell$mpicc —O —c main.c

shell$mpicc—O —c foo.c

shell$mpicc—O —c bar.c

shell$mpicc—O —o main main.o foo.o bar.o

54

This compiles three C source code files and links them together into a single executable. No additional
-l ,-L,or-l arguments are required.
The main exceptions to what flags are not passed through to the back-end compiler are:

e -showme: Used to show what the wrapper compiler would have executed. This is useful to see the
full compile/link line would have been executed. For example (your output may differ from what is
shown below, depending on your installed LAM/MPI configuration):

shell$mpicc—O —c main.c—showme
gcc —l/usr/local/lam/include-pthread—O —c foo.c
-

The output line shown below is word wrapped in order to fit nicely in the document margins
shell$mpicc —O —o main main.o foo.o bar.e showme

gcc —l/usr/local/lam/include-pthread—O —o main main.o foo.o bar.p
—L/usr/local/lam/lib—llammpio —Ipmpi —llamf7 7mpi—Impi —llam —lutil \

—pthread
~ T @
Two notable sub-flags are:
— -showme:compile : Show only the compile flags, suitable for substitution I6BIELAGS
shell$mpicc —O —c main.c—showme:compile
—l/usr/local/lam/include-pthread
— -showme:link : Show only the linker flags (which are actuallpFLAGSandLIBS mixed
together), suitable for substitution intdBS .
shell$mpicc —O —o main main.o foo.o bar.e showme:link
—L/usr/local/lam/lib—Illammpio —Ipmpi —llamf77mpi—Impi —llam —lutil —pthread
1 @

e -lpmpi : When compiling a user MPI application, thigmpi argument is used to indicate that
MPI profiling support should be included. The wrapper compiler may alter the exact placement of
this argument to ensure that proper linker dependency semantics are preserved.

T @

Neither the compiler nor linker flags can be overridden at run-time. The back-end compiler, however,

can be. Environment variables can be used for this purpose:

e LAMMPICC(deprecated namd:AMHCE Overrides the default C compiler in tmepicc wrapper
compiler.

e LAMMPICXXdeprecated nam&AMHCIE. Overrides the default C compiler in tinepicc wrapper
compiler.

e LAMMPIF77(deprecated nam&AMHF77: Overrides the default C compiler in thepicc wrapper
compiler.

For example (for Bourne-like shells):

55

1 @

shell$LAMPICC=cc
shell$export LAMMPICC
shell$mpicc myapplication.c—o my_application

For csh-like shells:

shellb setenvLAMPICC cc
shell®% mpicc myapplication.c—o my_application

All this being said, it isstronglyrecommended to use the wrapper compilers — and their default under-
lying compilers — for all compiling and linking of MPI applications. Strange behavior can occur in MPI
applications if LAM/MPI was configured and compiled with one compiler and then user applications were
compiled with a different underlying compiler, to include: failure to compile, failure to link, seg faults and
other random bad behavior at run-time.

Finally, note that the wrapper compilers only add all the LAM/MPI-specific flags when a command-line
argument that does not begin with a dash (“-") is present. For example:

shell$mpicc

gcc: no input files

shell$mpicc ——version

gcc (GCC) 3.2.2 (Mandrake Linux 9.1 3.2.3mdk)

Copyright (C) 2002 Free Software Foundation, Inc.

This is free software; see tlswurcefor copying conditions. There is NO

warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

7.11.1 Deprecated Names

Previous versions of LAM/MPI used the nantesc , hcp, andhf77 for the wrapper compilers. While
these command names still work (they are simply symbolic links to the real wrapper conmpjliars ,
mpiCC/mpic++ , andmpif77 , respectively), their use is deprecated.

7.12 Thempiexec Command

The mpiexec command is used to launch MPI programs. It is similar to, but slightly different than,
mpirun .* Althoughmpiexec is simply a wrapper around other LAM commands (includiagboot ,

mpirun , andlamhalt), it ties their functionality together and provides a unified interface for launching
MPI processes. Specificalljpiexec offers two features from command line flags that require multiple
steps when using other LAM commands: launching MPMD MPI processes and launching MPI processes
when there is no existing LAM universe.

7.12.1 General Syntax

The general form ofmpiexec commands is:

“The reason that there are two methods to launch MPI executables is because the MPI-2 standard suggestsipiexse of
and provides standardized command line arguments. Hence, even though LAM alreadyician command to launch MPI
executablesnpiexec was added to comply with the standard.

56

(mpiexec [globalargs] localargsl [: localargs?2 [...]] J

Global arguments are applied to all MPI processes that are launched. They must be specified before any
local arguments. Common global arguments include:

e -boot : Boot the LAM RTE before launching the MPI processes.

e -boot-args <args >: Pass<args > to the back-entamboot . Implies-boot .

e -machinefile <filename >: Specify<filename > as the boot schema to use when invok-
ing the back-enthmboot . Implies-boot . T ()
e -prefix <lam/install/path >: Use the LAM/MPI installation specified in thelam/install/path-

- where<lam/install/path- is the top level directory where LAM/MPI is “installed”. This is typically
used when a user has multiple LAM/MPI installations and want to switch between them without
changing the dot files or PATH environment variable. This option is not compatible with LAM/MPI
versions prior to 7.1. Loy

e -ssi <key > <value >:Passthe SStkey > and<value > arguments to the back-engpirun
command.

Local arguments are specific to an individual MPI process that will be launched. They are specified
along with the executable that will be launched. Common local arguments include:

e -n <numprocs >: Launch<numprocs > number of copies of this executable.

e -arch <architecture >: Launch the executable on nodes in the LAM universe that match this
architecture. An architecture is determined to be a match ikthechitecture > matches any
subset of the GNU Autoconf architecture string on each of the target noddarfimdo command
shows the GNU Autoconf configure string).

e <other arguments >: Whenmpiexec first encounters an argument that it doesn’t recognize,
the remainder of the arguments will be passed backgisun to actually start the process.

The following example launches four copies of thg mpi _program executable in the LAM universe,
using default scheduling patterns:

[shell$mpiexec—n 4 my_mpi_program j

7.12.2 Launching MPMD Processes

The “ " separator can be used to launch multiple executables in the same MPI job. Specifically, each pro-
cess will share a commaviPI_COMM_WORLD. For example, the following launches a singlanager
process as well asvaorker process for every CPU in the LAM universe:

[shell$mpiexec—n 1 manager : C worker j

Paired with thearch flag, this can be especially helpful in heterogeneous environments:

57

(shell$mpiexec—arch solaris saprogram :—arch linux linuxprogram J

Even only “slightly heterogeneous” environments can run into problems with shared libraries, different
compilers, etc. Thearch flag can be used to differentiate between different versions of the same operating
system:

{shell$ mpiexec—arch solaris2.8 sol2.8rogram :—arch solaris2.9 sol2.program }

7.12.3 Launching MPI Processes with No Established LAM Universe

The-boot ,-boot-args , and-machinefile global arguments can be used to launch the LAM RTE,
run the MPI process(es), and then take down the LAM RTE. This conveniently wraps up several LAM
commands and provides “one-shot” execution of MPI processes. For example:

[shell$mpiexec—machinefile hostfile C mynpi_program j

Some boot SSI modules do not require a hostfile; specifyingltbet argument is sufficient in these
cases:

{shell$ mpiexec—boot C mympi_program }

Whenmpiexec is used to boot the LAM RTE, it will do its best to take down the LAM RTE even if
errors occur, either during the boot itself, or if an MPI process aborts (or the user hits Control-C).

7.13 Thempimsg Command (Deprecated)

The mpimsg command is deprecated. It is only useful in a small number of cases (specifically, when the
lamd RPI module is used), and may disappear in future LAM/MPI releases.

7.14 Thempirun Command

Thempirun command is the main mechanism to launch MPI processes in parallel.

7.14.1 Simple Examples

Althoughmpirun supports many different modes of execution, most users will likely only need to use a
few of its capabilities. It is common to launch either one process per node or one process per CPU in the
LAM universe (CPU counts are established in the boot schema). The following two examples show these
two cases:

Launch one copy of mypiprogram on every schedulable node in the LAM universe
shell$mpirun N mympi_program

Launch one copy of mypi_program on every schedulable CPU in the LAM universe
shell$mpirun C mympi_program

The specific number of processes that are launched can be controlled witip thssvitch:

58

Launch four mympi_program processes
shell$mpirun—np 4 mympi_program

The-ssi switch can be used to specify tunable parameters to MPI processes.

Specify to use the usysv RPI module
shell$mpirun—ssi rpi usysv C mympi_program

The available modules and their associated parameters are discussed in detail in@€hapter

Arbitrary user arguments can also be passed to the user progruinun will attempt to parse all
options (looking for LAM options) until it finds & . All arguments following- are directly passed to the
MPI application.

Pass three command line arguments to every instance ofipayrogram
shell$mpirun —ssi rpi usysv C mympi_program argl arg2 arg3

Pass three command line arguments, escaped from parsing

shell$ mpirun —ssi rpi usysv C mympi_program—— argl arg2 arg3

7.14.2 Controlling Where Processes Are Launched

mpirun allows for fine-grained control of where to schedule launched processes. Note LAM uses the
term “schedule” extensively to indicate which nodes processes are launched on. LAMadagtuence
operating system semantics for prioritizing processes or binding processes to specific CPUs. The boot
schema file can be used to indicate how many CPUs are on a node, but this is only used for scheduling
purposes. For a fuller description of CPU counts in boot schemas, see Sdctidrend8.1.10n page4

and63, respectively.

LAM offers two main scheduling nomenclatures: by node and by CPU. For exanhpieans “all
schedulable nodes in the universe” (“schedulable” is defined in Se¢tiof. Similarly, C means “all
schedulable CPUs in the universe.”

More fine-grained control is also possible — nodes and CPUs can be individually identified, or identified
by ranges. The syntax for these concepts<4gange > andc<range >, respectively.<range > can
specify one or more elements by listing integers separated by commas and dashes. For example:

e n3: The node with an ID of 3.
e c2: The CPU with an ID of 2.
e n2,4 : The nodes with IDs of 2 and 4.

e c2,4-7 :The CPUs with IDs of 2, 4, 5, 6, and 7. Note that some of these CPUs may be on the same
node(s).

Integers can range from 0 to the highest numbered node/CPU. Note that these homenclatures can be
mixed and matched on thmpirun command line:

[shell$mpirun n0 C managerworker j

59

will launch themanager-worker program om0 as well as on every schedulable CPU in the universe
(yes, this means thal will likely be over-subscribed).

When running on SMP nodes, it is preferable to useGftecrange > nomenclature (with appropriate
CPU counts in the boot schema) to thla <range > nomenclature because of how LAM will order ranks
in MPI_COMM_WORLD. For example, consider a LAM universe of two four-way SMR®-andnl both
have a CPU count of 4. Using the following:

Lshell$mpirun C mympi_program j

will launch eight copies afny_mpi _program , four on each node. LAM will place as many adjoinivig| -
COMM_WORLD ranks on the same node as possiM&l_COMM_WORLD ranks 0-3 will be scheduled
onn0 andMPI_COMM _WORLD ranks 4-7 will be scheduled aml. Specifically,C schedules processes
starting withcO and incrementing the CPU index number.

Note that unless otherwise specified, LAM schedules processes by CPU (vs. scheduling by node). For
example, usingnpirun ’s -np switch to specify an absolute number of processes schedules on a per-CPU
basis.

7.14.3 Per-Process Controls

mpirun allows for arbitrary, per-process controls such as launching MPMD jobs, passing different com-
mand line arguments to differeMPI_COMM_WORLD ranks, etc. This is accomplished by creating a text

file called an application schema that lists, one per line, the location, relevant flags, user executable, and
command line arguments for each process. For example (lines beginning with “#” are comments):

Start the manager on c0 with a specific set of command line options
c0 manager managergl managearg2 managearg3

Start the workers on all available CPUs with different arguments

C worker workerarg1 workerarg2 workerarg3

Note that thessi switch isnot permissible in application schema filessi flags are considered to
be global to the entire MPI job, not specified per-process. Application schemas are described in more detail
in theappschema(5) manual page.

7.14.4 Ability to Pass Environment Variables

All environment variables with names that begin withAMMPI_ are automatically passed to remote notes
(unless disabled via thax option tompirun). Additionally, the-x option enables exporting of specific
environment variables to the remote nodes:

shell$LAM _MPI_FOO="green eggs and ham”
shell$export LAM_MPI_FOO
shell$mpirun C—x DISPLAY,SEUSS=author samlam

This will launch thesamlam application on all available CPUs. ThAMMPI_FOQ DISPLAY, and
SEUSSenvironment variables will be created each the process environment befgradahtam program is
invoked.

Note that the parser for th& option is currently not very sophisticated — it cannot even handle quoted
values when defining new environment variables. Users are advised to set variables in the environment

60

prior to invokingmpirun , and only usex to export the variables to the remote nodes (not to define new
variables), if possible.

7.14.5 Current Working Directory Behavior

Using the-wd option tompirun allows specifying an arbitrary working directory for the launched pro-
cesses. It can also be used in application schema files to specify working directories on specific nodes and/or
for specific applications.

If the -wd option appears both in an application schema file and on the command line, the schema file
directory will override the command line valuevd is mutually exclusive withD.

If neither-wd nor-D are specified, the local node will send the present working directory name from
thempirun process to each of the remote nodes. The remote nodes will then try to change to that directory.
If they fail (e.qg., if the directory does not exist on that node), they will start from the user's home directory.

All directory changing occurs before the user's program is invoked; it does not waitMLINIT is
called.

7.15 Thempitask Command

Thempitask command shows a list of the processes running in the LAM universe and a snapshot of their
current MPI activity. It is usually invoked with no command line parameters, thereby showing summary
details of all processes currently running. Singgitask only provides a snapshot view, it is not advisable
to usempitask as a high-resolution debugger (see Chafiterpage99, for more details on debugging
MPI programs). Insteadnpitask can be used to provide answers to high-level questions such as “Where
is my program hung?” and “Is my program making progress?”

The following example shows an MPI program running on four nodes, sending a message of 524,288
integers around in a ring pattern. Process 0 is running (i.e., not in an MPI function), while the other three
are blocked irMPI_RECV.

shell$ mpitask

TASK (G/L) FUNCTION PEERROOT TAG COMM COUNT DATATYPE
0 ring <running>

1/1 ring Recv 0/0 201 WORLD 524288 INT

2/2 ring Recv 1/1 201 WORLD 524288 INT

3/3ring Recv 2/2 201 WORLD 524288 INT

7.16 Therecon Command

Therecon command is a quick test to see if the user’s environment is setup properly to boot the LAM
RTE. It takes most of the same parameters asaimdpoot command.

Although it does not boot the RTE, and does not definitively guaranteéatndbot will succeed, itis
a good tool for testing while setting up first-time LAM/MPI userscon will display a message when it
has completed indicating whether it succeeded or failed.

61

T @

1 @y

7.17 Thetping Command

Thetping command can be used to verify the functionality of a LAM universe. It is used to send a ping
message between the LAM daemons that constitute the LAM RTE.

It commonly takes two arguments: the set of nodes to ping (expres¢ddtation) and how many
times to ping them. Similar to the Unping command, if the number of times to ping is not specified,
tping will continue until it is stopped (usually by the user hitting Control-C). The following example pings
all nodes in the LAM universe three times:

shell$tping N —c 3
1 byte from 3 remote nodes and 1 local node: 0.002 secs
1 byte from 3 remote nodes and 1 local node: 0.001 secs
1 byte from 3 remote nodes and 1 local node: 0.001 secs

3 messages, 3 bytes (0.003K), 0.005 secs (1.250K/sec)
roundtrip min/avg/max: 0.001/0.002/0.002

7.18 Thelamwipe Command

Thelamwipe command used to be calledpe . The namevipe has now been deprecated and although
it still works in this version of LAM/MPI, will be removed in future versions. All users are encouraged to
start usindamwipe instead.

Thelamwipe command is used as a “last resort” command, and is typically only neceskamilt
fails. This usually only occurs in error conditions, such as if a node fails. |din&vipe command takes
most of the same parameters as lrmboot command — it launches a process on each node in the boot
schema to kill the LAM RTE on that node. Hence, it should be used with the same (or an equivalent) boot
schema file as was used widmboot .

62

Chapter 8

Available LAM Modules

There is currently only type of LAM module that is visible to usdvent, which is used to start the LAM
run-time environment, most often through tleenboot command. Thdamboot command itself is
discussed in Section.1 (page47); the discussion below focuses on the boot modules that make up the
“back end” implementation damboot .

8.1 Booting the LAM Run-Time Environment

LAM provides a number of modules for starting tlaend control daemons. In most cases, thmd s are
started using thtamboot command. In previous versions of LAM/MABmMboot could only usesh

or ssh for starting the LAM run-time environment on remote nodes. In LAM/MPI 7.1.1, it is possible to
use a variety of mechanisms for this process startup. The following mechanisms are available in LAM/MPI
7.1.1:

e BProc

Globus (beta-level support)

e rsh /ssh
e OpenPBS/PBS Pro/ Torque (using the Task Management interface) T @
e SLURM (using its native interface) Ly

These mechanisms are discussed in detail below. Note that the sections below each assume that support
for these modules have been compiled into LAM/MPI. Téminfo command can be used to determine
exactly which modules are supported in your installation (see Settibpagesl).

8.1.1 Boot Schema Files (a.k.a., “Hostfiles” or “Machinefiles”)

Before discussing any of the specific boot SSI modules, this section discusses the boot schema file, com-
monly referred to as a “hostfile” or a “machinefile”. Most (but not all) boot SSI modules require a boot
schema, and the text below makes frequent mention of them. Hence, it is worth discussing them before
getting into the details of each boot SSI.

A boot schema is a text file that, in its simplest form, simply lists every host that the LAM run-time
environment will be invoked on. For example:

63

This is my boot schema
inky.cluster.example.com
pinky.cluster.example.com
blinkly.cluster.example.com
clyde.cluster.example.com

Lines beginning with #” are treated as comments and are ignored. Each non-blank, non-comment line
must, at a minimum, list a host. Specifically, the first token on each line must specify a host (although the
definition of how that host is specified may vary differ between boot modules).

However, each line can also specify arbitrary “key=value” pairs. A common global kepis™ This
key takes an integer value and indicates to LAM how many CPUs are available for LAM to use. If the key is
not present, the value of 1 is assumed. This number dogweed to reflect the physical number of CPUs —
it can be smaller then, equal to, or greater than the number of physical CPUs in the machine. Itis solely used
as a shorthand notation fampirun s “C” notation, meaning “launch one process per CPU as specified in
the boot schema file.” For example, in the following boot schema:

inky.cluster.example.com cpu=2

pinky.cluster.example.com cpu=4

blinkly.cluster.example.com cpu=4

clyde doesn’'t mention a cpu count, and is therefore implicitly 1
clyde.cluster.example.com

issuing the commandripirun C foo ” would actually launch 11 copies dbo : 2 oninky , 4 on
pinky , 4 onblinky , and 1 orclyde .

