
1

Alternative Concepts:
Parallel Functional Programming

Implicit Parallelism

Controlled Parallelism

Explicit Parallelism

Data Parallelism

Control Parallelism

Parallelism

Concurrency

2

Overview

Kevin Hammond and Greg Michaelson
(Editors):
Research Directions in
Parallel Functional Programming
Springer 1999
20 chapters by 27 authors
>= 600 references

• Introduction
• From Implicit to Controlled Parallelism

– Strictness analysis uncovers inherent parallelism
– Annotations mark potential parallelism
– Evaluation strategies control dynamic behaviour

• Process-control and Coordination Languages
– Lazy streams model communication
– Process nets describe parallel systems

• Data Parallelism
– Data parallel combinators
– Nested parallelism

The Book:

3

Excerpts from the Foreword by S. Peyton Jones
Programming is hard. ... But parallel programming is much, much harder.
...
Functional programming is a radical, elegant, high-level attack on the
programming problem. ...
Parallel functional programming is the same, only more so. The rewards
are even greater. ...

Parallelism without tears, perhaps? Definitely not. ... Two things have
become clear over the last 15 years or so.
First, it is a very substantial task to engineer a parallel functional language
implementation....
Second, ... Quite a bit of work needs to go into designing and expressing
a parallel algorithm for the application. ... All the interesting work these
days is about ... exercising carefully-chosen control over parallel
functional programs. ...

Is parallel functional programming any good? If I am honest, I have to say
that the jury is still out.

4

Why Parallel Functional Programming Matters

• Hughes 1989: Why Functional Programming Matters
– ease of program construction
– ease of function/module reuse
– simplicity
– generality through higher-order functions (“functional glue”)

• additional points suggested by experience
– ease of reasoning / proof
– ease of program transformation
– scope for optimisation

• Hammond 1999: additional reasons for the parallel programmer:
– ease of partitioning a parallel program
– simple communication model
– absence from deadlock
– straightforward semantic debugging
– easy exploitation of pipelining and other parallel control constructs

5

Inherent Parallelism in Functional Programs

• Church Rosser property (confluence) of reduction semantics
=> independent subexpressions can be evaluated in parallel

• Data dependencies introduce the need for communication:

let f x = e1
g x = e2

in g (f 10)

----> pipeline parallelism

let f x = e1
g x = e2

in (f 10) + (g 20)

6

Further Semantic Properties

• Determinacy: Purely functional programs have the same semantic
value when evaluated in parallel as when evaluated sequentially. The
value is independent of the evaluation order that is chosen.

– no race conditions
– system issues as variations in communication latencies, the intricacies of

scheduling of parallel tasks do not affect the result of a program
Testing and debugging can be done on a sequential machine.
Nevertheless, performance monitoring tools are necessary on the
parallel machine.

• Absence of Deadlock: Any program that delivers a value when run
sequentially will deliver the same value then run in parallel.
However, an erroneous program (i.e. one whose result is undefined)
may fail to terminate, when executed either sequentially or in parallel.

7

Parallelism control data

implicit automatic parallelisation data parallel languages

 annotation-based
languages

controlled para-functional programming high-level data parallelism

 evaluation strategies

 skeletons

explicit process control languages

 message passing languages

 concurrent languages

A Classification

8

Running Examples

• binomial coefficients:
binom :: Int -> Int -> Int
binom n k | k == 0 && n >= 0 = 1

| n < k && n >= 0 = 0
| n >= k && k >= 0 = binom (n-1) k + binom (n-1) (k-1)
| otherwise = error “negative params”

• multiplication of sparse matrices with dense vectors:
type SparseMatrix a = [[(Int,a)]] -- rows with (col,nz-val) pairs
type Vector a = [a]

matvec :: Num a => SparseMatrix a -> Vector a -> Vector a
matvec m v = map (sum.map (\ (i,x) -> x * v!!i)) m