Note that listing a host more than once has the same effect as incrementing the CPU count. The following
boot schema has the same effect as the previous example (i.e., CPU counts of 2, 4, 4, and 1, respectively):

inky has a CPU count of 2
inky.cluster.example.com
inky.cluster.example.com

pinky has a CPU count of 4
pinky.cluster.example.com
pinky.cluster.example.com
pinky.cluster.example.com
pinky.cluster.example.com

blinky has a CPU count of 4
blinkly.cluster.example.com
blinkly.cluster.example.com
blinkly.cluster.example.com
blinkly.cluster.example.com
clyde only has 1 CPU
clyde.cluster.example.com

Other keys are defined on a per-boot-SSI-module, and are described below.

64

8.1.2 Minimum Requirements

In order to successfully launch a process on a remote node, several requirements must be met. Although
each of the boot modules have different specific requirements, all of them share the following conditions for
successful operation:

1. Each target host must be reachable and operational.
2. The user must be able to execute arbitrary processes on the target.

3. The LAM executables must be locatable on that machine. This typically involves using: the shell’s
search path, theAMHOMEnvironment variable, or a boot-module-specific mechanism.

4. The user must be able to write to the LAM session directory (typically somewhere (immber, see
Sectionl2.8 pagellb).

5. All hosts must be able to resolve the fully-qualified domain name (FQDN) of all the machines being
booted (including itself).

6. Unless there is only one host being booted, any host resolving to the IP address 127.0.0.1 cannot be
included in the list of hosts.

If all of these conditions are not méamboot will fail.

8.1.3 Selecting doot Module

Only oneboot module will be selected,; it will be used for the life of the LAM universe. As such, module
priority values are the only factor used to determine which available module should be selected.

8.1.4 boot SSI Parameters

On many kinds of networks, LAM can know exactly which nodes should be making connections while
booting the LAM run-time environment, and promiscuous connections (i.e., allowing any node to connect)
are discouraged. However, this is not possible in some complex network configurations and promiscuous
connectionsnustbe enabled.

By default, LAM’s baseboot SSI startup protocols disable promiscuous connections. However, this
behavior can be overridden when LAM is configured and at run-time. If the SSI pardmoeterbase _-
promisc set to an empty value, or set to the integer value 1, promiscuous connections will be accepted
when than LAM RTE is booted.

8.1.5 Thebproc Module

The Beowulf Distributed Process Space (BProc) préjiscset of kernel modifications, utilities and libraries
which allow a user to start processes on other machines in a Beowulf-style cluster. Remote processes started
with this mechanism appear in the process table of the front-end machine in a cluster.

LAM/MPI functionality has been tested with BProc version 3.2.5. Prior versions had a bug that affected
at least some LAM/MPI functionality. It is strongly recommended to upgrade to at least version 3.2.5 before
attempting to use the LAM/MPI native BProc capabilities.

http://bproc.sourceforge.net/

65

http://bproc.sourceforge.net/

Minimum Requirements

Several of the minimum requirements listed in Sectoh.2will already be met in a BProc environment
because BProc will copiamboot ’s entire environment (including tHeATH to the remote node. Hence,

if lamboot is in the user’s path on the local node, it will also [automatically] be in the user’s path on the
remote node.

However, one of the minimum requirements conditions (“The user must be able to execute arbitrary
processes on the target”) deserves a BProc-specific clarification. BProc has its own internal permission
system for determining if users are allowed to execute on specific nodes. The system is similar to the user/-
group/other mechanism typically used in many Unix filesystems. Hence, in order for a user to successfully
lamboot on a BProc cluster, he/she must have BProc execute permissions on each of the target nodes.
Consult the BProc documentation for more details.

Usage

In most situations, thtamboot command (and related commands) should automatically “know” to use
thebproc boot SSI module when running on the BProc head node; no additional command line parameters
or environment variables should be required. Specifically, when running in a BProc environméptabe
module will report that it is available, and artificially inflate its priority relatively high in order to influence
the boot module selection process. However, the BProc boot module can be forced by specifgoag the
SSI parameter with the value bproc .

Runninglamboot on a BProc cluster is just like runnidgmboot in a “normal” cluster. Specifically,
you provide a boot schema file (i.e., a list of nodes to boot on) anthrahoot with it. For example:

Lshell$lamboot hostfile j

Note that when using thieproc module,lamboot will only function properly from the head node. If
you launchlamboot from a client node, it will likely either fail outright, or fall back to a different boot
module (e.g.rsh /ssh).

It is suggested that thkostfile file contain hostnames in the style that BProc prefers — integer
numbers. For examplépstfile may contain the following:

which boots on the BProc front end node (-1) and four slave nodes (0, 1, 2, 3). Note that using IP hostnames
will also work, but using integer numbers is recommended.

Tunable Parameters

Table8.1lists the SSI parameters that are available tdagtvec module.

Special Notes

After booting, LAM will, by default, not schedule to run MPI jobs on the BProc front end. Specifically,
LAM implicitly sets the “no-schedule” attribute on the -1 node in a BProc cluster. See Sé&ctimaged?)

66

] SSI parameter name | Default value] Description \
| boot _bproc _priority | 50 | Default priority level. \

Table 8.1: SSI parameters for thproc boot module.

for more detail about this attribute and boot schemas in general;.ar{page49).

8.1.6 Theglobus Module

LAM/MPI 7.1.1 includes beta support for Globus. Specifically, only limited types of execution are possible.
The LAM Team would appreciate feedback from the Globus community on expanding Globus support in
LAM/MPI.

Minimum Requirements

LAM/MPI jobs in Globus environment can only be started on nodes using the “fork” job manager for the
Globus gatekeeper. Other job managers are not yet supported.

Usage

Starting the LAM run-time environmetn in Globus environment makes use of the Globus Resource Alloca-
tion Manager (GRAM) clienglobus-job-run . The Globus boot SSI module will never run automat-
ically; it must always be specifically requested settinglibet SSI parameter tglobus . Specifically,
although theglobus module will report itself available i§lobus-job-run can be found in th®ATH

the default priority will be quite low, effectively ensuring that it will not be selected unless it is the only
module available (which will only occur if thieoot parameter is set tglobus).

LAM needs to be able to find the Globus executables. This can be accompilshed either by adding the
appropriate directory to your path, or by setting GeOBUI. OCATIONenvironment variable.

Additionally, theLAMMPI_SESSIONSUFFIX environment variable should be set to a unique value.
This ensures that this instance of the LAM universe does not conflict with any other, concurrent LAM
universes that are running under the same username on nodes in the Globus environment. Although any
value can be used for this variable, it is probably best to have some kind of organized format, such as
<your _username>-<some _long _random _number> .

Next, create a boot schema to use wiimboot . Hosts are listed by their Globus contact strings (see
the Globus manual for more information about contact strings). In cases where the Globus gatekeeper is
running as danetd service on the node, the contact string will simply be the hostname. If the contact
string contains whitespace, tkatirecontact string must be enclosed in quotes (i.e., not just the values with
whitespaces). For example, if your contact string is:

host1:portl:/O=xxx/OU=yyy/CN=aaa bbb ccc
Then you will need to have it listed as:

"hostl:portl:/O=xxx/OU=yyy/CN=aaa bbb ccc"
The following will not work:

hostl:portl:/O=xxx/OU=yyy/CN="aaa bbb ccc"

Each host in the boot schema must also havéam“install ~ _path ” key indicating the absolute
directory where LAM/MPI is installed. This value is mandatory because you cannot rely dPARE

67

environment variable in Globus environment because users’ “dot” files are not executed in Globus jobs
(and therefore th&® ATHenvironment variable is not provided). Other keys can be used as lasall;-
install _path is the only mandatory key.

T (05 Here is a sample Globus boot schema:

Globus boot schema

“inky.mycluster:12853:/0=MegaCorp/OU=Mine/CN=HPC Group” prefix=/opt/lam cpu=2
“pinky.yourcluster:3245:/0=MegaCorp/OU=Yours/CN=HPC Group” prefix=/opt/lam cpu=4
“blinky.hiscluster:23452:/0=MegaCorp/OU=His/CN=HPC Group” prefix=/opt/lam cpu=4
“clyde.hercluster:82342:/0=MegaCorp/OU=Hers/CN=HPC Group” prefix=/software/lam

1 (705))
Once you have this boot schema, thmboot command can be used to launch it. Note, however, that

unlike the other boot SSI modules, the Globus boot module will never be automatically selected by LAM —
it must be selected manually with theot SSI parameter with the valggobus .

[shell$lamboot—ssi boot globus hostfile J

Tunable Parameters

Table8.2lists the SSI parameters that are available togilobus module.

] SSI parameter name | Default value] Description \
| boot _globus _priority | 3 | Default priority level. |

Table 8.2: SSI parameters for thbus boot module.

8.1.7 Thersh Module (including ssh)

Thersh /ssh boot SSI module is typically the “least common denominator” boot module. When not in an
otherwise “special” environment (such as a batch scheduler)skthéssh boot module is typically used to
start the LAM run-time environment.

Minimum Requirements

In addition to the minimum requirements listed in Secth.2 the following additional conditions must
also be met for a successfamboot using thersh /ssh boot module:

1. The user must be able to execute arbitrary commands on each target host without being prompted for
a password.

2. The shell’s start-up script must not print anything on standard error. The user can take advantage of
the fact tharsh /ssh will start the shell non-interactively. The start-up script can exit early in this

case, before executing many commands relevant only to interactive sessions and likely to generate
T @ output.

This has now been changed in version 7.1; if the SSI pararbetgr _rsh _ignore _stderr is
Loy nonzero, any output on standard error wilit be treated as an error.

68

Section4 (page2l) provides a short tutorial on using theh / ssh boot module, including tips on
setting up “dot” files, setting up password-less remote execution, etc.

Usage

Usingrsh , ssh, or other remote-execution agent is probably the most common method for starting the
LAM run-time execution environment. The boot schema typically lists the hosthames, CPU counts, and an
optional username (if the user’'s name is different on the remote machine). T @1

The boot schema can also list an optional “prefix”, which specifies the LAM/MPI installatation to be
used on the particular host listed in the boot schema. This is typically used if the user has mutliple LAM/MPI
installations on a host and want to switch between them without changing the dot 83 blenvironment
variables, or if the user has LAM/MPI installed under different paths on different hosts. If the prefix is
not specified for a host in the boot schema file, then the LAM/MPI installation which is available in the
PATHwill be used on that host, or if therefix </lam/install/path > option is specified for
lamboot , the </lam/install/path- installation will be used. The prefix option in the boot schema file
however overrides any prefix option specified onldraboot command line for that host.

For example:

rsh boot schema

inky.cluster.example.com cpu=2

pinky.cluster.example.com cpu=4 prefikemejoe/lam7.1/install/
blinky.cluster.example.com cpu=4

clyde.cluster.example.com user=jsmith

1 @
Thersh /ssh boot module will usually run when no other boot module has been selected. It can,

however, be manually selected, even when another module would typically [automatically] be selected by
specifying theboot SSI parameter with the value ofh . For example:

[shell$lamboot—ssi boot rsh hostfile j
Tunable Parameters

T .1
Table8.3lists the SSI parameters that are available targhemodule. L @
8.1.8 Theslurm Module

T @1

As its name implies, the Simple Linux Utility for Resource Management (SLURM}kage is commonly
used for managing Linux clusters, typically in high-performance computing environments. SLURM con-
tains a native system for launching applications across the nodes that it manages. When using SLURM,
rsh /ssh is not necessary to launch jobs on remote nodes. Insteadlutne boot module will automati-
cally use SLURM's native job-launching interface to start LAM daemons.

The advantages of using SLURM’s native interface are:

e SLURM can generate proper accounting information for all nodes in a parallel job.
e SLURM can kill entire jobs properly when the job ends.

e lamboot executes significantly faster when using SLURM as compared to when itslsesssh .

2http://www.lIinl.gov/linux/slurm/

69

] SSI parameter name | Default value | Description \

boot _rsh _agent From configure| Remote shell agent to use.

boot _rsh _ignore _stderr 0 If nonzero, ignore output fronstderr when
booting; don't treat it as an error.

boot _rsh _priority 10 Default priority level.

boot _rsh _no_n 0 If nonzero, don’t use-h ” as an argument to the
boot agent

boot _rsh _no_profile 0 If nonzero, don't attempt to rungrofile " for
Bourne-type shells.

boot _rsh _username None Username to use if different than login name.

Table 8.3: SSI parameters for theh boot module.

Usage
SLURM allows running jobs in multiple ways. Thsurm boot module is only supported in some of them:
e “Batch” mode: where a script is submitted via hrein command and is executed on the first node

from the set that SLURM allocated for the job. The script riamsboot , mpirun , etc., as is normal
for a LAM/MPI job.

This method is supported, and is perhaps the most common way to run LAM/MPI automated jobs in

SLURM environments.

e “Allocate” mode: where the-A " option is given tosrun , meaning that the shell wel@mboot runs

is likely to notbe one of the nodes that SLURM has allocated for the job. In this case, LAM daemons
will be launched on all nodes that were allocated by SLURM as well as the origin (i.e., the node where
lamboot was run. The origin will be marked as “no-schedule,” meaning that applications launched
by mpirun andlamexec will not be run there unless specifically requested (see See Séttion
page47, for more detail about this attribute and boot schemas in general).

This method is supported, and is perhaps the most common way to run LAM/MPI interactive jobs in
SLURM environments.

“srun " mode: where a script is submitted via thein command and is executed atl nodes that
SLURM allocated for the job. In this case, the commands in the script (arghoot , mpirun
etc.) will be run orall nodes simultaneously, which is most likely not what you want.

This mode is not supported.

When running in any of the supported SLURM modes, LAM will automatically detect that it should use

the slurm boot module — no extra command line parameters or environment variables should be necessary.
Specifically, when running in a SLURM job, tisturm module will report that it is available, and artificially

inflate its priority relatively high in order to influence the boot module selection process. However, the

slurm boot module can be forced by specifying ttmot SSI parameter with the value sfurm .

Unlike thersh /ssh boot module, you do not need to specify a hostfile for shem boot module.
Instead, SLURM itself provides a list of nodes (and associated CPU counts) to LAM. lasiigpot is

therefore as simple as:

70

(shell$lamboot J
T @y
Note that in environments with multiple TCP networks, SLURM may be configured to use a network
that is specifically designated for commodity traffic — another network may exist that is specifically allocated
for high-speed MPI traffic. By default, LAM will use the same hostnames that SLURM provides for all of
its traffic. This means that LAM will send all of its MPI traffic across the same network that SLURM uses.
However, LAM has the ability to boot using one set of hostnames / addresses and then use a second set
of hostnames / addresses for MPI traffic. As such, LAM can redirect its TCP MPI traffic across a secondary
network. Itis possible that your system administrator has already configured LAM to operate in this manner.
If a secondary TCP network is intended to be used for MPI traffic, see the section entitled “Separating
LAM and MPI TCP Traffic” in the LAM/MPI Installation Guide. Note that this functionality has no effect
on non-TCPrpi modules (such as Myrinet, Infiniband, etc.). R

Tunable Parameters

Table8.4lists the SSI parameters that are available tosthem module.

] SSI parameter name | Default value] Description \
| boot _slurm _priority | 50 | Default priority level. \

Table 8.4: SSI parameters for thieirm boot module.

Special Notes

Since theslurm boot module is designed to work in SLURM jobs, it will fail if treburm boot module is
manually specified and LAM is not currently running in a SLURM job.

The slurm module does not start a shell on the remote node. Instead, the entire environment of
lamboot is pushed to the remote nodes before starting the LAM run-time environment. Loy

8.1.9 Thetm Module (OpenPBS / PBS Pro / Torque)

Both OpenPBS and PBS Pro (both products of Altair Grid Technologies, LLC), contain support for the Task
Management (TM) interface. Torque, the open source fork of the Open MPI product, also contains the TM
interface. When using TMsh /ssh is not necessary to launch jobs on remote nodes.

The advantages of using the TM interface are:

e PBS/Torque can generate proper accounting information for all nodes in a parallel job.
e PBS/Torque can kill entire jobs properly when the job ends.

e lamboot executes significantly faster when using TM as compared to when itsisesssh .

71

Usage

When running in a PBS/Torque batch job, LAM will automatically detect that it should ustrthmot
module — no extra command line parameters or environment variables should be necessary. Specifically,
when running in a PBS/Torque job, tiea module will report that it is available, and artificially inflate
its priority relatively high in order to influence the boot module selection process. Howevem theot
module can be forced by specifying theot SSI parameter with the value th.
Unlike thersh /ssh boot module, you do not need to specify a hostfile forttheboot module. In-
stead, PBS/Torque itself provides a list of nodes (and associated CPU counts) to LAMldvsbogpt is
therefore as simple as:

[shell$lamboot]

T @1 Thetm boot modules works in both interactive and non-interactive batch jobs.

Note that in environments with multiple TCP networks, PBS / Torque may be configured to use a net-
work that is specifically designated for commodity traffic — another network may exist that is specifically
allocated for high-speed MPI traffic. By default, LAM will use the same hostnames that the TM interface
provides for all of its traffic. This means that LAM will send all of its MPI traffic across the same network
that PBS / Torque uses.

However, LAM has the ability to boot using one set of hostnames / addresses and then use a second set
of hostnames / addresses for MPI traffic. As such, LAM can redirect its TCP MPI traffic across a secondary
network. Itis possible that your system administrator has already configured LAM to operate in this manner.

If a secondary TCP network is intended to be used for MPI traffic, see the section entitled “Separating
LAM and MPI TCP Traffic” in the LAM/MPI Installation Guide. Note that this has no effect on non-TCP

1 @1 rpimodules (such as Myrinet, Infiniband, etc.).

Tunable Parameters

Table8.5lists the SSI parameters that are available tammenodule.

] SSI parameter name | Default value] Description \
| boot _tm _priority | 50 | Default priority level. \

Table 8.5: SSI parameters for ttra boot module.

Special Notes

Since thetm boot module is designed to work in PBS/Torque jobs, it will fail if tine boot module is
manually specified and LAM is not currently running in a PBS/Torque job.

Thetm module does not start a shell on the remote node. Instead, the entire environtaembadt
is pushed to the remote nodes before starting the LAM run-time environment.

Also note that the Altair-provided client RPMs for PBS Pro do not includetiee demux command,
which is necessary for proper execution of TM jobs. The solution is to copy the executable from the server
RPMs to the client nodes.

Finally, TM does not provide a mechanism for path searching on the remote nodes |amdhexe-
cutable is required to reside in the same location on each node to be booted.

72

Chapter 9

Available MPI Modules

There are multiple types of MPI modules:

1. rpi: MPI point-to-point communication, also known as the LAM Request Progression Interface (RPI).
2. coll: MPI collective communication.

3. cr: Checkpoint/restart support for MPI programs.

Each of these types, and the modules that are available in the default LAM distribution, are discussed in
detail below.

9.1 General MPI SSI Parameters
T @
The default hostmap file Bsysconf/lam-hostmap (typically $prefix/etc/lam-hostmap.txt).
This file is only useful in environments with multiple TCP networks, and is typically populated by the system
administrator (see the LAM/MPI Installation Guide for more details on this file).
The SSI parametanpi _hostmap can be used to specify an alternate hostmap file. For example:

[shell$mpirun C—ssi mpihostmap myhostmap.txt mympi_application }

This tells LAM to use the hostmapy_hostmap.txt instead offsysconf/lam-hostmap.txt
The special filenamerfone ” can also be used to indicate that no address remapping should be perforined.

9.2 MPI Module Selection Process

The modules used in an MPI process may be related or dependent upon external factors. For example, the
gm RPI cannot be used for MPI point-to-point communication unless there is Myrinet hardware present in
the node. Thélcr checkpoint/restart module cannot be used unless thread support was included. And so
on. As such, it is important for users to understand the module selection algorithm.

1. Set the thread level to be what was requested, eitheMH&INIT_THREAD or the environment
variableLAMMPI_THREADLEVEL.

73

2. Query relevant modules and make lists of the resulting available modules. “Relevant” means either a
specific module (or set of modules) if the user specified them through SSI parameters, or all modules
if not specified.

3. Eliminate all modules who do not support the current MPI thread level.

4. If no rpi modules remain, try a lower thread support level until all levels have been tried. If no thread
support level can provide api module, abort.

5. Select the highest prioritgpi module. Reset the thread level (if necessary) to be at least the lower
bound of thread levels that the selectpdmodule supports.

6. Eliminate allcoll andcr modules that cannot operate at the current thread level.
7. If no coll modules remain, abort. Final selectiooll modules is discussed in Secti®nrt.1(page87).

8. If no cr modules remain and checkpoint/restart support was specifically requested, abort. Otherwise,
select the highest prioritgr module.

9.3 MPI Point-to-point Communication (Request Progression Interface /
RPI)

LAM provides multiple SSI modules for MPI point-to-point communication. Also known as the Request
Progression Interface (RPI), these modules are used for all aspects of MPI point-to-point communication
in an MPI application. Some of the modules require external hardware and/or software (e.g., the native
Myrinet RPI module requires both Myrinet hardware and the GM message passing librarjaniihi®
command can be used to determine which RPI modules are available in a LAM installation.

Although one RPI module will likely be the default, the selection of which RPI module is used can be
changed through the SSI parametar . For example:

[shell$ mpirun —ssi rpi tcp C mympi_program j

runs themy_mpi_program executable on all available CPUs using tbe RPI module, while:

Lshell$ mpirun —ssi rpi gm C mympi_program j

runs themy_mpi _program executable on all available CPUs using §me RPI module.

It should be noted that the choice of RPI usually does not affecbtiot SSI module — hence, the
lamboot command requirements on hosthames specified in the boot schema is not dependent upon the
RPI. For example, if thgm RPI is selectedlamboot may still require TCP/IP hostnames in the boot
schema, not Myrinet hostnames. Also note that selecting a particular module does not guarantee that it will
be able to be used. For example, selectinggimeRPI module will still cause a run-time failure if there is
no Myrinet hardware present.

The available modules are described in the sections below. Note that much of this information (particu-

T @03 larly the tunable SSI parameters) is also available idahessi _rpi(7) manual page.

74

9.3.1 Two Different Shared Memory RPI Modules

Thesysv (Section9.3.6 page83) and theusysv (Section9.3.8 page86) modules differ only in the mech-

anism used to synchronize the transfer of messages via shared memosysVheodule uses System V
semaphores while thaesysv module uses spin locks with back-off. Both modules use a small number of
System V semaphores for synchronizing both the deallocation of shared structures and access to the shared
pool.

The blocking nature of theysv module should generally provide better performance thgysv on
oversubscribed nodes (i.e., when the number of processes is greater than the number of available processors).
System V semaphores will effectively force processes yield to other processes, allowing at least some degree
of fair/regular scheduling. In non-oversubscribed environments (i.e., where the number of processes is
less than or equal to the number of available processorsysy®v RPI should generally provide better
performance than theysv RPI because spin locks keep processors busy-waiting. This hopefully keeps the
operating system from suspending or swapping out the processes, allowing them to react immediately when
the lock becomes available. 1 o3

9.3.2 Thecrtcp Module (Checkpoint-able TCP Communication)

Module Summary
Name: crtcp
Kind: rpi
Default SSI priority: 25
Checkpoint / restart: yes

The crtcp RPI module is almost identical to thiep module, described in Sectich3.7. TCP sockets
are used for communication between MPI processes.

Overview

The following are the main differences betweentitgandcrtcp RPI modules:

e Thecrtcp module can be checkpointed and restarted. It is currentlgriheRP1 module in LAM/MPI
that supports checkpoint/restart functionality.

e Thecrtcp module does not have the “fast” message passing optimization that is ioptimeodule.
As result, there is a small performance loss in certain types of MPI applications.

All other aspects of thertcp module are the same as ttop module.

Checkpoint/Restart Functionality

Thecrtcp module is designed to work in conjunction wittcemodule to provide checkpoint/restart func-
tionality. See Sectiof.5for a description of how LAM’s overall checkpoint/restart functionality is used.

The crtcp module’s checkpoint/restart functionality is invoked when ¢henodule indicates that it is
time to perform a checkpoint. Thartcp then quiesces all “in-flight” MPI messages and then allows the
checkpoint to be performed. Upon restart, TCP connections are re-formed, and message passing processing
continues. No additional buffers or “rollback” mechanisms are required, nor is any special coding required
in the user’'s MPI application.

75

T 7.9

1 @y

T @

)

T 7.9

1 @y

Tunable Parameters

Thecrtcp module has the same tunable parameters asphaodule (maximum size of a short message and
amount of OS socket buffering), although they have different names:crtcp _short ,rpi _cricp _-
sockbuf .

] SSI parameter name | Default value| Description \
rpi _crtcp _priority 25 Default priority level.
rpi _crtcp _short 65535 Maximum length (in bytes) of a “short” messade.
rpi _cricp _sockbuf -1 Socket buffering in the OS kernel (-1 means use
the short message size).

Table 9.1: SSI parameters for tbecp RPI module.

9.3.3 Thegm Module (Myrinet)

Module Summary

Name: gm

Kind: rpi

Default SSI priority: 50
Checkpoint / restart: yes (*)

The gm RPI module is for native message passing over Myrinet networking hardwaregriiPI
provides low latency, high bandwidth message passing performance.

Be sure to also read the release notes entitled “Operating System Bypass Communication: Myrinet and
Infiniband” in the LAM/MPI Installation Guide for notes about memory management with Myrinet. Specif-
ically, it deals with LAM’s automatic overrides of thmalloc() ,calloc() , andfree() functions.

Overview

In general, using thgm RPI module is just like using any other RPI module — MPI functions will simply
use native GM message passing for their back-end message transport.

Although it is not required, users are strongly encouraged to us®BHeALLOC_MEM and MPI _-
FREE_MEM functions to allocate and free memory (instead of, for exammpédloc() andfree()

Thegm RPI module is marked as “yes” for checkpoint / restart support, but this is only true when the
module was configured and compiled with theith-rpi-gm-get configure flag. This enables LAM
to use the GM 2.x functiogmget() . Note that enabling this feature slightly with thei _.gmcr SSI
parameter decreases the performance ofthenodule (which is why it is disabled by default) because of
additional bookkeeping that is necessary. The performance difference is actually barely measurable — it is
well below one microsecond. It is not the default behavior simply on principle.

At the time of this writing, there still appeared to be problems witlhget() , so this behavior is dis-
abled by default. It is not clear whether the problems gitliget() are due to a problem with Myricom’s
GM library or a problem in LAM itself; the-with-rpi-gm-get option is provided as a “hedging our
bets” solution; if the problem does turn out to be with the GM library, LAM users can enable checkpoint
support (and slightly lower long message latency) by using this switch.

76

Tunable Parameters

Table9.2 shows the SSI parameters that may be changed at run-time; the text below explains each one in
detail.

| SSI parameter name Default value| Description |
rpi _gmecr 0 Whether to enable checkpoint / restart support or
not.
rpi _gmfast 0 Whether to enable the “fast” algorithm for send-

ing short messages. This is an unreliable transport
and is not recommended for MPI applications that
do not continually invoke the MPI progression en-

gine.

rpi _gmmaxport 32 Maximum GM port number to check during
MPI_INIT when looking for an available port.

rpi _gmnopin 0 Whether to let LAM/MPI register (“pin”) arbi+
trary buffers or not.

rpi _gmport -1 Specific GM port to use (-1 indicates none).

rpi _gmpriority 50 Default priority level.

rpi _gmtinymsglen 1024 Maximum length (in bytes) of a “tiny” message|

Table 9.2: SSI parameters for tgen RPI module.

Port Allocation

It is usually unnecessary to specify which Myrinet/GM port to use. LAM/MPI will automatically attempt to
acquire ports greater than 1.

By default, LAM will check for any available port between 1 and 8. If your Myrinet hardware has
more than 8 possible ports, you can change the upper port number that LAM will check wigh thgm -
maxport SSI parameter.

However, if you wish LAM to use a specific GM port number (and not check all the ports from
[1, maxport]), you can tell LAM which port to use with thepi _gmport SSI parameter. Specifying
which port to use has precedence over the port range check — if a specific port is indicated, LAM will try to
use that and not check a range of ports. Specifying to use port “-1” (or not specifying to use a specific port)
will tell LAM to check the range of ports to find any available port.

Note that in all cases, if LAM cannot acquire a valid port for every MPI process in the job, the entire job
will be aborted.

Be wary of forcing a specific port to be used, particularly in conjunction with the MPI dynamic process
calls (e.g.MPI_COMM_SPAWN). For example, attempting to spawn a child process on a node that already
has an MPI process in the same job, LAM will try to use the same specific port, which will result in failure
because the MPI process already on that node will have already claimed that port.

77

Adjusting Message Lengths

Thegm RPI uses two different protocols for passing data between MPI processes: tiny and long. Selection
of which protocol to use is based solely on the length of the message. Tiny messages are sent (along with tag
and communicator information) in one transfer to the receiver. Long messages use a rendezvous protocol —
the envelope is sent to the destination, the receiver responds with an ACK (when it is ready), and then the
sender sends another envelope followed by the data of the message.

The message lengths at which the different protocols are used can be changed with the SSI parameter
rpi _gmtinymsglen , which represent the maximum length of tiny messages. LAM defaults to 1,024
bytes for the maximum lengths of tiny messages.

It may be desirable to adjust these values for different kinds of applications and message passing pat-
terns. The LAM Team would appreciate feedback on the performance of different values for real world
applications.

Pinning Memory

The Myrinet native communication library (gm) can only communicate through “registered” (sometimes
called “pinned”) memory. In most operating systems, LAM/MPI handles this automatically by pinning
user-provided buffers when required. This allows for good message passing performance, especially when
re-using buffers to send/receive multiple messages.

However, the gm library does not have the ability to pin arbitrary memory on Solaris systems — auxiliary
buffers must be used. Although LAM/MPI controls all pinned memory, this has a detrimental effect on
performance of large messages: LAM/MPI must copy all messages from the application-provided buffer
to an auxiliary buffer before it can be sent (and vice versa for receiving messages). As such, users are
strongly encouraged to use th#|_ ALLOC_MEM andMPI|_FREE_MEM functions instead afalloc()
andfree() . Using these functions will allocate “pinned” memory such that LAM/MPI will not have to
use auxiliary buffers and an extra memory copy.

Therpi _gmnopin SSI parameter can be used to force Solaris-like behavior. On Solaris platforms, the
default value is “1", specifying to use auxiliary buffers as described above. On non-Solaris platforms, the
default value is “0”, meaning that LAM/MPI will attempt to pin and send/receive directly from user buffers.

Note that since LAM/MPI manages all pinned memory, LAM/MPI must be aware of memory that is
freed so that it can be properly unpinned before it is returned to the operating system. Hence, LAM/MPI
must intercept calls to functions suchsisk() andmunmap() to effect this behavior. Since gm cannot
pin arbitrary memory on Solaris, LAM/MPI does not need to intercept these calls on Solaris machines.

To this end, support for additional memory allocation packages are included in LAM/MPI and will
automatically be used on platforms that support arbitrary pinning. These memory allocation managers
allow LAM/MPI to intercept the relevant functions and ensure that memory is unpinned before returning it
to the operating system. Use of these managers will effectively overload all memory allocation functions
(e.g.,malloc() , calloc() ,free() , etc.) for all applications that are linked against the LAM/MPI
libraries (potentially regardless of whether they are using the ib RPI module or not).

See Sectiol.3.1(pagelb) for more information on LAM’s memory allocation managers.

Memory Checking Debuggers

When running LAM’sgm RPI through a memory checking debugger (see Sedtiof), a number of “Read
from unallocated” (RUA) and/or “Read from uninitialized” (RFU) errors may appear, originating from func-
tions beginning with §m*” or “lam _ssi _rpi _gm*". These RUA/RFU errors are normal — they are not

78

actually reads from unallocated sections of memory. The Myrinet hardware and gm kernel device driver
handle some aspects of memory allocation, and therefore the operating system/debugging environment is
not always aware of all valid memory. As a result, a memory checking debugger will often raise warnings,
even though this is valid behavior.

Known Issues

As of LAM 7.1.1, the following issues still remain in tlggn RP1 module:

e Heterogeneity between big and little endian machines is not supported.
e Thegm RPI is not supported with IMPI.

e Mixed shared memory / GM message passing is not yet supported; all message passing is through
Myrinet / GM.

e XMPI tracing is not yet supported. T @03

e Thegm RPI module is designed to run in environments where the number of available processors
is greater than or equal to the number of MPI processes on a given nodgnTR&| module will
perform poorly (particularly in blocking MPI communication calls) if there are less processors than
processes on a node. 1 (03

T @

e “Fast” support is available and slightly decreases the latency for short gm messages. However, it is
unreliable and is subject to timeouts for MPI applications that do not invoke the MPI progression
engine often, and is therefore not the default behavior.

e Support for thegmget() function in the GM 2.x series is available starting with LAM/MPI 7.1, but
is disabled by support. See the Installation Guide for more details.

e Checkpoint/restart support is included for @ module, but is only possible when tgen module
was compiled with support fagmget() . Loy

9.3.4 Theib Module (Infiniband)

T 7.
Module Summary
Name: ib
Kind: rpi

Default SSI priority: 50
Checkpoint / restart: no

Theib RPI module is for native message passing over Infiniband networking hardwarelb Rid
provides low latency, high bandwidth message passing performance.

Be sure to also read the release notes entitled “Operating System Bypass Communication: Myrinet
and Infiniband” in the LAM/MPI Installation Guide for notes about memory management with Infiniband.
Specifically, it deals with LAM’s automatic overrides of thealloc() , calloc() , andfree() func-
tions.

79

Overview

In general, using th#s RPI module is just like using any other RPI module — MPI functions will simply use
native Infiniband message passing for their back-end message transport.

Although it is not required, users are strongly encouraged to us®BHeALLOC_MEM and MPI _-
FREE_MEM functions to allocate and free memory used for communication (instead of, for example,
malloc() andfree() . This would avoid the need to pin the memory during communication time and
hence save on message passsing latency.

Tunable Parameters

Table 9.3 shows the SSI parameters that may be changed at run-time; the text below explains each one in
detail.

] SSI parameter name | Default value] Description \

rpi _ib _hca_id X The string ID of the Infiniband hardware HCA to
be used

rpi _ib _num.envelopes 64 Number of envelopes to be preposted per peer
process.

rpi _ib _port -1 Specific IB port to use (-1 indicates none).

rpi _ib _priority 50 Default priority level.

rpi _ib _tinymsglen 1024 Maximum length (in bytes) of a “tiny” message|

rpi _ib _mtu MTU1024 | Maximum Transmission Unit (MTU) value to be
used for IB.

Table 9.3: SSI parameters for theRPI module.

Port Allocation

It is usually unnecessary to specify which Infiniband port to use. LAM/MPI will automatically attempt to
acquire ports greater than 1.

However, if you wish LAM to use a specific Infiniband port number, you can tell LAM which port to
use with thepi _ib _port SSI parameter. Specifying which port to use has precedence over the port range
check — if a specific port is indicated, LAM will try to use that and not check a range of ports. Specifying to
use port “-1” (or not specifying to use a specific port) will tell LAM to check the range of ports to find any
available port.

Note that in all cases, if LAM cannot acquire a valid port for every MPI process in the job, the entire job
will be aborted.

Be wary of forcing a specific port to be used, particularly in conjunction with the MPI dynamic process
calls (e.g.MPI_COMM_SPAWN). For example, attempting to spawn a child process on a node that already
has an MPI process in the same job, LAM will try to use the same specific port, which will result in failure
because the MPI process already on that node will have already claimed that port.

80

Choosing an HCA ID

The HCA ID is the Mellanox Host Channel Adapter ID. For example: InfiniHostO. It is usually unnecessary
to specify which HCA ID to use. LAM/MPI will search for all HCAs available and select the first one which
is available. If you want to use a fixed HCA ID, then you can specify that usingpiheib _hca _id SSI
parameter.

Adjusting Message Lengths

Theib RPI uses two different protocols for passing data between MPI processes: tiny and long. Selection of
which protocol to use is based solely on the length of the message. Tiny messages are sent (along with tag
and communicator information) in one transfer to the receiver. Long messages use a rendezvous protocol —
the envelope is sent to the destination, the receiver responds with an ACK (when it is ready), and then the
sender sends another envelope followed by the data of the message.

The message lengths at which the different protocols are used can be changed with the SSI parameter
rpi _ib _tinymsglen , which represent the maximum length of tiny messages. LAM defaults to 1,024
bytes for the maximum lengths of tiny messages.

It may be desirable to adjust these values for different kinds of applications and message passing pat-
terns. The LAM Team would appreciate feedback on the performance of different values for real world
applications.