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1

Pascal´s
Triangle

k

n

9

From Implicit to Controlled Parallelism

Implicit Parallelism (only control parallelism):
– Automatic Parallelisation, Strictness Analysis
– Indicating Parallelism: parallel let, annotations, parallel combinators

Controlled Parallelism
– Para-functional programming
– Evaluation strategies

still semantically transparent parallelism
programmer is aware of parallelism

higher-level language constructs

semantically transparent parallelism
introduced through low-level language constructs

10

Parallel Combinators

• special projection functions which provide control over the evaluation of
their arguments

• e.g. in Glasgow parallel Haskell (GpH):

par, seq :: a -> b -> b

where
– par e1 e2 creates a spark for e1 and returns e2. A spark is a marker that

an expression can be evaluated in parallel.
– seq e1 e2 evaluates e1 to WHNF and returns e2 (sequential composition).

• advantages:
– simple, annotations as functions (in the spirit of functional programming)

• disadvantages:
– explicit control of evaluation order by use of seq necessary
– programs must be restructured

11

Examples with Parallel Combinators

• binomial coefficients:
binom :: Int -> Int -> Int
binom n k | k == 0 && n >= 0 = 1

| n < k && n >= 0 = 0
| n >= k && k >= 0 = let b1 = binom (n-1) k

b2 = binom (n-1) (k-1)
in b2 ‘par‘ b1 ‘seq‘ (b1 + b2)

| otherwise = error “negative params”

• parallel map:
parmap :: (a-> b) -> [a] -> [b]
parmap f [] = []
parmap f (x:xs) = let fx = (f x)

fxs = parmap f xs
in fx ‘par‘ fxs ‘seq‘ (fx : fxs)

explicit control
of evaluation order

12

Controlled Parallelism

• parallelism under the control of the programmer

• more powerful constructs

• semi-explicit
– explicit in the form of special constructs or operations

– details are hidden within the implementation of these constructs/operations

• no explicit notion of a parallel process

• denotational semantics remains unchanged, parallelism is only a
matter of the implementation

• e.g. para-functional programming [Hudak 1986]

evaluation strategies [Trinder, Hammond, Loidl, Peyton Jones 1998]

13

“unit” typeresult type

Evaluation Strategies

• high-level control of dynamic behavior, i.e. the evaluation degree of an
expression and parallelism

• defined on top of parallel combinators par and seq

• An evaluation strategy is a function taking as an argument the value to
be computed. It is executed purely for effect. Its result is simply ():

type Strategy a = a -> ()

The using function allows strategies to be attached to functions:
using :: a -> Strategy a -> a
x `using` s = (s x) `seq` x

• clear separation of
the algorithm specified by a functional program and
the specification of its dynamic behavior

14

Example for Evaluation Strategies

binomial coefficients:

binom :: Int -> Int -> Int
binom n k | k == 0 && n >= 0 = 1

| n < k && n >= 0 = 0
| n >= k && k >= 0 = (b1 + b2) ‘using‘ strat
| otherwise = error “negative params”
where

b1 = binom (n-1) k
b2 = binom (n-1) (k-1)
strat _ = b2 ‘par‘ b1 ‘seq‘ ()

dynamic
behaviour

functional
program

15

Evaluation Degrees

• Strategies which specify the degree of evaluation
– no reduction: r0 :: Strategy a with r0 _ = ()
– reduce to weak head normal form:

rwhnf :: Strategy a with rwhnf x = x `seq` ()
– reduce to full normal form:

class NFData a where
rnf :: Strategy a
rnf = rwhnf -- default definition

• Instance Declarations provide special definitions for data structures:
instance NFData a => [a] where

rnf [] = ()
rnf (x:xs) = rnf x `seq` rnf xs

instance (NFData a, NFData b) => (a,b) where
rnf (a,b) = rnf a `seq` rnf b `seq` ()

16

Composing Strategies

Strategies are normal higher-order functions, hence
– can be passed as parameters
– composed with other strategies (using function composition etc.)
– etc.