Posting Envelopes to Recieve

Receive buffers must be posted to the IB communication hardware/library before any receives can occur.
LAM/MPI uses enevelopes that contain MPI signature information, and in the case of tiny messages, they
also hold the actual message contents. The size of each envelope is therefore sum of the size of the headers
and the maximum size of a tiny message (controlleddy _ib _tinymsglen SSI parameter). LAM
pre-posts 64 evnvelope buffers by default, but can be overridden at run-time withipgiheib _num.-

envelopes SSI parameter.

Modifying the MTU value

The Maximum Transmission Unit (MTU) values to be used for Infiniband can be configured at runtime using
therpi _ib _mtu SSI parameter. It can take in values of 256, 512, 1024, 2048 and 4096 corresponding to
MTU256, MTU512, MTU1024, MTU2048 and MTU4096 values of Infiniband MTUs respectively. The
default value is 1024 (corresponding to MTU1024).

Pinning Memory

The Infiniband communication library can only communicate through “registered” (sometimes called “pinned”)
memory. LAM/MPI handles this automatically by pinning user-provided buffers when required. This allows
for good message passing performance, especially when re-using buffers to send/receive multiple messages.
Note that since LAM/MPI manages all pinned memory, LAM/MPI must be aware of memory that is
freed so that it can be properly unpinned before it is returned to the operating system. Hence, LAM/MPI
must intercept calls to functions suchsi®k() andmunmap() to effect this behavior.
To this end, support for additional memory allocation packages are included in LAM/MPI and will
automatically be used on platforms that support arbitrary pinning. These memory allocation managers

81

)

allow LAM/MPI to intercept the relevant functions and ensure that memory is unpinned before returning it
to the operating system. Use of these managers will effectively overload all memory allocation functions
(e.g.,malloc() , calloc() ,free() , etc.) for all applications that are linked against the LAM/MPI
libraries (potentially regardless of whether they are using the ib RPI module or not).

See Sectio.3.1(pagelb) for more information on LAM’s memory allocation managers.

Memory Checking Debuggers

When running LAM'sib RPI through a memory checking debugger (see Seditod), a number of “Read

from unallocated” (RUA) and/or “Read from uninitialized” (RFU) errors may appear pertaining to VAPI.
These RUA/RFU errors are normal — they are not actually reads from unallocated sections of memory. The
Infiniband hardware and kernel device driver handle some aspects of memory allocation, and therefore the
operating system/debugging environment is not always aware of all valid memory. As a result, a memory
checking debugger will often raise warnings, even though this is valid behavior.

Known Issues

As of LAM 7.1.1, the following issues remain in tiie RPI module:

e On machines which have IB (VAPI) shared libraries but not the IB hardware, and when LAM is
compiled with IB support, you may see some error messages like “can’t open device file” when trying
to use LAM/MPI, even when you are not using the IB module. This error message pertains to 1B
(VAPI) shared libraries and is not from within LAM/MPI. It results because when LAM/MPI tries to
query the shared libraries, VAPI tries to open the 1B device during the shared library init phase, which
is not proper.

¢ Heterogeneity between big and little endian machines is not supported.
e Theib RPIis not supported with IMPI.

e Mixed shared memory / IB message passing is not yet supported; all message passing is through
Infiniband.

e XMPI tracing is not yet supported.

e Theib RPI module is designed to run in environments where the number of available processors is
greater than or equal to the number of MPI processes on a given nodi. RBemodule will perform
poorly (particularly in blocking MPI communication calls) if there are less processors than processes
on a node.

9.3.5 Thelamd Module (Daemon-Based Communication)

Module Summary
Name: lamd
Kind: rpi
Default SSI priority: 10
Checkpoint / restart: no

82

Thelamd RPI module uses the LAM daemons for all interprocess communication. This allows for true
asynchronous message passing (i.e., messages can progress even while the user’s program is executing),
albeit at the cost of a significantly higher latency and lower bandwidth.

Overview

Rather than send messages directly from one MPI process to another, all messages are routed through the
local LAM daemon, the remote LAM daemon (if the target process is on a different node), and then finally
to the target MPI process. This potentially adds two hops to each MPI message.

Although the latency incurred can be significant, tasmd RPI can actually make message passing
progress “in the background.” Specifically, since LAM/MPI is an single-threaded MPI implementation, it
can typically only make progress passing messages when the user’s program is in an MPI function call. With
thelamd RPI, since the messages are all routed through separate processes, message passing can actually
occur when the user’s programristin an MPI function call.

User programs that utilize latency-hiding techniques can exploit this asynchronous message passing
behavior, and therefore actually achieve high performance despite of the high overhead associated with the
lamd RPI}

Tunable Parameters

Thelamd module has only one tunable parameter: its priority.

] SSI parameter name | Default value] Description \
| rpi _lamd _priority | 10 | Default priority level. |

Table 9.4: SSI parameters for tleand RPI module.

9.3.6 Thesysv Module (Shared Memory Using System V Semaphores)

Module Summary
Name: sysv
Kind: rpi
Default SSI priority: 30
Checkpoint / restart: no

The sysv RPI is the one of two combination shared-memory/TCP message passing modules. Shared
memory is used for passing messages to processes on the same node; TCP sockets are used for passing
messages to processes on other nodes. System V semaphores are used for synchronization of the shared
memory pool. T (703

Be sure to read Sectidh3.1(page75) on the difference between this module anduakgsv module. L (7o3)

1Several users on the LAM/MPI mailing list have mentioned this specifically; even thoudantiteRP! is slow, it provides
significantlybetter performance because it can provide true asynchronous message passing.

83

Overview

Processes located on the same node communicate via shared memory. One System V shared segment is
shared by all processes on the same node. This segment is logically divided into three areas. The total size
of the shared segment (in bytes) allocated on each node is:

2xC)+(Nx(N-1)x(S+C))+P

where(C' is the cache line sizgy is the number of processes on the nofles the maximum size of
short messages, aritlis the size of the pool for large messages,

The first area (of siz¢2 x () is for the global pool lock. Theysv module allocates a semaphore
set (of size six) for each process pair communicating via shared memory. On some systems, the operating
system may need to be reconfigured to allow for more semaphore sets if running tasks with many processes
communicating via shared memory.

The second area is for “postboxes,” or short message passing. A postbox is used for communication
one-way between two processes. Each postbox is the size of a short message plus the length of a cache line.
There is enough space allocated (&F x (N — 1)) postboxes. The maximum size of a short message is
configurable with thepi _ssi _sysv _short SSI parameter.

The final area in the shared memory area (of dP)ds used as a global pool from which space for
long message transfers is allocated. Allocation from this pool is locked. The default lock mechanism is
a System V semaphore but can be changed to a process-shared pthread mutex lock. The size of this pool
is configurable with thepi _ssi _sysv _shmpoolsize SSI parameter. LAM will try to determin®
at configuration time if none is explicitly specified. Larger values should improve performance (especially
when an application passes large messages) but will also increase the system resources used by each task.

Use of the Global Pool

When a message larger thadSj is sent, the transport sendsbytes with the first packet. When the
acknowledgment is received, it allocatesegsagelength — S) bytes from the global pool to transfer the rest
of the message.

To prevent a single large message transfer from monopolizing the global pool, allocations from the pool
are actually restricted to a maximumrpl _ssi _sysv _shmmaxalloc bytes. Even with this restriction,
it is possible for the global pool to temporarily become exhausted. In this case, the transport will fall back
to using the postbox area to transfer the message. Performance will be degraded, but the application will
progress.

Tunable Parameters

Table 9.5 shows the SSI parameters that may be changed at run-time. Each of these parameters were dis-
cussed in the previous sections.

9.3.7 Thetcp Module (TCP Communication)

Module Summary
Name: tcp
Kind: rpi
Default SSI priority: 20
Checkpoint / restart: no

84

] SSI parameter name | Default value | Description \

rpi _sysv _priority 30 Default priority level.

rpi _sysv _pollyield 1 Whether or not to force the use gield() to
yield the processor.

rpi _sysv _shmmaxalloc From configure] Maximum size of a large message atomic trans-
fer. The default value is calculated when LAM |is
configured.

rpi _sysv _shmpoolsize From configure| Size of the shared memory pool for large mes-

sages. The default value is calculated when LAM
is configured.
rpi _sysv _short 8192 Maximum length (in bytes) of a “short” message
for sending via shared memory (i.e., on-node).
Directly affects the size of the allocated “postbox”
shared memory area.

rpi _tcp _short 65535 Maximum length (in bytes) of a “short” message
for sending via TCP sockets (i.e., off-node).
rpi _tcp _sockbuf -1 Socket buffering in the OS kernel (-1 means use

the short message size).

Table 9.5: SSI parameters for thgsv RPI module.

Thetcp RPI module uses TCP sockets for MPI point-to-point communication.

Tunable Parameters

Two different protocols are used to pass messages between processes: short and long. Short messages
are sent eagerly and will not block unless the operating system blocks. Long messages use a rendezvous
protocol; the body of the message is not sent until a matching MPI receive is posted. The crossover point
between the short and long protocol defaults to 64KB, but can be changed withi theep _short SSI
parameter, an integer specifying the maximum size (in bytes) of a short message. Additionally, the amount

of socket buffering requested of the kernel defaults to the size of short messages. It can be altered with
therpi _tcp _sockbuf parameter. When this value is -1, the value ofrihie _tcp _short parameter is

used. Otherwise, its value is passed to sbesockopt(2) system call to set the amount of operating

system buffering on every socket that is used for MPl communication. Ly
] SSI parameter name | Default value] Description \
rpi _tcp _priority 20 Default priority level.
rpi _tcp _short 65535 Maximum length (in bytes) of a “short” messade.
rpi _tcp _sockbuf -1 Socket buffering in the OS kernel (-1 means use
the short message size).

Table 9.6: SSI parameters for ttgp RPI module.

85

T (7.03)

1 (703

9.3.8 Theusysv Module (Shared Memory Using Spin Locks)

Module Summary
Name: usysv
Kind: rpi
Default SSI priority: 40
Checkpoint / restart: no

Theusysv RPI is the one of two combination shared-memory/TCP message passing modules. Shared
memory is used for passing messages to processes on the same node; TCP sockets are used for passing
messages to processes on other nodes. Spin locks with back-off are used for synchronization of the shared
memory pool (a System V semaphore or pthread mutex is also used for access to the per-node shared
memory pool).

The nature of spin locks means that tieysv RPI will perform poorly when there are more processes
than processors (particularly in blocking MPI communication calls). If no higher priority RPI modules
are available (e.g., Myringgin) and the user does not select a specific RPI module througipitheSSI
parameterusysv may be selected as the default — even if there are more processes than processors. Users
should keep this in mind; in such circumstances, it is probably better to manually selsgsther tcp RPI
modules.

Overview

Aside from synchronization, thesysv RPI module is almost identical to tteysv module. Theusysv
module uses spin locks with back-off. When a process backs off, it attempts to yield the processor. If
the configure script found a system-provided yield functignis used. If no such function is found, then
select() on NULL file descriptor sets with a timeout of 10us is used.

Tunable Parameters

Table9.7shows the SSI parameters that may be changed at run-time. Many of these parameters are identical
to theirsysv counterparts and are not re-described here.

9.4 MPI Collective Communication

MPI collective communication functions have their basic functionality outlined in the MPI standard. How-
ever, the implementation of this functionality can be optimized and/or implemented in different ways. As
such, LAM provides modules for implementing the MPI collective routines that are targeted for different
environments.

e Basic algorithms
e SMP-optimized algorithms

e Shared Memory algorithms

2Such agjield() orsched _yield()

86

] SSI parameter name | Default value | Description \

rpi _tcp _short 65535 Maximum length (in bytes) of a “short” message
for sending via TCP sockets (i.e., off-node).

rpi _tcp _sockbuf -1 Socket buffering in the OS kernel (-1 means use
the short message size).

rpi _usysv _pollyield 1 Same asysv counterpart.

rpi _usysv _priority 40 Default priority level.

rpi _usysv _readlockpoll 10,000 Number of iterations to spin before yielding the
processing while waiting to read.

rpi _usysv _shmmaxalloc From configure] Same asysv counterpart.

rpi _usysv _shmpoolsize From configure] Same asysv counterpart.

rpi _usysv _short 8192 Same asysv counterpart.

rpi _usysv _writelockpoll 10 Number of iterations to spin before yielding the
processing while waiting to write.

Table 9.7: SSI parameters for theysv RPI module.

These modules are discussed in detail below. Note that the sections below each assume that support
for these modules have been compiled into LAM/MPI. Tdmminfo command can be used to determine
exactly which modules are supported in your installation (see Settibpagesl).

9.4.1 Selecting aoll Module

coll modules are selected on a per-communicator basis. Most users will not need to overddh $kee
lection mechanisms; theoll modules currently included in LAM/MPI usually select the best module for
each communicator. However, mechanisms are provided to override wedllahodule will be selected on

a given communicator.

When each communicator is created (includvgl_COMM_WORLD and MPI_COMM_SELF), all
availablecoll modules are queried to see if they want to be selectezbliAnodule may therefore be in use
by zero or more communicators at any given time. The final selection of which module will be used for
a given communicator is based on priority; the module with the highest priority from the set of available
modules will be used for all collective calls on that communicator.

Since the selection of which module to use is inherently dynamic and potentially different for each
communicator, there are two levels of parameters specifying which modules should be used. The first level
specifies the overall set @bll modules that will be available tall communicators; the second level is a
per-communicator parameter indicating which specific module should be used.

The first level is provided with theoll SSI parameter. Its value is a comma-separated lisobf
module names. If this parameter is supplied, only these modules will be queried at run time, effectively de-
termining the set of modules available for selection on all communicators. If this parameter is not supplied,
all coll modules will be queried.

The second level is provided with the MPI attribit&M_MP1_SSI_COLL. This attribute can be set to
the string name of a speciftoll module on a parent communicator before a new communicator is created.
If set, the attribute’s value indicates tlhaly module that will be queried. If this attribute is not set, all
available modules are queried.

87

Note that no coordination is done between the SSI frameworks in each MPI process to ensure that the
same modules are available and/or are selected for each communicator. Althpugh allows different
environment variables to be exported to each MPI process, and the value of an MPI attribute is local to each
process, LAM’s behavior is undefined if the same SSI parameters are not available in all MPI processes.

9.4.2 coll SSI Parameters

There are three parameters that apply teall modules. Depending on when their values are checked, they
may be set by environment variables, command line switches, or attributes on MPI communicators.

e coll _base associative : The MPI standard defines whether reduction operations are commu-
tative or not, but makes no provisions for whether an operator is associative or not. This parameter, if
defined to 1, asserts that all reduction operations on a communicator are assumed to be associative. If
undefined or defined to 0, all reduction operations are assumed to be non-associative.

This parameter is examined during every reduction operation.C8esmutative and Associative
Reduction Operators below.

e coll _crossover : If set, define the maximum number of processes that will be used with a linear
algorithm. More than this number of processes may use some other kind of algorithm.

This parameter is only examined durimPI_INIT.

e coll _reduce _crossover : For reduction operations, the determination as to whether an algo-
rithm should be linear or not is not based on the number of process, but rather by the number of bytes
to be transferred by each process. If this parameter is set, it defines the maximum number of bytes
transferred by a single process with a linear algorithm. More than this number of bytes may result in
some other kind of algorithm.

This parameter is only examined durimPI_INIT.

Commutative and Associative Reduction Operators

MPI-1 defines that all built-in reduction operators are commutative. User-defined reduction operators can
specify whether they are commutative or not. The MPI standard makes no provisions for whether a reduction
operation is associative or not. For some operators and datatypes, this distinction is largely irrelevant (e.qg.,
find the maximum in a set of integers). However, for operations involving the combination of floating point
numbers, associativity and commutativity matter. Advice to Implementonsote in MPI-1, section 4.9.1,
114:20, states:

It is strongly recommended thdPI_REDUCE be implemented so that the same result be
obtained whenever the function is applied on the same arguments, appearing in the same or-
der. Note that this may prevent optimizations that take advantage of the physical location of
processors.

Some implementations of the reduction operations may specifically take advantage of data locality, and
therefore assume that the reduction operator is associative. As such, LAM will always take the conserva-
tive approach to reduction operations and fall back to non-associative algorithmdafa.dpasic) for the
reduction operations unless specifically told to use associative (SMP-optimized) algorithms by setting the
SSI parametecoll _base _associative to 1.

88

9.4.3 Thelam _basic Module

Module Summary
Name: lam _basic
Kind: coll
Default SSI priority: 0
Checkpoint / restart: yes

Thelam_basic module provides simplistic algorithms for each of the MPI collectives that are layered
on top of point-to-point functionality.It can be used in any environment. Its priority is sufficiently low that
it will be chosen if no othecoll module is available.

Many of the algorithms are twofold: falV or less processes, linear algorithms are used. For more
than NV processes, binomial algorithms are used. No attempt is made to determine the locality of processes,
however — thdam_basic module effectively assumes that there is equal latency between all processes. All
reduction operations are performed in a strictly-defined order; associativity is not assumed.

Collectives for Intercommunicators

As of now, onlylam_basic module supports intercommunicator collectives according to the MPI-2 stan-
dard. These algorithms are built over point-to-point layer and they also make use of an intra-communicator
collectives with the help of intra-communicator corresponding to the local group. Mapping among the inter-
communicator and corresponding local-intracommunicator is separately managelhim thasic module.

9.4.4 Thesmp Module

Module Summary
Name: smp
Kind: coll
Default SSI priority: 50
Checkpoint / restart: yes

The smp module is geared towards SMP nodes in a LAN. Heavily inspired by the MagPle algo-
rithms [6], the smp module determines the locality of processes before setting up a dynamic structure in
which to perform the collective function. Although all communication is still layered on MPI point-to-point
functions, the algorithms attempt to maximize the use of on-node communication before communicating
with off-node processes. This results in lower overall latency for the collective operation.

The smp module assumes that there are only two levels of latency between all processes. As such, it
will only allow itself to be available for selection when there are at least two nodes in a communicator and
there are at least two processes on the same ‘hode.

Only some of the collectives have been optimized for SMP environments. 9&skows which collec-
tive functions have been optimized, which were already optimal (fronfetfmebasic module), and which
will eventually be optimized.

3The basic algorithms are the same that have been included in LAM/MPI since at least version 6.2.
4As a direct resultsmp will never be selected faviIPI_COMM_SELF.

89

MPI function

Status

MPI_ALLGATHER

Optimized for SMP environments.

MPI_ALLGATHERV

Optimized for SMP environments.

MPI_ALLREDUCE

Optimized for SMP environments.

MPI_ALLTOALL

Identical tolam_basic algorithm; already optimized for SM
environments.

U

MPI_ALLTOALLV

Identical tolam_basic algorithm; already optimized for SM
environments.

MPI_ALLTOALLW

Ibid.

U

MPI_BARRIER Optimized for SMP environments.

MPI_BCAST Optimized for SMP environments.

MPI_EXSCAN Ibid.

MPI_GATHER Identical tolam_basic algorithm; already optimized for SM
environments.

MPI_GATHERV Identical tolam_basic algorithm; already optimized for SM
environments.

MPI_REDUCE Optimized for SMP environments.

MPI_REDUCE_SCATTER

Optimized for SMP environments.

MPI_SCAN

Optimized for SMP environments.

MPI_SCATTER

Identical tolam_basic algorithm; already optimized for SM
environments.

U

MPI_SCATTERV

Identical tolam_basic algorithm; already optimized for SM
environments.

U

90

Table 9.8: Listing of MPI collective functions indicating which have been optimized for SMP environments.

Special Notes

Since the goal of the SMP-optimized algorithms attempt to take advantage of data locality, it is strongly
recommended to maximize the proximity EiPl_COMM_WORLD rank neighbors on each node. T@e
nomenclature tonpirun can ensure this automatically.

Also, as a result of the data-locality exploitation, twl _base _associative parameter is highly
relevant —if it is not set to 1, themp module will fall back to thdam _basic reduction algorithms. T @

9.4.5 Theshmem Module

Module Summary
Name: shmem
Kind: coll
Default SSI priority: 50
Checkpoint / restart: yes

The shmem module is developed to facilitate fast collective communication among processes on a
single node. Processes on a N-way SMP node can take advantage of the shared memory for message
passing. The module will be selected only if the communicator spans over a single node and the all the
processes in the communicator can successfully attach the shared memory region to their address space.

The shared memory region consists two disjoint sections. First section of the shared memory is used for
synchronization among the processes while the second section is used for message passing (Copying data
into and from shared memory).

The second section is known B ESSAGE_POOL and is divided into N equal segments. Default value
of NV is 8 and is configurable with theoll _base _shmemnum.segments SSI parameter. The size of
the MESSAGE_POOL can be also configured with tleell _base shmemmessage _pool _size SSI
parameter. Default size of tMESSAGE_POOL is (16384 x 8).

The first section is known &8ONTROL_SECTION and it is logicallu divided intd2 x N + 2) seg-
ments.N is the number of segments in tMESSAGE_POOL section. Total size of this section is:

(2xN)+2)xC xS

Where(' is the cache line siz€ is the size of the communicator. Shared variabled for synchronization
are placed in differenCEACHELINE for each processes to prevent trashing due to cache invalidation.

General Logic behind Shared Memory Management

Each segment in thMMESSAGE_POOL corresponds tdWO segments in th€ ONTROL_SECTION.
Whenever a particular segmentMESSAGE_POOL is active, its corresponding segments in G@N-
TROL_SECTION are used for synchronization. Processes can operate on one segment (Copy the mes-
sages), set appropriate synchronizattion variables and can continue with the next message segment. This ap-
proach improves performance of the collective algorithms. All the process need to conigltBARRIER
at the last (Default 8th) segment to prevent race conditions. The extra 2 segmenSONAROL_SECTION
are used exclusively for explidiPI_ BARRIER.

Only some of the collectives have been optimized for SMP environments. J&skows which collec-
tive functions have been optimized, which were already optimal (frontattmebasic module), and which
will eventually be optimized.

91

List of Algorithms

Only some of the collectives have been implemented using shared memorpEtews which collective
functions have been implemented and which uaesbasic module)

MPI function

Status

MPI_ALLGATHER

Implemented using shared memory.

MPI_ALLGATHERV

Useslam_basic algorithm.

MPI_ALLREDUCE

Implemented using shared memory.

MPI_ALLTOALL

Implemented using shared memory.

MPI_ALLTOALLV

Useslam_basic algorithm.

MPI_ALLTOALLW

Useslam_basic algorithm.

MPI_BARRIER Implemented using shared memory.
MPI_BCAST Implemented using shared memory.
MPI_EXSCAN Useslam_basic algorithm.
MPI_GATHER Implemented using shared memory.
MPI_GATHERV Useslam_basic algorithm.
MPI_REDUCE Implemented using shared memory.

MPI_REDUCE_SCATTER

Useslam_basic algorithm.

MPI_SCAN

Useslam_basic algorithm.

MPI_SCATTER

Implemented using shared memory.

MPI_SCATTERV

Useslam_basic algorithm.

Table 9.9: Listing of MPI collective functions indicating which have been implemented using Shared Mem-

ory

Tunable Parameters

Table 9.10 shows the SSI parameters that may be changed at run-time. Each of these parameters were
discussed in the previous sections.

] SSI parameter name
coll _base _shmem-
message _pool _size
coll _base _shmemnum.- 8
segments

| Default value] Description \
16384 x 8 | Size of the shared memory pool for the messages.

Number of segments in the message pool section.

Table 9.10: SSI parameters for thliemem coll module.

Special Notes

LAM provides sysv and usysv RPI for the intranode communication. In this case, the collective com-
munication also happens through the shared memory but indirectly in terms of Sends and Recvs. Shared

92

Memory Collective algorithms avoid all the overhead associated with the indirection and provide a minimum
blocking way for the collective operations.

The shared memory is created by only one process in the communicator and rest of the processes simply
attach the shared memory region to their address space. The process which finalizes last, hands back the
shared memory region to the kernel while processes leaving before simply detach the shared memory region
from their address space. Loy

9.5 Checkpoint/Restart of MPI Jobs

LAM supports the ability to involuntarily checkpoint and restart parallel MPI jobs. Due to the asynchronous

nature of the checkpoint/restart design, such jobs must run with a thread level of MRIGSHREAD _-

SERIALIZED. This allows the checkpoint/restart framework to interrupt the user’s job for a checkpoint

regardless of whether it is performing message passing functions or not in the MPI communications layer.
LAM does not provide checkpoint/restart functionality itseif;SSI modules are used to invoke back-

end systems that save and restore checkpoints. The following notes apply to checkpointing parallel MPI

jobs:

e No special code is required in MPI applications to take advantage of LAM/MPI’s checkpoint/restart
functionality, although some limitations may be imposed (depending on the back-end checkpointing
system that is used).

e LAM’s checkpoint/restart functionalitgnly involves MPI processes; the LAM universe is not check-
pointed. A LAM universe must be independently established before an MPI job can be restored.

e LAM does not yet support checkpointing/restarting MPI-2 applications. In particular, LAM’s behav-
ior is undefined when checkpointing MPI processes that invoke any non-local MPI-2 functionality
(including dynamic functions and 10).

e Migration of restarted processes is available on a limited basissrtbp RPI will start up properly
regardless of what nodes the MPI processes are re-started on, but other system-level resources may or
may not be restarted properly (e.g., open files, shared memory, etc.). T ()

e Checkpoint files are saved using a two-phase commit protocol that is coordinatgadriop . mpirun
initiates a checkpoint request for each process in the MPI job by supplying a temporary context file-
name. If all the checkpoint requests completed successfully, the saved context files are renamed to
their respective target filenames; otherwise, the checkpoint files are discarded. 1 @

e Checkpoints can only be performed after all processes have inkdR&dNIT and before any process
has invokedMPI_FINALIZE.

9.5.1 Selecting &r Module

Thecr framework coordinates with all other SSI modules to ensure that the entire MPI application is ready
to be checkpointed before the back-end system is invoked. Specifically, for a parallel job to be able to
checkpoint and restart, all the SSI modules that it uses must support checkpoint/restart capabilities.

All coll modules in the LAM/MPI distribution currently support checkpoint/restart capability because
they are layered on MPI point-to-point functionality — as long as the RPI module being used supports check-
point/restart, so do theoll modules. However, only one RPI module currently supports checkpoint/restart:

93

crtcp. Attempting to checkpoint an MPI job when using any othgirmodule will result in undefined
behavior.

9.5.2 cr SSI Parameters

Thecr SSI parameter can be used to specify whichodule should be used for an MPI job. An error will
occur if acr module is requested and gui or coll module cannot be found that supports checkpoint/restart
functionality.

Additionally, thecr _base _dir SSI parameter can be used to specify the directory where checkpoint
file(s) will be saved. Ifiitis not set, and no default value was provided when LAM/MPI was configured (with
the --with-cr-file-dir flag) the user’'s home directory is used.

9.5.3 Theblcr Module

Module Summary
Name: blcr
Kind: cr
Default SSI priority: 50
Checkpoint / restart: yes

Berkeley Lab’s Checkpoint/Restart (BLCR)][single-node checkpointer provides the capability for
checkpointing and restarting processes under Linux. Bitremodule, when used with checkpoint/restart
SSI modules, will invoke the BLCR system to save and restore checkpoints.

Overview

Theblcr module will only automatically be selected when the thread leWdiR$ THREAD _SERIALIZED

and all selected SSI modules support checkpoint/restart functionality (see the SSI module selection algo-
rithm, Sectior9.2, page73). Theblcr module can be specifically selected by settingdheSSI parameter

to the valueblcr . Manually selecting thélcr module will force the MPI thread level to be at led&PI -
THREAD_SERIALIZED.

Running a Checkpoint/Restart-Capable MPI Job
There are multiple ways to run a job with checkpoint/restart support:

e Use thecrtcp RPI, and invokeMPI_INIT_THREAD with a requested thread level WifPI_THREAD _-
SERIALIZED. This will automatically make thblcr module available.

[shell$mpirun C—ssi rpi crtcp mympi_program }

e Use thecrtcp RPI and manually select thacr module:

[shell$mpirun C—ssi rpi crtcp—ssi cr blcr mympi_program j

T o5
Depending on the location of the BLCR shared library, it may be necessary to Use_tHHBRARY _-

PATHenvironment variable to specify where it can be found. Specifically, if the BLCR library is not in the

94

default path searched by the linker, errors will occur at run time because it cannot be found. In such cases,
adding the directory where thidcr.so* file(s) can be found to theD_LIBRARY_PATHenvironment
variableon all nodes where the MPI application will execut@l solve the problem. Note that this may

entail editing user’s “dot” files to augment th®_LIBRARY_PATHuvariable® For example:

...edit user’s shell startup file to augment LIBRARYPATH...
shell$lamboot hostfile
shell$mpirun C—ssi rpi crtcp—ssi cr blcr mympi_program

Alternatively, the “x ” option to mpirun can be used to export thé_LIBRARY_PATHenvironment
variable to all MPI processes. For example (Bourne shell and derrivates):

shell$LD _LIBRARY _PATH=/location/of/blcr/lib:$LDLIBRARY _PATH
shell$export LD_LIBRARY _PATH
shell$mpirun C—ssi rpi crtcp—ssi cr blcr—x LD _LIBRARY _PATH my_mpi_program

For C shell and derivates:

shelbbo setenvLD _LIBRARY _PATH /location/of/blcr/lib:$LDLIBRARY _PATH
shell mpirun C—ssi rpi crtcp—ssi cr blcr—x LD _LIBRARY _PATH my_mpi_program

1 o5

Checkpointing and Restarting

Once a checkpoint-capable job is running, the BLCR comntandheckpoint can be used to invoke a
checkpoint. Runningr _checkpoint with the PID ofmpirun will cause a context file to be created for
mpirun as well as a context file for each running MPI process. Before it is checkpomigdin will
also create an application schema file to assist in restoring the MPI job. These files will all be created in the
directory specified by LAM/MPI's configured default, tlee _base _dir , or the user’'s home directory if
no default is specified.

The BLCRcr _restart command can then be invoked with the PID and context file generated from
mpirun , which will restore the entire MPI job.

Tunable Parameters

There are no tunable parameters tohhe cr module.

Known Issues

e BLCR has its own limitations (e.g., BLCR does not yet support saving and restoring file descriptors);
see the documentation included in BLCR for further information. Check the project’'s main web site
to find out more about BLCR. T @

e Since a checkpoint request is initiated by invokorg checkpoint with the PID ofmpirun , it is
not possible to checkpoint MPI jobs that were started usingritve option tompirun , or directly
from the command-line without usirmgpirun .

SEnsure to see Sectiohl.1for details about which shell startup files should be edited. Also note that shell startup files are
only read when starting the LAM universe. Hence, if you change values in shell startup files, you will likely need to re-invoke the
lamboot command to put your changes into effect.

6 .

http://ftg.lbl.gov/

95

http://ftg.lbl.gov/

1 @
T @

e While the two-phase commit protocol that is used to save checkpoints provides a reasonable guarantee
of consistency of saved global state, there is at least one case in which this guarantee fails. For
example, the renaming of checkpoint filespirun is not atomic; if a failure occurs whempirun
is in the process of renaming the checkpoint files, the collection of checkpoint files might result in an
inconsistent global state.

e If the BLCR module(s) are compiled dynamically, thB_ PRELOADenvironment variable must in-
clude the location of thébcr.so library. This is to ensure thdibcr.so is loaded before the
PThreads library.

9.5.4 Theself Module

Module Summary
Name: blcr
Kind: cr
Default SSI priority: 25
Checkpoint / restart: yes

Theself module, when used with checkpoint/restart SSI modules, will invoke the user-defined functions
to save and restore checkpoints.
Overview
Theself module can be specifically selected by settingdheSSI parameter to the valgelf . Manually
selecting theself module will force the MPI thread level to be at led4P|_ THREAD _SERIALIZED.
Running a Checkpoint/Restart-Capable MPI Job

Use thecrtcp RPI and manually select tiself module:

[shell$mpirun C—ssi rpi crtcp—ssi cr self mympi_program j

Checkpointing and Restarting

The names of the Checkpoint, Restart and Continue functions can be specified in one of the following ways:

e Usethecr _self _user _prefix to specify a prefix. This will cause LAM to assume that the Check-
point, Restart and Continue functions are prafiteckpoint, prefixestart and prefixontinue respec-
tively, where prefix is the value of the _self _user _prefix SSI parameter.

e To specify the names of the Checkpoint, Restart and Continue functions separately, ase-the
self _user _checkpoint , cr _ssi _user restart and thecr _self _user _continue SSI
parameters respectively. In case bothd¢hessi _user _prefix and any of these above three pa-
rameters are specified, these parameters are given higher preference.

96

In case none of the above four parameters are supplied, agdlfireodule is selectednpirun aborts
with the error message indicating that symbol-lookup failegirun also aborts in case any of the Check-
point, Restart or Continue functions is not found in the MPI application.

Once a checkpoint-capable job is running, the LAM commanttheckpoint can be used to invoke
a checkpoint. Runnintamcheckpoint with the PID ofmpirun will cause the user-defined Checkpoint
function to be invoked. Before it is checkpointedpirun will also create an application schema file to
assist in restoring the MPI job. These files will all be created in the directory specified by LAM/MPI’'s
configured default, ther _base _dir , or the user’'s home directory if no default is specified.

lamboot can be used to restart an MPI application. In cases#iemodule is selected the second
argument tdamboot is the set of arguments to be passed to the mgivun .

Tunable Parameters

There are no tunable parameters toghd cr module.

Known Issues

e Since a checkpoint request is initiated by invokiamcheckpoint with the PID ofmpirun , itis
not possible to checkpoint MPI jobs that were started usingritve option tompirun , or directly
from the command-line without usinmgpirun .

1 @

97

98

Chapter 10

Debugging Parallel Programs

LAM/MPI supports multiple methods of debugging parallel programs. The following notes and observations
generally apply to debugging in parallel:

¢ Note that most debuggers require that MPI applications were compiled with debugging support en-
abled. This typically entails adding to the compile and link lines when building your MPI appli-
cation.

¢ Unless you specifically need it, it is not recommended to compile LAM vgthThis will allow you
to treat MPI function calls as atomic instructions.

e Evenwhen debugging in parallel, itis possible that not all MPI processes will execute exactly the same
code. For example, “if” statements that are based upon a communicator’s rank of the calling process,
or other location-specific information may cause different execution paths in each MPI process.

10.1 Naming MPI Objects

LAM/MPI supports the MPI-2 functionBIPI_<type>_SET_NAME andMPI_<type>_GET_NAME, where
<type> can be:COMM, WIN, or TYPE. Hence, you can associate relevant text names with communica-
tors, windows, and datatypes (e.g., “6x13x12 molecule datatype”, “Local group reduction intracommuni-
cator”, “Spawned worker intercommunicator”). The use of these functions is strongly encouraged while
debugging MPI applications. Since they are constant-time, one-time setup functions, using these functions
likely does not impact performance, and may be safe to use in production environments, too.

The rationale for using these functions is to allow LAM (and supported debuggers, profilers, and other
MPI diagnostic tools) to display accurate information about MPI communicators, windows, and datatypes.
For example, whenever a communicator name is available, LAM will use it in relevant error messages; when
names are not available, communicators (and windows and types) are identified by index number, which —
depending on the application — may vary between successive runs. The TotalView parallel debugger will
also show communicator names (if available) when displaying the message queues.

10.2 TotalView Parallel Debugger

TotalView is a commercial debugger from Etnus that supports debugging MPI programs in parallel. That is,
with supported MPI implementations, the TotalView debugger can automatically attach to one or more MPI

99

processes in a parallel application.

LAM now supports basic debugging functionality with the TotalView debugger. Specifically, LAM
supports TotalView attaching to one or more MPI processes, as well as viewing the MPI message queues in
supported RPI modules.

This section provides some general tips and suggested use of TotalView with LAM/MPhdt iis-
tended to replace the TotalView documentation in any vi&gysure to consult the TotalView documenta-
tion for more information and details than are provided here.

Note: TotalView is licensed product provided by Etnus. You need to have TotalView installed properly
before you can use it with LAM.

10.2.1 Attaching TotalView to MPI Processes

LAM/MPI does not need to be configured or compiled in any special way to allow TotalView to attach to
MPI processes.
You can attach TotalView to MPI processes startedrpjrun / mpiexec in following ways:

1. Usethetv convenience argumentwhen runnimgirun ormpiexec (thisisthe preferred method):

[shell$mpirun —tv [...other mpirun arguments...] j

For example:

[shellﬂsmpirun —tv C my_mpi_program argl arg2 arg3 J
2. Directly launchmpirun in TotalView (youcannotlaunchmpiexec in TotalView):

[shell$totalview mpirun—a [...mpirun arguments...] }

For example:

[shell$totalview mpirun—a C mympi_program argl arg2 arg3 }

Note the-a argument aftempirun . This is necessary to tell TotalView that arguments following
“-a " belong tompirun and not TotalView.

Also note that thetv convenience argument topirun simply executestbtalview mpirun
-a ... ”;soboth methods are essentially identical.