Example:

seqList is a strategy on lists that is parameterised by a strategy
on list elements

seqList :: Strategy a -> Strategy [a]
seqList strat [] = ()
seqList strat (x:xs) = strat x `seq` (seqList strat xs)

e.g. seqList r0 evaluate spine of list
seqList rwhnf evaluate every element to WHNF

17

Data-Oriented Parallelism / Parallel Map

parList :: Strategy a -> Strategy [a]
parList strat [] = ()
parList strat (x:xs) = strat x `par` (parList strat xs)

e.g. parList rwhnf evaluate each xi in parallel

x1 x2 …
strat strat strat

xn

parMap :: Strategy b -> (a -> b) -> [a] -> [b]
parMap strat f xs = map f xs `using` parList strat

18

Process-control and Coordination Languages

• Higher-order functions and laziness are powerful abstraction
mechanisms which can also be exploited for parallelism:

– lazy lists can be used to model communication streams
– higher-order functions can be used to define general process

structures or skeletons

• Dynamically evolving process networks can simply be described in a
functional framework [Kahn, MacQueen 1977]

p3

p2p1 let outp2 = p2 inp
(outp3, out) = p3 outp1 outp2
outp1 = p1 outp3

in out

inp

out

19

The Eden Project

PhilippsPhilipps--UniversitUniversitäät Marburgt Marburg
Jost Berthold, Rita Loogen, Steffen Priebe

et al.

UniversidadUniversidad ComplutenseComplutense
de Madridde Madrid

Yolanda Ortega Mallén
Ricardo Peña Marí

et al.

Acción Integrada

1996-1998

Acción Integrada
2000-2002

ARC
1999-2001

HeriotHeriot--WattWatt Univ. EdinburghUniv. Edinburgh
Phil Trinder et al.

University of St. AndrewsUniversity of St. Andrews
Kevin Hammond

et al.

20

parallelism control

– explicit processes
– implicit communication

(no send/receive)
• runtime system control
• stream-based typed

communication channels
– disjoint address spaces,

distributed memory
– nondeterminism,

reactive systems

Parallel Programming at a High Level of Abstraction

functional language
» polymorphic type system
» pattern matching
» higher order functions
» lazy evaluation
» ...

21

Eden

parallel functional language
> computation language: Haskell
> coordination language:

+ process abstraction
pabs :: Process (τ1,...,τn) (σ1,...,σm)
pabs = process (\ (i1,...,in) -> (o1,...,om)

where eqn1 ... eqnk)

+ process instantiation
(#) :: (Trans a, Trans b) =>

Process a b -> a -> b
pabs # (inp1,...,inpn) :: (σ1,...,σm)

+ ...

out1 out2 ... outm

inp1 ... inpn

pabs

22

t t

p

PE

...

t t

p

PE

parMap :: (Trans t, Trans r) =>
Process t r -> [t] -> [r]

parMap p ts = [p # t | t <- ts] `using` spine

farm :: (Trans t, Trans r) =>
Int -> (Int -> [t] -> [[t]]) -> ([[r]] -> [r])
-> Process [t] [r] -> [t] -> [r]

farm np distr combine p ts
= combine (parMap p (distr np ts))

map_farm :: (Trans a, Trans b) => (a -> b) -> [a] -> [b]
map_farm f = farm noPE shuffle unshuffle (process f)

Simple Eden Skeletons

..

.

t t

p p

PE

...

..

.

t t

p p

PE

23

Eden Example Program

rayTrace :: ScreenSize -> CamPos -> [Object] -> [Impact]
rayTrace scr cameraPos scene

= map_farm (firstImpact scene) allRays
where allRays = generateRays scr cameraPos

Ray tracer: calculate
2D image of 3D scene

scene

screen

camera

24

Conclusions and Future Work

• language design: various levels of parallelism control and process
models

• existing parallel/distributed implementations:
Clean, GpH, Eden, SkelML, P3L

• applications/benchmarks:
sorting, combinatorial search, n-body, computer algebra, scientific
computing

• semantics, analysis and transformation:
strictness, granularity, types and effects, cost analysis

• programming methodology:
skeletons