TotalView can either attach to all MPI processedMPI_COMM_WORLD or a subset of them. The
controls for “partial attach” are in TotalView, not LAM. In TotalView 6.0.0 (analogous methods may work
for earlier versions of TotalView — see the TotalView documentation for more details), you need to set the
parallel launch preference to “ask.” In the root window menu:

1. Select File— Preferences
2. Select the Parallel tab
3. In the “When a job goes parallel” box, select “Ask what to do”

4. Click on OK

!Refer tohttp://www.etnus.com/ for more information about TotalView.

100

http://www.etnus.com/

10.2.2 Suggested Use

Since TotalView support is started with thgirun command, TotalView will, by default, start by debug-
ging mpirun itself. While this may seem to be an annoying drawback, there are actually good reasons for
this:

e While debugging the parallel program, if you need to re-run the program, you can simply re-run the
application from within TotalView itself. There is no need to exit the debugger to run your parallel
application again.

e TotalView can be configured to automatically skip displayingrtigrun code. Specifically, instead
of displaying thempirun code and enabling it for debugging, TotalView will recognize the command
namedmpirun and start executing it immediately upon load. See below for details.

There are two ways to start debugging the MPI application:

1. The preferred method is to havéBOME/.tvdrc file that tells TotalView to skip past thapirun
code and automatically start the parallel program. Create or edi¢QME/.tvdrc file to include
the following:

p
Set a variable to say what the MPI “starter” program is
setstarterprogram mpirun

Check if the newly loaded image is the starter program
and start it immediately if it is.
proc autarun_starter{loadedid} {
global startemprogram
setexecutablename [TV::iimage get $loadeidd name]
setfile_component [file tail $executahieame]

if {[string compare $filcomponent $startgorogram] == G {
puts “Automatically starting $filecomponent”
dgo

}

Append this function to TotalView's image load callbacks so that
TotalView run this program automatically.
dlappend TV::iimagdoad callbacks autaun_starter

Note that when using this methodhpirun is actually running in the debugger while you are de-
bugging your parallel application, even though it may not be obvious. Hence, when the MPI job
completes, you'll be returned to viewingpirun in the debugger.This is normal- all MPI pro-
cesses have exited; the only process that remaimpigin . If you click “Go” again,mpirun will

launch the MPI job again.

2. Do not create th&HOME/.tvdrc file with the “auto run” functionality described in the previous
item, but instead simply click the “go” button when TotalView launches. This rungribieun

101

command with the command line arguments, which will eventually launch the MPI programs and
allow attachment to the MPI processes.

When TotalView initially attaches to an MPI process, you will see the codéMer_INIT or one of

its sub-functions (which will likely be assembly code, unless LAM itself was compiled with debugging
information). You probably want to skip past the restM®PI_INIT. In the Stack Trace window, click on
function which calledMPILINIT (e.g.,main) and set a breakpoint to line following call MPI_INIT. Then

click “Go”.

10.2.3 Limitations

The following limitations are currently imposed when debugging LAM/MPI jobs in TotalView:

1. Cannot attach to scripts: You cannot attach TotalView to MPI processes if they were launched by

scripts instead ofpirun . Specifically, the following won’t work:

[shell$mpirun —tv C scriptto_launchfoo }
But this will:
[sheIISSmpirun —tv C foo j

For that reason, singapiexec is a script, although thév switch works withmpiexec (because
it will eventually invokempirun), you cannot launcmpiexec with TotalView.

. TotalView needs to launch the TotalView server on all remote nodes in order to attach to remote
processes.

The command that TotalView uses to launch remote executables might be different than what LAM/MPI
uses. You may have to set this command explicitly and independently of LAM/MPI. For example, if
your local environment hash disabled and only allowssh , then you likely need to set the To-
talView remote server launch command 8sh ”. You can set this internally in TotalView or with the
TVDSVRLAUNCHCMDvironment variable (see the TotalView documentation for more information

on this).

. The TotalView license must be able to be found on all nodes where you expect to attach the debugger.

Consult with your system administrator to ensure that this is set up properly. You may need to edit
your “dot” files (e.g.,.profile , .bashrc , .cshrc , etc.) to ensure that relevant environment
variable settings exist on all nodes when yamboot .

. Itis always a good idea to lewpirun finish before you rerun or exit TotalView.

. TotalView will not be able to attach to MPI programs when you exeoytgun with -s option.

This is because TotalView will not get the source code of your program on nodes other than the source
node. We advise you to either use a common filesystem or copy the source code and executable on all
nodes when using TotalView with LAM so that you can avoid the usapfun 's -s flag.

102

10.2.4 Message Queue Debugging

The TotalView debugger can show the sending, receiving, and unexepected message queues for many par-
allel applications. Note the following:

e The MPI-2 function for naming communicatoidPI_COMM_SET_NAME) is strongly recommended
when using the message queue debugging functionality. For examMpleCOMM_WORLD and
MPI_COMM_SELF are automatically named by LAM/MPI. Naming communicators makes it signif-
icantly easier to identify communicators of interest in the debugger.

Any communicator that is not named will be displayed asfinamed--

e Message queue debugging of applications is not currently supported for 64 bit executables. If you
attempt to use the message queue debugging functionality on a 64 bit executable, TotalView will
display a warning before disabling the message queue options.

e Thelamd RPI does not support the message queue debugging functionality.

e LAM/MPI does not currently provide debugging support for dynamic processesNE§.COMM _-
SPAWN).

10.3 Serial Debuggers

LAM also allows the use of one or more serial debuggers when debugging a parallel program.

10.3.1 Lauching Debuggers

LAM allows the arbitrary execution of any executable in an MPI context as long as an MPI executable is
eventually launched. For example, itis commomioirun a debugger (or a script that launches a debugger
on some nodes, and directly runs the application on other nodes) since the debugger will eventually launch
the MPI process.

However, one must be careful when running programs on remote nodes that expect thetdse of
—stdin on remote nodes is redirected faev/null . For example, it is advantageous to export the
DISPLAY environment variable, and run a shell script that invokestarm with “gdb” (for example)
running in it on each node. For example:

{shell$mpirun C—x DISPLAY xterm—gdb.csh j

Additionally, it may be desirable to only run the debugger on certain rankdFhCOMM_WORLD.

For example, with parallel jobs that include tens or hundreds of MPI processes, it is really only feasible to
attach debuggers to a small number of processes. In this case, a script may be helpful to launch debuggers
for some ranks iMPI_COMM_WORLD and directly launch the application in others.

The LAM environment variable AMRANKan be helpful in this situation. This variable is placed in the
environment before the target application is executed. Hence, it is visible to shell scripts as well as the target
MPI application. It is erroneous to alter the value of this variable.

Consider the following script:

#!/bin/csh—f

103

Which debugger to run
setdebugger=gdb

On MPLCOMM_WORLD rank 0, launch the process in the debugger.

Elsewhere, just launch the process directly.

if (“SLAMRANK"” =="“0") then
echolLaunching $debugger on MEZOMM_WORLD rank SLAMRANK
$debugger $

else
echoLaunching MPI executable on MEZOMM_WORLD rank SLAMRANK
$x

endif

All done
exit0

This script can be executed wapirun to launch a debugger ddPI_COMM_WORLD rank 0, and
directly launch the MPI process in all other cases.

10.3.2 Attaching Debuggers

In some cases, it is not possible or desirable to start debugging a parallel application immediately. For
example, it may only be desirable to attach to certain MPI processes whose identity may not be known until
run-time.

In this case, the technique of attaching to a running process can be used (this functionality is supported
by many serial debuggers). Specifically, determine which MPI process you want to attach to. Then login to
the node where it is running, and use the debugger’s “attach” functionality to latch on to the running process.

10.4 Memory-Checking Debuggers

Memory-checking debuggers are an invaluable tool when debugging software (even parallel software). They
can provide detailed reports about memory leaks, bad memory accesses, duplicate/bad memory management
calls, etc. Some memory-checking debuggers include (but are not limited to): the Solaris Forte debugger
(including thebcheck command-line memory checker), the Purify software package, and the Valgrind
software package.

LAM can be used with memory-checking debuggers. However, LAM should be compiled with special
support for such debuggers. This is because in an attempt to optimize performance, there are many struc-
tures used internally to LAM that do not always have all memory positions initialized. For example, LAM’s
internalstruct nmsg is one of the underlying message constructs used to pass data between LAM pro-
cesses. But since thstruct nmsg s used in so many places, it is a generalized structure and contains
fields that are not used in every situation.

By default, LAM only initializes relevant struct members before using a structure. Using a structure
may involve sending the entire structure (including uninitialized members) to a remote host. This is not a
problem for LAM; the remote host will also ignore the irrelevant struct members (depending on the specific
function being invoked). More to the point — LAM was designed this way to avoid setting variables that will

104

not be used; this is a slight optimization in run-time performance. Memory-checking debuggers, however,
will flag this behavior with “read from uninitialized” warnings.

The--with-purify option can be used with LAM’sonfigure script that will force LAM to zero
out all memory before it is used. This will eliminate the “read from uninitialized” types of warnings that
memory-checking debuggers will identify deep inside LAM. This option can only be specified when LAM
is configured; it is not possible to enable or disable this behavior at run-time. Since this option invokes a
slight overhead penalty in the run-time performance of LAM, it is not the default.

105

106

Chapter 11

Troubleshooting

Although LAM is a robust run-time environment, and its MPI layer is a mature software system, errors
do occur. Particularly when using LAM/MPI for the first time, some of the initial, per-user setup can be
confusing (e.g., setting uphosts or SSH keys for password-less remote logins). This section aims to
identify a few common problems and solutions.

Much more information can be found on the LAM FAQ on the main LAM web Site.

11.1 The LAM/MPI Mailing Lists

There are two mailing lists: one for LAM/MPI announcements, and another for questions and user discus-
sion of LAM/MPI.

11.1.1 Announcements

This is a low-volume list that is used to announce new version of LAM/MPI, important patches, etc. To
subscribe to the LAM announcement list, visit its list information page (you can also use that page to
unsubscribe or change your subscription options):

http://www.lam-mpi.org/mailman/listinfo.cgi/lam-announce

NOTE: Users cannot post to this list; all such posts are automatically rejected — only the LAM Team
can post to this list.

11.1.2 General Discussion / User Questions

BEFORE YOU POST TO THIS LIST: Pleasecheck all the other resources listed in this chapter first.
Search the mailing list to see if anyone else had a similar problem before you did. Re-read the error message
that LAM displayed to you (LAM can sometimes giverediblydetailed error messages that tell yaxactly

how to fix the problem). This, unfortunately, does not stop some users from cut-n-pasting the entire error
message, verbatim (including the solution to their problem) into a mail message, sending it to the list, and
asking “How do | fix this problem?” So please: think (and read) before you%post.

Yhttp://www.lam-mpi.org/faq/
20ur deep appologies if some of the information in this section appears to be repetitive and condescending. Believe us when
we say that we have tried all other approaches — some users simply either do not read the information provided, or only read the

107

http://www.lam-mpi.org/mailman/listinfo.cgi/lam-announce
http://www.lam-mpi.org/faq/

This list is used for general questions and discussion of LAM/MPI. User can post questions, comments,
etc. to this list.Due to recent increases in spam, only subscribers are allowed to post to the list you
are not subscribed to the list, your posts will be discarded.

To subscribe or unsubscribe from the list, visit the list information page:

http://www.lam-mpi.org/mailman/listinfo.cgi/lam

After you have subscribed (and received a confirmation e-mail), you can send mail to the list at the
following address:

You must be subscribed in order to post to the list
lam@lam-mpi.org
You must be subscribed in order to post to the list

Be sure to include the following information in your e-mail:

e Theconfig.log file from the top-level LAM directory, if availablep{ease compress!
e The output of faminfo -all

¢ A detaileddescription of what is failing. The more details that you provide, the better. E-mails saying
“My application doesn’t work!” will inevitably be answered with requests for more information about
exactly what doesn't workso please include as much detailed information in your initial e-mail as
possible.

NOTE: People tend to only reply to the list; if you subscribe, post, and then unsubscribe from the list,
you will likely miss replies.

Also please be aware that the list goes to several hundred people around the world — it is not uncommon
to move a high-volume exchange off the list, and only post the final resolution of the problem/bug fix to the
list. This prevents exchanges like “Did you try X?”, “Yes, | tried X, and it did not work.”, “Did you try Y?”,
etc. from cluttering up peoples’ inboxes.

11.2 LAM Run-Time Environment Problems
Some common problems with the LAM run-time environment are listed below.

11.2.1 Problems with thdamboot Command

Many first-time LAM users do not have their environment properly configured for LAM to boot properly.
Refer to Sectior.4.2for the list of conditions that LAM requires to boot properly. User problems with
lamboot typically fall into one of the following categories:

e rsh /ssh is not set up properly for password-less logins to remote nodes.

e-mail address to send “help!” e-mails to. It is our hope that big, bold print will catch some people’s eyes and enable them to help
themselves rather than having to wait for their post to distribute around the world and then further wait for someone to reply telling
them that the solution to their problem was already printed on their screen. Thanks for your time in reading all of this!

108

http://www.lam-mpi.org/mailman/listinfo.cgi/lam
lam@lam-mpi.org

Solution: Set uprsh /ssh properly for password-less remote logins. Consult local documentation
or internet tutorials for how to set BUHOME/.rhosts and SSH keys. Note that the LAM Team
STRONGLY discourages the use #fin .rhosts or host.equiv files!

rsh /ssh prints something ostderr

Solution: Clean up system or user “dot” files so that nothing is printedtderr during a remote
login.

A LAM daemon is unable to open a connection baclkatoboot .

Solution: Many Linux distributions ship with firewalls enabled. LAM/MPI uses random TCP ports
to communicate, and therefore firewall support must be either disabled or opened between machines
that will be using LAM/MPI.

LAM is unable to open a session directory.

Solution: LAM needs to use a per-user, per-session temporary directory, typically located under
Itmp (see Sectiol2.8 pagellh. LAM must be able to read/write in this session directory; check
permissions in this tree.

LAM is unable to find the current host in the boot schema.

Solution: LAM can only boot a universe that includes the current node. If the current node is not
listed in the hostfile, or is not listed by a name that can be resolved and identified as the current node,
lamboot (and friends) will abort.

LAM is unable to resolve all names in the boot schema.

Solution: All names in the boot schema must be resolvable by the boot SSI module that is being
used. This typically means that there end up being IP hostnames that must be resolved to IP addresses.
Resolution can occur by any valid OS mechanism (e.g., through DNS, local file lookup, etc.). Note
that the namelbcalhost " (or any address that resolves to 127.0.0.1) cannot be used in a boot
schema that includes more than one host — otherwise the other nodes in the resulting LAM universe
will not be able to contact that host.

11.3 MPI Problems

For the most part, LAM implements the MPI standard similarly to other MPIl implementations. Hence, most
MPI programmers are not too surprised by how LAM handles various errors, etc. However, there are some
cases that LAM handles in its own unique fashion. In these cases LAM tries to display a helpful message
discussing what happened.

Here’s some more background on a few of the messages:

e “One of the processes started by mpirun has exited with a nonzero exit code.”

This means that at least one MPI process has exited after invdékifigNIT, but before invoking
MPI_FINALIZE. This is therefore an error, and LAM will abort the entire MPI application. The last
line of the error message indicates the PID, node, and exit status of the failed process.

109

“MPI _<function> : process in local group is dead (rankl>, MPI_COMM_WORLD)”

This means that some MPI function tried to communicate with a peer MPI process and discovered that
the peer process is dead. Common causes of this problem include attempting to communicate with
processes that have failed (which, in some cases, won't generate the “One of the processes started by
mpirun has exited...” messages), or have already invékBd FINALIZE. Communication should

not be initiated that could involve processes that have already iniRddFINALIZE. This may

include usingPI_ANY_SOURCE or collectives on communicators that include processes that have
already finalized.

110

Chapter 12

Miscellaneous

This chapter covers a variety of topics that don’t conveniently fit into other chapters.

12.1 Singleton MPI Processes

Itis possible to run an MPI process without t@irun or mpiexec commands — simply run the program
as one would normally launch a serial program:

[shell$ my_mpi_program j

Doing so will create aMPI_COMM_WORLD with a single process. This process can either run by
itself, or spawn or connect to other MPI processes and become part of a larger MPI jobs using the MPI-2
dynamic function calls. A LAM RTE must be running on the local node, as with jobs starteanpitian .

12.2 MPI-2 1/O Support

MPI-2 1/O support is provided through the ROMIO packa@®g, [L7]. Since support is provided through a
third party package, its integration with LAM/MPI is not “complete.” Specifically, everywhere the MPI-2
standard specifies an argument of tyEl_Request, ROMIO’s provided functions expect an argument of
type MPIO_Request.

ROMIO includes its own documentation and listings of known issues and limitations. SRE&2ME
file in the ROMIO directory in the LAM distribution.

12.3 Fortran Process Names

Since Fortran does not portably provide the executable name of the process (similar to the way that C
programs get an array afgv), thempitask command lists the name “LAM MPI Fortran program” by
default for MPI programs that used the Fortran bindingM#&1_INIT or MPLINIT_THREAD.

The environment variableAMMPI_PROCESSNAMEan be used to override this behavior. Setting this
environment variable before invokimgpirun will causempitask to list that name instead of the default
title. This environment variable only works for processes that invoke the Fortran bindilnfPlotNIT or
MPI_INIT_THREAD.

111

12.4 MPI Thread Support

LAM currently implements support faviPl_ THREAD _SINGLE, MPI_THREAD_FUNNELED, andMPI _-
THREAD_SERIALIZED. The constanMPI_THREAD _MULTIPLE is provided, although LAM will never
returnMPI_THREAD_MULTIPLE in theprovided argument taMIPI_INIT_-THREAD.

LAM makes no distinction betweeWiPl THREAD _SINGLE andMPI_THREAD_FUNNELED. When
MPI_THREAD_SERIALIZED is used, a global lock is used to ensure that only one thread is inside any MPI
function at any time.

12.4.1 Thread Level

Selecting the thread level for an MPI job is best described in terms of the two parameters pagbéd to
INIT_THREAD: requested andprovided . requested is the thread level that the user application
requests, whil@rovided is the thread level that LAM will run the application with.

e If MPIINIT is used to initialize the jolrequested will implicitly be MPI_THREAD_SINGLE.
However, if theLAMMPI_THREADLEVEL environment variable is set to one of the values in Ta-
ble 12.], the corresponding thread level will be usedrequested

o If MPILINIT_THREAD is used to initialized the job, theequested thread level is the first thread
level that the job will attempt to use. There is currently no way to specify lower or upper bounds to
the thread level that LAM will use.

The resulting thread level is largely determined by the SSI modules that will be used in an MPI
job; each module must be able to support the target thread level. A complex algorithm is used to
attempt to find a thread level that is acceptable to all SSI modules. Generally, the algorithm starts
atrequested and works backwards toward4Pl_ THREAD_SINGLE looking for an acceptable

level. However, any module magcreasethe thread level under test if it requires it. At the end of this
process, if an acceptable thread level is not found, the MPI job will abort.

| Value | Meaning \

undefined| MPI_THREAD _SINGLE

0 MPI_-THREAD_SINGLE
1 MPI_THREAD_FUNNELED
2 MPI_THREAD_SERIALIZED
3 MPI_THREAD_MULTIPLE

Table 12.1: Valid values for theAMMPI_THREADLEVEL environment variable.

Also note that certain SSI modules require higher thread support levels than others. For example, any
checkpoint/restart SSI module will require a minimumvi®l_ THREAD_SERIALIZED, and will attempt
to adjust the thread level upwards as necessary (if that CR module will be used during the job).

Hence, usingMPLINIT to initialize an MPI job does not imply that the provided thread level will be
MPI_THREAD_SINGLE.

112

12.5 MPI-2 Name Publishing

LAM supports the MPI-2 function8/Pl_PUBLISH_NAME and MPI_UNPUBLISH_NAME for publish-
ing and unpublishing names, respectively. Published names are stored within the LAM daemons, and are
therefore persistent, even when the MPI process that published them dies.

As such, itis important for correct MPI programs to unpublish their names before they terminate. How-
ever, if stale names are left in the LAM universe when an MPI process terminatéanttiean command
can be used to cleail names from the LAM RTE.

12.6 Interoperable MPI (IMPI) Support

The IMPI extensions are still considered experimental, and are disabled by default in LAM. They must be
enabled when LAM is configured and built (see the Installation Guide file for details).

12.6.1 Purpose of IMPI

The Interoperable Message Passing Interface (IMPI) is a standardized protocol that enables different MPI
implementations to communicate with each other. This allows users to run jobs that utilize different hard-
ware, but still use the vendor-tuned MPI implementation on each machine. This would be helpful in situa-
tions where the job is too large to fit in one system, or when different portions of code are better suited for
different MPI implementations.

IMPI defines only the protocols necessary between MPI implementations; vendors may still use their
own high-performance protocols within their own implementations.

Terms that are used throughout the LAM / IMPI documentation include: IMPI clients, IMPI hosts, IMPI
processes, and the IMPI server. See the IMPI section of the the LAM FAQ for definitions of these terms on
the LAM web site?

For more information about IMPI and the IMPI Standard, see the main IMPI web, site.

Note that the IMPI standard only applies to MPI-1 functionality. Using non-local MPI-2 functions on
communicators with ranks that live on another MPI implementation will result in undefined behavior (read:
kaboom). For exampl&PI_COMM_SPAWN will certainly fail, butMPI_COMM_SET_NAME works fine
(because it is a local action).

12.6.2 Current IMPI functionality

LAM currently implements a subset of the IMPI functionality:
e Startup and shutdown
e All MPI-1 point-to-point functionality

e Some of the data-passing collectivddPI ALLREDUCE, MPI_BARRIER, MPI_BCAST, MPI _-
REDUCE

LAM does not implement the following on communicators with ranks that reside on another MPI im-
plementation:

Thitp:/fwww.lam-mpi.org/fag/
2http://impi.nist.gov/

113

http://www.lam-mpi.org/faq/
http://impi.nist.gov/

MPI_PROBE andMPI_IPROBE

MPI_CANCEL

All data-passing collectives that are not listed above

All communicator constructor/destructor collectives (el COMM_SPLIT, etc.)

12.6.3 Running an IMPI Job

Running an IMPI job requires the use of an IMPI server. An open source, freely-available server is avail-
able?

As described in the IMPI standard, the first step is to launch the IMPI server with the number of expected
clients. The open source server from above requires at least one authentication mechanism to be specified
(“none” or “key”). For simplicity, these instructions assume that the “none” mechanism will be used. Only
one IMPI server needs to be launched per IMPI job, regardless of how many clients will connect. For this
example, assume that there will be 2 IMPI clients; client O will be run in LAM/MPI, and client 1 will be run
elsewhere.

shell$export IMPLAUTH _NONE=
shell$impi_server—server 2—auth 0
10.0.0.32:9283

The IMPI server must be left running for the duration of the IMPI job. The string that the IMPI server
gives as output (“10.0.0.32:9283", in this case) must be givengiun when starting the LAM process
that will run in IMPI:

[shell$mpirun—c|ient 0 10.0.0.32:9283 C msnpi_program j

This will run the MPI program in the local LAM universe and connect it to the IMPI server. From there,
the IMPI protocols will take over and join this program to all other IMPI clients.

Note that LAM will launch an auxiliary “helper” MPI program naméupid that will last for the
duration of the IMPI job. It acts as a proxy to the other IMPI processes, and should not be manually killed.
It will die on its own accord when the IMPI job is complete. If something goes wrong, it can be killed with
thelamclean command, just like any other MPI process.

12.6.4 Complex Network Setups

In some complex network configurations — particularly those that span multiple private networking domains
— it may necessary to override the hostname that IMPI uses for connectivity (i.e., use something other that
what is returned by theostname command). In this case, th&IPI _.HOSTNAMEcan be used. If set, this
variable is expected to contain a resolvable name (or IP address) that should be used.

12.7 Batch Queuing System Support

LAM is now aware of some batch queuing systems. Support is currently included for PBS, LSF, and
Clubmask-based systems. There is also a generic functionality that allows users of other batch queue sys-
tems to take advantages of this functionality.

3http://www.osl.iu.edu/research/impi/

114

http://www.osl.iu.edu/research/impi/

e When running under a supported batch queue system, LAM will take precautions to isolate itself from
other instances of LAM in concurrent batch jobs. That is, the multiple LAM instances from the same
user can exist on the same machine when executing in batch. This allows a user to submit as many
LAM jobs as necessary, and even if they end up running on the same nddeslean in one job
will not kill MPI applications in another job.

e This behavior ionly exhibited under a batch environment. Other batch systems can easily be sup-
ported — let the LAM Team know if you'd like to see support for others included. Manually setting
the environment variableAMMP1_SESSION SUFFIX on the node wheramboot is run achieves
the same ends.

12.8 Location of LAM’s Session Directory

By default, LAM will create a temporary per-user session directory in the following directory:
<tmpdir>/lam-<username>@<hostname>[-<session _suffix>]
Each of the components is described below:

<tmpdir> . LAM will set the prefix used for the session directory based on the following search order:

1. The value of the. AMMPI_SESSIONPREFIX environment variable
2. The value of théfMPDIRenvironment variable
3. tmp/

It is important to note that (unlikk AMMPI_SESSIONSUFFIX), the environment variables for
determining<tmpdir> must be set on each node (although they do not necessarily have to be the
same value)<tmpdir> must exist beforéamboot is run, orlamboot will fail.

<username> : The user’'s name on that host.
<hostname> : The hostname.

<session _suffix> . LAM will set the suffix (if any) used for the session directory based on the fol-
lowing search order:

1. The value of the. AMMPI_SESSIONSUFFIX environment variable.

2. If running under a supported batch system, a unique session ID (based on information from the
batch system) will be used.

LAMMPI_SESSIONSUFFIX and the batch information only need to be available on the node from
whichlamboot is run.lamboot will propagate the information to the other nodes.

12.9 Signal Catching
LAM MPI now catches the signals SEGV, BUS, FPE, and ILL. The signal handler terminates the application.

This is useful in batch jobs to help ensure thmdirun returns if an application process dies. To disable the
catching of signals use thasigs option tompirun .

115

12.10 MPI Attributes

Discussion item: Need to have discussion of built-in attributes here, such asWWNAVERSE SIZE,
etc. Should specifically mention that MRINIVERSE_SIZE is fixed atMPI_INIT time (at least it is
as of this writing — who knows what it will be when we release 7.1? :-).

This whole section is for 7.1End of discussion itefn.

116

Bibliography

[1] Jason Duell, Paul Hargrove, and Eric Roman. The Design and Implementation of Berkeley Lab’s
Linux Checkpoint/Restart, 2002.

[2] Al Geist, William Gropp, Steve Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, William Saphir,
Tony Skjellum, and Marc Snir. MPI-2: Extending the Message-Passing Interface. In Luc Bouge, Pierre
Fraigniaud, Anne Mignotte, and Yves Robert, edit@gto-Par '96 Parallel Processinghumber 1123
in Lecture Notes in Computer Science, pages 128-135. Springer Verlag, 1996.

[3] William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill Nitzberg, William
Saphir, and Marc SniMPI — The Complete Reference: Volume 2, the MPI-2 ExtensMiisPress,
1998.

[4] William Gropp, Ewing Lusk, and Anthony SkjellumUsing MPI. Portable Parallel Programming
with the Message Passing InterfaddIT Press, 1994.

[5] William Gropp, Ewing Lusk, and Rajeev Thakudsing MPI-2: Advanced Features of the Message
Passing InterfaceMIT Press, 1999.

[6] Thilo Kielmann, Henri E. Bal, and Sergei Gorlatch. Bandwidth-efficient Collective Communication
for Clustered Wide Area Systems. International Parallel and Distributed Processing Symposium
(IPDPS 2000)pages 492—-499, Cancun, Mexico, May 2000. IEEE.

[7] Message Passing Interface Forum. MPI: A Message Passing InterfaBgodnof Supercomputing
‘93, pages 878-883. IEEE Computer Society Press, November 1993.

[8] Sriram Sankaran, Jeffrey M. Squyres, Brian Barrett, and Andrew Lumsdaine. Checkpoint-restart sup-
port system services interface (SSI) modules for LAM/MPI. Technical Report TR578, Indiana Uni-
versity, Computer Science Department, 2003.

[9] Marc Snir, Steve W. Otto, Steve Huss-Lederman, David W. Walker, and Jack Dongéiria.The
Complete ReferencMIT Press, Cambridge, MA, 1996.

[10] Jeffrey M. Squyres, Brian Barrett, and Andrew Lumsdaine. Boot system services interface (SSI)
modules for LAM/MPI. Technical Report TR576, Indiana University, Computer Science Department,
2003.

[11] Jeffrey M. Squyres, Brian Barrett, and Andrew Lumsdaine. MPI collective operations system ser-
vices interface (SSI) modules for LAM/MPI. Technical Report TR577, Indiana University, Computer
Science Department, 2003.

117

[12] Jeffrey M. Squyres, Brian Barrett, and Andrew Lumsdaine. Request progression interface (RPI) sys-
tem services interface (SSI) modules for LAM/MPI. Technical Report TR579, Indiana University,
Computer Science Department, 2003.

[13] Jeffrey M. Squyres, Brian Barrett, and Andrew Lumsdaine. The system services interface (SSI) to
LAM/MPI. Technical Report TR575, Indiana University, Computer Science Department, 2003.

[14] The LAM/MPI Team.LAM/MPI Installation Guide Open Systems Laborator, Pervasive Technology
Labs, Indiana University, Bloomington, IN, 7.0 edition, May 2003.

[15] The LAM/MPI Team.LAM/MPI User’s Guide Open Systems Laborator, Pervasive Technology Labs,
Indiana University, Bloomington, IN, 7.0 edition, May 2003.

[16] Rajeev Thakur, William Gropp, and Ewing Lusk. Data sieving and collective I/O in ROMIO. In
Proceedings of the 7th Symposium on the Frontiers of Massively Parallel Computagiges 182—
189. IEEE Computer Society Press, February 1999.

[17] Rajeev Thakur, William Gropp, and Ewing Lusk. On implementing MPI-IO portably and with high
performance. IProceedings of the 6th Workshop on 1/O in Parallel and Distributed Systeages
23-32. ACM Press, May 1999.

118

Index

.bash _login file, 22
.bash _profile file, 22
.bashrc file, 22

.cshrc file, 22

Jogin file, 22

.profile file, 22
.rhosts file, 107
dcshrc file, 22
$HOME/.tvdrc file, 101

$sysconf/lam-hostmap file, 73
AFS filesystem18

base _module _path SSI parameter4
batch queue systemk]4

OpenPBS / PBS Pro / Torque (TM) boot SSI

module,71
SLURM boot SSI module§9

Berkeley Lab Checkpoint/Restart single-node check- coll

pointer,94

blcr checkpoint/restart SSI modul@4
boot schema3
boot SSI module$3-72

bproc, 65

globus, 67

rsh (rsh /ssh), 68

slurm, 69

tm (PBS / Torque)71
boot SSI paramete66-70, 72
boot _base _promisc SSI parametef5
boot _bproc _priority SSI| parametef7
boot _globus _priority SSI parametef8
boot _rsh _agent SSI parameted5, 70
boot _rsh _ignore _stderr SSIparametef8,

70

_rsh _no_n SSI parametefi70
_rsh _no_profile SSI parametei70
_rsh _priority SSI parametei]0

boot
boot
boot

119

boot _rsh _username SSI parametei70
boot _slurm _priority SSI parametei7 1
boot _tm _priority SSI parametef72
booting the LAM run-time environmen24
bproc boot SSI module§5

case-insensitive filesystery
checkpoint/restart SSI moduleéx3-97
blcr, 94
selection proces$3
Clubmaskseebatch queue systems

coll SSI parameteB7

coll _base _associative SSI parametegs,
91

coll _base shmemmessage pool _size SSI
parameter92

coll _base shmemnumsegments SSIparam-
eter,92

_crossover SSI paramete8

coll
coll

_reduce _crossover SSIl parameteB8
_base shmemmessage _pool _size SSI
parameter9l
_base shmemnum.segments SSIparam-
eter,91
collective SSI modules36-91, 93
lam_basic, 89
selection proces87
shmem, 91
smp, 89
commands
cr _checkpoint
cr _restart ,95
globus-job-run , 67
hcc (deprecatedk6
hcp (deprecatedk6
hf77 (deprecated$6
lamboot , 25, 47, 53, 63, 69-72, 95, 108,
115

coll

, 95

lamcheckpoint 49

lamclean , 32 50, 113

lamexec , 50

lamgrow , 50

lamhalt , 32 51

laminfo , 14, 17, 24, 33, 39, 51, 63, 74, 87,
108

lamnodes , 26, 53

lamrestart , 53

lamshrink , 54

lamwipe , 32, 62

mpic++ , 17, 27, 38, 54

mpiCC, 17, 27, 28, 38, 54

mpicc , 17, 27, 28, 38, 54

mpiexec , 14, 30, 34, 56, 100

mpif77 , 27,29, 38, 54

mpimsg, 58

mpirun , 29, 58, 64, 70, 95, 100 103 111,
115

mpitask , 15,31, 61,111

pbs _demux, 72

recon , 61

rsh , 63

srun , 70

ssh, 63

tping , 62

wipe (deprecated)2

compiling MPI programs26
configure flags

--with-cr-file-dir , 94
--with-debug , 53
--with-memory-manager , 18
--with-purify , 53, 105
--with-rpi-gm-get , 76
--with-rsh , 18

cr SSI| parametef4

cr _base _dir SSI paramete®4, 95, 97

cr _bler _context _file SSI parameteg4
cr _checkpoint command95

cr _restart command95

cr _restart _args SSI parametef4

debuggers99-105
attaching, 104
launching,103
memory-checkingl04

serial,103
TotalView, 100
DISPLAY environment variablel03
dynamic environmentd,8
dynamic name publishingeepublished names

e-mail lists,107

environment variables
DISPLAY, 103
GLOBUS.OCATION 67
IMPI _.HOSTNAME114
LAMMPI_PROCESSNAME111
LAMMPI_SESSIONPREFIX, 48, 115
LAMMPI_SESSIONSUFFIX, 15, 48,67, 115
LAMMPI_SOCKETSUFFIX (deprecated),5
LAMMPI_THREADLEVEL, 73, 112
LAMHCdeprecatedp5
LAMHCHdeprecatedp5
LAMHF77(deprecated$5
LAMHOMBS
LAMMPICC55
LAMMPICXX55
LAMMPIF77, 55
LAMRANK103
LAMRSHdeprecated)15
LD_LIBRARY_PATH 94, 95
LD_PRELOAD96
PATH 67
TMPDIR 14, 48, 115
TVDSVRLAUNCHCIMIDZ2

files
.bash _login , 22
.bash _profile ,22
.bashrc , 22
.cshrc , 22
Jdogin , 22
.profile , 22
.-rhosts , 107
tcshrc 22
$HOME/.tvdrc , 101
$sysconf/lam-hostmap , 73
libcrso ,96

filesystem notes
AFS, 18
case-insensitive filesystenis]

120

NFS,18
fortran process names11

globus boot SSI module§7
globus-job-run commandg7
GLOBUS.OCATIONenvironment variableg7

hcc command (deprecated§6
hcp command (deprecatedy6
hf77 command (deprecatedy6
hostfile,seeboot schema

I/O supportseeROMIO
IMPI, 113
running jobs114
server,114
supported functionality]l 13
IMPI _THOSTNAMEenvironment variablel 14
Infiniband release note%5
Interoperable MPIseelMPI

LAMMPI_PROCESSNAMEenvironment variable,
111
LAMMPI_SESSIONPREFIX environment vari-
able,48, 115
LAMMPI_SESSIONSUFFIX environment vari-
able,15, 48, 67, 115
LAMMPI_SOCKETSUFFIX environment variable
(deprecated)l5
LAMMPI_THREADLEVEL environment variable,
73,112
command,25, 47, 53, 63, 69-72, 95,
108 115
boot schema file3
common problems and solutiorzh
conditions for succesgh
lamcheckpoint command49
lamclean command32, 50, 113
lamexec command50
lamgrow commandb0
lamhalt command32, 51
LAMHC@nvironment variable (deprecatefih
LAMHCRenvironment variable (deprecatefih
LAMHF77environment variable (deprecated}h
LAMHOMENvironment variableg5
laminfo command,14, 17, 24, 33, 39, 51, 63,
74,87,108

lamboot

121

LAMMPICGCenvironment variablegs
LAMMPICXXenvironment variableg5
LAMMPIF77 environment variableg5
lamnodes command?26, 53
LAMRANHKenvironment variablel,03

lamrestart ~commandb3
LAMRSHenvironment variable (deprecated’
lamshrink commandb4

lamssi(7) manual page?4

lamssi _boot(7)
lamssi _coll(7)
lamssi _cr(7) manual page24

lamssi _rpi(7) manual page?4

lamwipe commandg32, 62
LD_LIBRARY_PATHenvironment variable€4, 95
LD_PRELOAenvironment variable96

libcr.so file, 96

listserv mailing lists 107

Load Sharing Facilityseebatch queue systems
LSF, seebatch queue systems

manual page?4
manual page?24

machinefile seeboot schema

mailing lists,107

manual page£3
lamssi(7) ,24
lamssi _boot(7) ,24
lamssi _coll(7) ,24
lamssi _cr(7) ,24
lamssi _rpi(7) ,24

Matlab,18

Memory management5

MEX functions,18

Microsoft Windows,19

MPI and threadsseethreads and MPI

MPI attribute keyvals
LAM_MPI_SSI_COLL, 87

MPI collective modulesseecollective SSI mod-

ules

MPI constants
MPI_ANY_SOURCE, 110
MPI_COMM_SELF, 14, 34, 42, 87, 89, 103
MPI_COMM_WORLD, 42, 45, 57, 60, 87,

91,100 103 104,111

MPI_ERR_KEYVAL, 34
MPI_STATUS_IGNORE, 34
MPI_STATUSES_IGNORE, 34

MPI_-THREAD_FUNNELED, 14, 112

MPI_.THREAD_MULTIPLE, 14, 112

MPI_THREAD_SERIALIZED, 14, 93, 94, 96,
112

MPI_-THREAD_SINGLE, 14, 112

MPI datatypes

MPI_DARRAY, 38
MPILINTEGER1, 33
MPILINTEGERZ2, 33
MPILINTEGER4, 33
MPI_INTEGERS, 33
MPI_LONG_LONG_INT, 36
MPI_REAL16, 33
MPI_REAL4, 33
MPI_REALS, 33
MPI_UNSIGNED_LONG_LONG, 36
MPI_WCHAR, 36

MPI functions

MPI_.ACCUMULATE, 37
MPI_ALLGATHER, 37, 90, 92
MPI_ALLGATHERYV, 37, 90, 92
MPI_ALLOC_MEM, 35, 76, 78, 80
MPI_ALLREDUCE, 37, 90, 92, 113
MPI_ALLTOALL, 37, 90, 92
MPI_ALLTOALLYV, 37, 90, 92
MPI_ALLTOALLW, 37, 90, 92
MPI_BARRIER, 37, 90, 92, 113
MPI_BCAST, 37,90, 92, 113
MPI_CANCEL, 33, 34,114
MPI_CLOSE_PORT, 36
MPI_COMM_ACCEPT, 36
MPI_COMM_C2F, 35
MPI_COMM_CONNECT, 36
MPI_.COMM_CREATE_ERRHANDLER, 35,
38
MPI_COMM_CREATE_KEYVAL, 38
MPI_.COMM_DELETE_ATTR, 38
MPI_.COMM_DISCONNECT, 36
MPI_COMM_F2C, 35
MPI_COMM_FREE_KEYVAL, 38
MPI_.COMM_GET_ATTR, 38
MPI_.COMM_GET_ERRHANDLER, 35, 38
MPI_.COMM_GET_NAME, 38
MPI_COMM_GET_PARENT, 36
MPI_COMM_JOIN, 36

122

MPI_COMM_SET_ATTR, 38
MPI_COMM_SET_ERRHANDLER, 35, 38
MPI_.COMM_SET_NAME, 38, 103 113
MPI_COMM_SPAWN, 14, 36, 77, 80, 103
113
MPI_COMM_SPAWN_MULTIPLE, 36
MPI_COMM_SPLIT, 114
MPI_EXSCAN, 37, 90, 92
MPI_FINALIZE, 14, 34, 42,93, 109, 110
MPI_FINALIZED, 35
MPI_FREE_MEM, 35, 76, 78, 80
MPI_GATHER, 37, 90, 92
MPI_GATHERYV, 37, 90, 92
MPI_GET, 37
MPI_.GET_ADDRESS, 36
MPI_GET_VERSION, 34
MPI_GROUP_C2F, 35
MPI_GROUP_F2C, 35
MPI_INFO_C2F, 35
MPI_INFO_CREATE, 35
MPI_INFO_DELETE, 35
MPI_INFO_DUP, 35
MPI_INFO_F2C, 35
MPI_INFO_FREE, 35
MPI_INFO_GET, 35
MPI_INFO_GET_NKEYS, 35
MPI_INFO_GET_NTHKEY, 35
MPI_INFO_GET_VALUELEN, 35
MPI_INFO_SET, 35
MPILINIT, 15, 34, 42, 61, 77, 88, 93, 102
109 111,112 116
MPI_INIT_-THREAD, 38, 73,94, 111, 112
MPI_IPROBE, 114
MPIIRECYV, 33
MPI_IS_.THREAD_MAIN, 38
MPI_LOOKUP_NAME, 36
MPI_OPEN_PORT, 36
MPI_PACK, 36
MPI_PACK_EXTERNAL, 36
MPI_PACK_EXTERNAL_SIZE, 36
MPI_PROBE, 114
MPI_PUBLISH_NAME, 36, 113
MPI_PUT, 37
MPI_QUERY_THREAD, 38
MPI_RECYV, 61

MPI_REDUCE, 37, 88, 90, 92, 113
MPI_REDUCE_SCATTER, 37, 90, 92
MPI_REQUEST_C2F, 35
MPI_REQUEST _F2C, 35
MPI_REQUEST _GET_STATUS, 34
MPI_SCAN, 37, 90, 92
MPI_SCATTER, 37, 90, 92
MPI_SCATTERYV, 37, 90, 92
MPI_SEND, 16

MPI_STATUS_C2F, 35
MPI_STATUS_F2C, 35
MPI_TYPE_C2F, 35
MPI_TYPE_CREATE_DARRAY, 36
MPI_TYPE_CREATE_HINDEXED, 36
MPI_TYPE_CREATE_HVECTOR, 36
MPI_TYPE_CREATE_INDEXED_BLOCK, 34
MPI_TYPE_CREATE_KEYVAL, 38
MPI_TYPE_CREATE_RESIZED, 36
MPI_TYPE_CREATE_STRUCT, 36
MPI_TYPE_CREATE_SUBARRAY, 36
MPI_TYPE_DELETE_ATTR, 38
MPI_TYPE_DUP, 38
MPI_TYPE_F2C, 35
MPI_TYPE_FREE_KEYVAL, 38
MPI_TYPE_GET_ATTR, 38
MPI_TYPE_GET_CONTENTS, 38
MPI_TYPE_GET_ENVELOPE, 38
MPI_TYPE_GET_EXTENT, 36, 38
MPI_TYPE_GET_NAME, 38
MPI_TYPE_GET_TRUE_EXTENT, 36, 38
MPI_TYPE_SET_ATTR, 38
MPI_TYPE_SET_NAME, 38
MPI_UNPACK, 36
MPI_UNPACK_EXTERNAL, 36
MPI_UNPUBLISH_NAME, 36, 113
MPI_WIN_C2F, 35
MPI_WIN_COMPLETE, 37
MPI_WIN_CREATE, 37
MPI_WIN_CREATE_ERRHANDLER, 35, 38
MPI_WIN_CREATE_KEYVAL, 38
MPI_WIN_DELETE_ATTR, 38
MPI_WIN_F2C, 35
MPI_-WIN_FENCE, 37
MPI_WIN_FREE, 37
MPI_WIN_FREE_KEYVAL, 38

123

MPI_WIN_GET_ATTR, 38
MPI_WIN_GET_ERRHANDLER, 35, 38
MPI_-WIN_GET_GROUP, 37
MPI_WIN_GET_NAME, 38
MPI_WIN_POST, 37
MPI_WIN_SET_ATTR, 38
MPI_WIN_SET_ERRHANDLER, 35, 38
MPI_WIN_SET_NAME, 38
MPI_WIN_START, 37
MPI_WIN_WAIT, 37
MPI_BARRIER, 91
MPIL_COMM_SPAWN, 36

MPI types
MPI::BOOL, 39
MPI1::COMPLEX, 39
MPI::DOUBLE_COMPLEX, 39
MPI::LONG_DOUBLE_COMPLEX, 39
MPI_File, 35
MPI_Info, 35, 36
MPI_Request, 111
MPI_Status, 34, 37
MPIO_Request, 111

MPI-2 I/O supportseeROMIO

mpi _hostmap SSI parametei]3

mpic++ commandl7, 27, 38, 54

mpiCC commandl17, 27, 28, 38, 54

mpicc commandl7, 27, 28, 38, 54

mpiexec command14, 30, 34, 56, 100

mpif77 command27, 29, 38, 54

mpimsg command58

mpirun command?29, 58, 64, 70, 95, 100, 103

111,115

mpitask command]l5, 31,61, 111
fortran process names]l1

Myrinet release noted,5

name publisingseepublished names
NFS filesystem18
no-schedule boot schema attributd9

OpenPBSseebatch queue systems

PATHenvironment variableg7

PBS,seebatch queue systems

PBS Proseebatch queue systems

pbs .demux commandy2

Portable Batch Systersgebatch queue systems

published nameg,13

recon command6l
release note4,3-19
ROMIO, 111

rpi

SSI parameteif4

rpi _crtcp _priority SSI parametei76

rpi _crtcp _short SSI parametei76

rpi _crtcp _sockbuf SSI parametef6

rpi _gmcer SSI parametei]7

rpi _.gmfast SSI parametei]7

rpi _gmmaxport SSI parameter77

rpi _gmnopin SSI parametei]7

rpi _gmport SSI parametei7

rpi _gmpriority SSI parametef] 7

rpi _gmtinymsglen SSI parametei]7, 78

rpi _ib _hca_id SSI parameteB0

rpi _ib _.mtu SSI parameteB0, 81

rpi _ib _numenvelopes SSIparameteB0, 81

rpi _ib _port SSI parameteBO

rpi _ib _priority SSI parameteB0

rpi _ib _tinymsglen SSI parameteB0, 81

rpi _lamd _priority SSI parameteB3

rpi _ssi _sysv _shmmaxalloc SSI parameter,
84

rpi _ssi _sysv _shmpoolsize SSI parameter,
84

rpi _ssi _sysv _short SSI paramete4

rpi _sysv _pollyield SSI parameteB5

rpi _sysv _priority SSI parameteB5

rpi _sysv _shmmaxalloc SSI parameteB5

rpi _sysv _shmpoolsize SSI parameteB5

rpi _sysv _short SSI parameteB5

rpi _tcp _priority SSI parameteB5

rpi _tcp _short SSI parameteBb5, 87

rpi _tcp _sockbuf SSI parameteB5, 87

rpi _usysv _pollyield SSI parameteB7

rpi _usysv _priority SSI paramete7

rpi _usysv _readlockpoll SSl parameteB7

rpi _usysv _shmmaxalloc SSI parameteB7

rpi _usysv _shmpoolsize SSI parameteB7

rpi _usysv _short SSI parameteg7

rpi _usysv _writelockpoll SSI parameteB7

RPMs,17

rsh (ssh) boot SSI module68
rsh commandp3

running MPI programs29

sample MPI program

C,27
C++,28
Fortran,29

serial debuggerd,03
session directory, 15
shell setup

Bash/Bourne shell23
C shell (and related3

signals,115
slurm boot SSI module69
srun command,/0

ssh
SS|

SSlI
SSi

SSI

commandp3

module types41
overview,41-44
parameter overview}2
boot modulesseeboot SSI modules
collective modulesseecollective SSI mod-
ules

parameters
base _-module _path , 44
boot , 66-70, 72

bproc value,66

globus value,67, 68

rsh value,69

slurm value,70

tm value,72
boot _base _promisc , 65
boot _bproc _priority 67
boot _globus _priority 68
boot _rsh _agent , 15, 70
boot _rsh _ignore _stderr
boot _rsh _no_n, 70
boot _rsh _no_profile ,70
boot _rsh _priority , 70
boot _rsh _username , 70
boot _slurm _priority , 71
boot _tm _priority , 12
coll ,87
coll _base _associative , 88,91
coll _base _shmemmessage _pool _size ,
92

_base shmemnum.segments , 92

, 68,70

coll

coll _crossover ,88 rpi _usysv _shmpoolsize , 87

coll _reduce _crossover ,88 rpi _usysv _short , 87

coll _base shmemmessage pool _size , rpi _usysv _writelockpoll , 87
91 System Services InterfacegeSSI

coll _base shmemnumsegments , 91

cr .94 threads and MP11.12

tm boot SSI module71

TMPDIRenvironment variablel4, 48, 115
TotalView parallel debugget,00

tping commandg2
TVDSVRLAUNCHCMbBDvironment variablel,02

blcr value,94

self value,96

cr _base _dir , 94, 95,97

cr _bler _context _file ,54
cr restart _args ,54

mpi _hostmap , 73 Windows,seeMicrosoft Windows

rpi , 74 wipe command (deprecated)?

rpi crtcp _priority , 76 --with-cr-file-dir configure flag94
rpi crtcp _short ,76 --with-debug configure flag53

rpi _crtcp _sockbuf , 76 --with-memory-manager configure flag18
rpi. gmer , 77 --with-purify configure flag53, 105

rpi _gmfast ,77 --with-rpi-gm-get configure flag,76

rpi _gmmaxport , 77 --with-rsh configure flag,18

rpi _gmnopin , 77 wrapper compilersh4

rpi _gmport ,77

rpi _gmpriority , 77

rpi _gmtinymsglen 77,78
rpi _ib _hca_id , 80

rpi _ib _mtu, 80, 81

rpi _ib _numenvelopes , 80, 81
rpi _ib _port , 80

rpi _ib _priority , 80

rpi _ib _tinymsglen 80,81
rpi _lamd _priority , 83

rpi _ssi _sysv _shmmaxalloc , 84
rpi _ssi _sysv _shmpoolsize , 84
rpi _ssi _sysv _short ,84

rpi _sysv _pollyield , 85

rpi _sysv _priority ,85

rpi _sysv _shmmaxalloc , 85
rpi _sysv _shmpoolsize ,85
rpi _sysv _short ,85

rpi _tcp _priority ,85

rpi _tcp _short , 85, 87

rpi _tcp _sockbuf , 85, 87

rpi _usysv _pollyield , 87

rpi _usysv _priority 87

rpi _usysv _readlockpoll , 87
rpi _usysv _shmmaxalloc , 87

125

	Don't Panic! (Who Should Read This Document?)
	Introduction to LAM/MPI
	About MPI
	About LAM/MPI

	Release Notes
	New Feature Overview
	Known Issues
	mpirun and MPI Application cr Module Disagreement
	Infiniband rpi Module

	Usage Notes
	Operating System Bypass Communication: Myrinet and Infiniband

	Platform-Specific Notes
	Provided RPMs
	Filesystem Issues
	Dynamic/Embedded Environments
	Linux
	Microsoft Windows(TM)(Cygwin)
	Solaris

	Getting Started with LAM/MPI
	One-Time Setup
	Setting the Path
	Finding the LAM Manual Pages

	System Services Interface (SSI)
	What Does Your LAM/MPI Installation Support?
	Booting the LAM Run-Time Environment
	The Boot Schema File (a.k.a, ``Hostfile'', ``Machinefile'')
	The lamboot Command
	The lamnodes Command

	Compiling MPI Programs
	Sample MPI Program in C
	Sample MPI Program in C++
	Sample MPI Program in Fortran

	Running MPI Programs
	The mpirun Command
	The mpiexec Command
	The mpitask Command
	The lamclean Command

	Shutting Down the LAM Universe

	Supported MPI Functionality
	MPI-1 Support
	Language Bindings
	MPI_CANCEL

	MPI-2 Support
	Miscellany
	Process Creation and Management
	One-Sided Communication
	Extended Collective Operations
	External Interfaces
	I/O
	Language Bindings

	System Services Interface (SSI) Overview
	Types and Modules
	Terminology
	SSI Parameters
	Naming Conventions
	Setting Parameter Values

	Dynamic Shared Object (DSO) Modules
	Selecting Modules
	Specifying Modules
	Setting Priorities
	Selection Algorithm

	LAM/MPI Command Quick Reference
	The lamboot Command
	Multiple Sessions on the Same Node
	Avoiding Running on Specific Nodes

	The lamcheckpoint Command
	The lamclean Command
	The lamexec Command
	The lamgrow Command
	The lamhalt Command
	The laminfo Command
	The lamnodes Command
	The lamrestart Command
	The lamshrink Command
	The mpicc, mpiCC / mpic++, and mpif77 Commands
	Deprecated Names

	The mpiexec Command
	General Syntax
	Launching MPMD Processes
	Launching MPI Processes with No Established LAM Universe

	The mpimsg Command (Deprecated)
	The mpirun Command
	Simple Examples
	Controlling Where Processes Are Launched
	Per-Process Controls
	Ability to Pass Environment Variables
	Current Working Directory Behavior

	The mpitask Command
	The recon Command
	The tping Command
	The lamwipe Command

	Available LAM Modules
	Booting the LAM Run-Time Environment
	Boot Schema Files (a.k.a., ``Hostfiles'' or ``Machinefiles'')
	Minimum Requirements
	Selecting a boot Module
	boot SSI Parameters
	The bproc Module
	The globus Module
	The rsh Module (including ssh)
	The slurm Module
	The tm Module (OpenPBS / PBS Pro / Torque)

	Available MPI Modules
	General MPI SSI Parameters
	MPI Module Selection Process
	MPI Point-to-point Communication (Request Progression Interface / RPI)
	Two Different Shared Memory RPI Modules
	The crtcp Module (Checkpoint-able TCP Communication)
	The gm Module (Myrinet)
	The ib Module (Infiniband)
	The lamd Module (Daemon-Based Communication)
	The sysv Module (Shared Memory Using System V Semaphores)
	The tcp Module (TCP Communication)
	The usysv Module (Shared Memory Using Spin Locks)

	MPI Collective Communication
	Selecting a coll Module
	coll SSI Parameters
	The lam_basic Module
	The smp Module
	The shmem Module

	Checkpoint/Restart of MPI Jobs
	Selecting a cr Module
	cr SSI Parameters
	The blcr Module
	The self Module

	Debugging Parallel Programs
	Naming MPI Objects
	TotalView Parallel Debugger
	Attaching TotalView to MPI Processes
	Suggested Use
	Limitations
	Message Queue Debugging

	Serial Debuggers
	Lauching Debuggers
	Attaching Debuggers

	Memory-Checking Debuggers

	Troubleshooting
	The LAM/MPI Mailing Lists
	Announcements
	General Discussion / User Questions

	LAM Run-Time Environment Problems
	Problems with the lamboot Command

	MPI Problems

	Miscellaneous
	Singleton MPI Processes
	MPI-2 I/O Support
	Fortran Process Names
	MPI Thread Support
	Thread Level

	MPI-2 Name Publishing
	Interoperable MPI (IMPI) Support
	Purpose of IMPI
	Current IMPI functionality
	Running an IMPI Job
	Complex Network Setups

	Batch Queuing System Support
	Location of LAM's Session Directory
	Signal Catching
	MPI Attributes
	Discussion Item

